1 /* 2 * NSA Security-Enhanced Linux (SELinux) security module 3 * 4 * This file contains the SELinux XFRM hook function implementations. 5 * 6 * Authors: Serge Hallyn <sergeh@us.ibm.com> 7 * Trent Jaeger <jaegert@us.ibm.com> 8 * 9 * Updated: Venkat Yekkirala <vyekkirala@TrustedCS.com> 10 * 11 * Granular IPSec Associations for use in MLS environments. 12 * 13 * Copyright (C) 2005 International Business Machines Corporation 14 * Copyright (C) 2006 Trusted Computer Solutions, Inc. 15 * 16 * This program is free software; you can redistribute it and/or modify 17 * it under the terms of the GNU General Public License version 2, 18 * as published by the Free Software Foundation. 19 */ 20 21 /* 22 * USAGE: 23 * NOTES: 24 * 1. Make sure to enable the following options in your kernel config: 25 * CONFIG_SECURITY=y 26 * CONFIG_SECURITY_NETWORK=y 27 * CONFIG_SECURITY_NETWORK_XFRM=y 28 * CONFIG_SECURITY_SELINUX=m/y 29 * ISSUES: 30 * 1. Caching packets, so they are not dropped during negotiation 31 * 2. Emulating a reasonable SO_PEERSEC across machines 32 * 3. Testing addition of sk_policy's with security context via setsockopt 33 */ 34 #include <linux/kernel.h> 35 #include <linux/init.h> 36 #include <linux/security.h> 37 #include <linux/types.h> 38 #include <linux/netfilter.h> 39 #include <linux/netfilter_ipv4.h> 40 #include <linux/netfilter_ipv6.h> 41 #include <linux/slab.h> 42 #include <linux/ip.h> 43 #include <linux/tcp.h> 44 #include <linux/skbuff.h> 45 #include <linux/xfrm.h> 46 #include <net/xfrm.h> 47 #include <net/checksum.h> 48 #include <net/udp.h> 49 #include <linux/atomic.h> 50 51 #include "avc.h" 52 #include "objsec.h" 53 #include "xfrm.h" 54 55 /* Labeled XFRM instance counter */ 56 atomic_t selinux_xfrm_refcount = ATOMIC_INIT(0); 57 58 /* 59 * Returns true if the context is an LSM/SELinux context. 60 */ 61 static inline int selinux_authorizable_ctx(struct xfrm_sec_ctx *ctx) 62 { 63 return (ctx && 64 (ctx->ctx_doi == XFRM_SC_DOI_LSM) && 65 (ctx->ctx_alg == XFRM_SC_ALG_SELINUX)); 66 } 67 68 /* 69 * Returns true if the xfrm contains a security blob for SELinux. 70 */ 71 static inline int selinux_authorizable_xfrm(struct xfrm_state *x) 72 { 73 return selinux_authorizable_ctx(x->security); 74 } 75 76 /* 77 * Allocates a xfrm_sec_state and populates it using the supplied security 78 * xfrm_user_sec_ctx context. 79 */ 80 static int selinux_xfrm_alloc_user(struct xfrm_sec_ctx **ctxp, 81 struct xfrm_user_sec_ctx *uctx) 82 { 83 int rc; 84 const struct task_security_struct *tsec = current_security(); 85 struct xfrm_sec_ctx *ctx = NULL; 86 u32 str_len; 87 88 if (ctxp == NULL || uctx == NULL || 89 uctx->ctx_doi != XFRM_SC_DOI_LSM || 90 uctx->ctx_alg != XFRM_SC_ALG_SELINUX) 91 return -EINVAL; 92 93 str_len = uctx->ctx_len; 94 if (str_len >= PAGE_SIZE) 95 return -ENOMEM; 96 97 ctx = kmalloc(sizeof(*ctx) + str_len + 1, GFP_KERNEL); 98 if (!ctx) 99 return -ENOMEM; 100 101 ctx->ctx_doi = XFRM_SC_DOI_LSM; 102 ctx->ctx_alg = XFRM_SC_ALG_SELINUX; 103 ctx->ctx_len = str_len; 104 memcpy(ctx->ctx_str, &uctx[1], str_len); 105 ctx->ctx_str[str_len] = '\0'; 106 rc = security_context_to_sid(ctx->ctx_str, str_len, &ctx->ctx_sid); 107 if (rc) 108 goto err; 109 110 rc = avc_has_perm(tsec->sid, ctx->ctx_sid, 111 SECCLASS_ASSOCIATION, ASSOCIATION__SETCONTEXT, NULL); 112 if (rc) 113 goto err; 114 115 *ctxp = ctx; 116 atomic_inc(&selinux_xfrm_refcount); 117 return 0; 118 119 err: 120 kfree(ctx); 121 return rc; 122 } 123 124 /* 125 * Free the xfrm_sec_ctx structure. 126 */ 127 static void selinux_xfrm_free(struct xfrm_sec_ctx *ctx) 128 { 129 if (!ctx) 130 return; 131 132 atomic_dec(&selinux_xfrm_refcount); 133 kfree(ctx); 134 } 135 136 /* 137 * Authorize the deletion of a labeled SA or policy rule. 138 */ 139 static int selinux_xfrm_delete(struct xfrm_sec_ctx *ctx) 140 { 141 const struct task_security_struct *tsec = current_security(); 142 143 if (!ctx) 144 return 0; 145 146 return avc_has_perm(tsec->sid, ctx->ctx_sid, 147 SECCLASS_ASSOCIATION, ASSOCIATION__SETCONTEXT, 148 NULL); 149 } 150 151 /* 152 * LSM hook implementation that authorizes that a flow can use a xfrm policy 153 * rule. 154 */ 155 int selinux_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir) 156 { 157 int rc; 158 159 /* All flows should be treated as polmatch'ing an otherwise applicable 160 * "non-labeled" policy. This would prevent inadvertent "leaks". */ 161 if (!ctx) 162 return 0; 163 164 /* Context sid is either set to label or ANY_ASSOC */ 165 if (!selinux_authorizable_ctx(ctx)) 166 return -EINVAL; 167 168 rc = avc_has_perm(fl_secid, ctx->ctx_sid, 169 SECCLASS_ASSOCIATION, ASSOCIATION__POLMATCH, NULL); 170 return (rc == -EACCES ? -ESRCH : rc); 171 } 172 173 /* 174 * LSM hook implementation that authorizes that a state matches 175 * the given policy, flow combo. 176 */ 177 int selinux_xfrm_state_pol_flow_match(struct xfrm_state *x, 178 struct xfrm_policy *xp, 179 const struct flowi *fl) 180 { 181 u32 state_sid; 182 183 if (!xp->security) 184 if (x->security) 185 /* unlabeled policy and labeled SA can't match */ 186 return 0; 187 else 188 /* unlabeled policy and unlabeled SA match all flows */ 189 return 1; 190 else 191 if (!x->security) 192 /* unlabeled SA and labeled policy can't match */ 193 return 0; 194 else 195 if (!selinux_authorizable_xfrm(x)) 196 /* Not a SELinux-labeled SA */ 197 return 0; 198 199 state_sid = x->security->ctx_sid; 200 201 if (fl->flowi_secid != state_sid) 202 return 0; 203 204 /* We don't need a separate SA Vs. policy polmatch check since the SA 205 * is now of the same label as the flow and a flow Vs. policy polmatch 206 * check had already happened in selinux_xfrm_policy_lookup() above. */ 207 return (avc_has_perm(fl->flowi_secid, state_sid, 208 SECCLASS_ASSOCIATION, ASSOCIATION__SENDTO, 209 NULL) ? 0 : 1); 210 } 211 212 static u32 selinux_xfrm_skb_sid_egress(struct sk_buff *skb) 213 { 214 struct dst_entry *dst = skb_dst(skb); 215 struct xfrm_state *x; 216 217 if (dst == NULL) 218 return SECSID_NULL; 219 x = dst->xfrm; 220 if (x == NULL || !selinux_authorizable_xfrm(x)) 221 return SECSID_NULL; 222 223 return x->security->ctx_sid; 224 } 225 226 static int selinux_xfrm_skb_sid_ingress(struct sk_buff *skb, 227 u32 *sid, int ckall) 228 { 229 u32 sid_session = SECSID_NULL; 230 struct sec_path *sp = skb->sp; 231 232 if (sp) { 233 int i; 234 235 for (i = sp->len - 1; i >= 0; i--) { 236 struct xfrm_state *x = sp->xvec[i]; 237 if (selinux_authorizable_xfrm(x)) { 238 struct xfrm_sec_ctx *ctx = x->security; 239 240 if (sid_session == SECSID_NULL) { 241 sid_session = ctx->ctx_sid; 242 if (!ckall) 243 goto out; 244 } else if (sid_session != ctx->ctx_sid) { 245 *sid = SECSID_NULL; 246 return -EINVAL; 247 } 248 } 249 } 250 } 251 252 out: 253 *sid = sid_session; 254 return 0; 255 } 256 257 /* 258 * LSM hook implementation that checks and/or returns the xfrm sid for the 259 * incoming packet. 260 */ 261 int selinux_xfrm_decode_session(struct sk_buff *skb, u32 *sid, int ckall) 262 { 263 if (skb == NULL) { 264 *sid = SECSID_NULL; 265 return 0; 266 } 267 return selinux_xfrm_skb_sid_ingress(skb, sid, ckall); 268 } 269 270 int selinux_xfrm_skb_sid(struct sk_buff *skb, u32 *sid) 271 { 272 int rc; 273 274 rc = selinux_xfrm_skb_sid_ingress(skb, sid, 0); 275 if (rc == 0 && *sid == SECSID_NULL) 276 *sid = selinux_xfrm_skb_sid_egress(skb); 277 278 return rc; 279 } 280 281 /* 282 * LSM hook implementation that allocs and transfers uctx spec to xfrm_policy. 283 */ 284 int selinux_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, 285 struct xfrm_user_sec_ctx *uctx) 286 { 287 return selinux_xfrm_alloc_user(ctxp, uctx); 288 } 289 290 /* 291 * LSM hook implementation that copies security data structure from old to new 292 * for policy cloning. 293 */ 294 int selinux_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 295 struct xfrm_sec_ctx **new_ctxp) 296 { 297 struct xfrm_sec_ctx *new_ctx; 298 299 if (!old_ctx) 300 return 0; 301 302 new_ctx = kmemdup(old_ctx, sizeof(*old_ctx) + old_ctx->ctx_len, 303 GFP_ATOMIC); 304 if (!new_ctx) 305 return -ENOMEM; 306 atomic_inc(&selinux_xfrm_refcount); 307 *new_ctxp = new_ctx; 308 309 return 0; 310 } 311 312 /* 313 * LSM hook implementation that frees xfrm_sec_ctx security information. 314 */ 315 void selinux_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 316 { 317 selinux_xfrm_free(ctx); 318 } 319 320 /* 321 * LSM hook implementation that authorizes deletion of labeled policies. 322 */ 323 int selinux_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 324 { 325 return selinux_xfrm_delete(ctx); 326 } 327 328 /* 329 * LSM hook implementation that allocates a xfrm_sec_state, populates it using 330 * the supplied security context, and assigns it to the xfrm_state. 331 */ 332 int selinux_xfrm_state_alloc(struct xfrm_state *x, 333 struct xfrm_user_sec_ctx *uctx) 334 { 335 return selinux_xfrm_alloc_user(&x->security, uctx); 336 } 337 338 /* 339 * LSM hook implementation that allocates a xfrm_sec_state and populates based 340 * on a secid. 341 */ 342 int selinux_xfrm_state_alloc_acquire(struct xfrm_state *x, 343 struct xfrm_sec_ctx *polsec, u32 secid) 344 { 345 int rc; 346 struct xfrm_sec_ctx *ctx; 347 char *ctx_str = NULL; 348 int str_len; 349 350 if (!polsec) 351 return 0; 352 353 if (secid == 0) 354 return -EINVAL; 355 356 rc = security_sid_to_context(secid, &ctx_str, &str_len); 357 if (rc) 358 return rc; 359 360 ctx = kmalloc(sizeof(*ctx) + str_len, GFP_ATOMIC); 361 if (!ctx) { 362 rc = -ENOMEM; 363 goto out; 364 } 365 366 ctx->ctx_doi = XFRM_SC_DOI_LSM; 367 ctx->ctx_alg = XFRM_SC_ALG_SELINUX; 368 ctx->ctx_sid = secid; 369 ctx->ctx_len = str_len; 370 memcpy(ctx->ctx_str, ctx_str, str_len); 371 372 x->security = ctx; 373 atomic_inc(&selinux_xfrm_refcount); 374 out: 375 kfree(ctx_str); 376 return rc; 377 } 378 379 /* 380 * LSM hook implementation that frees xfrm_state security information. 381 */ 382 void selinux_xfrm_state_free(struct xfrm_state *x) 383 { 384 selinux_xfrm_free(x->security); 385 } 386 387 /* 388 * LSM hook implementation that authorizes deletion of labeled SAs. 389 */ 390 int selinux_xfrm_state_delete(struct xfrm_state *x) 391 { 392 return selinux_xfrm_delete(x->security); 393 } 394 395 /* 396 * LSM hook that controls access to unlabelled packets. If 397 * a xfrm_state is authorizable (defined by macro) then it was 398 * already authorized by the IPSec process. If not, then 399 * we need to check for unlabelled access since this may not have 400 * gone thru the IPSec process. 401 */ 402 int selinux_xfrm_sock_rcv_skb(u32 sk_sid, struct sk_buff *skb, 403 struct common_audit_data *ad) 404 { 405 int i; 406 struct sec_path *sp = skb->sp; 407 u32 peer_sid = SECINITSID_UNLABELED; 408 409 if (sp) { 410 for (i = 0; i < sp->len; i++) { 411 struct xfrm_state *x = sp->xvec[i]; 412 413 if (x && selinux_authorizable_xfrm(x)) { 414 struct xfrm_sec_ctx *ctx = x->security; 415 peer_sid = ctx->ctx_sid; 416 break; 417 } 418 } 419 } 420 421 /* This check even when there's no association involved is intended, 422 * according to Trent Jaeger, to make sure a process can't engage in 423 * non-IPsec communication unless explicitly allowed by policy. */ 424 return avc_has_perm(sk_sid, peer_sid, 425 SECCLASS_ASSOCIATION, ASSOCIATION__RECVFROM, ad); 426 } 427 428 /* 429 * POSTROUTE_LAST hook's XFRM processing: 430 * If we have no security association, then we need to determine 431 * whether the socket is allowed to send to an unlabelled destination. 432 * If we do have a authorizable security association, then it has already been 433 * checked in the selinux_xfrm_state_pol_flow_match hook above. 434 */ 435 int selinux_xfrm_postroute_last(u32 sk_sid, struct sk_buff *skb, 436 struct common_audit_data *ad, u8 proto) 437 { 438 struct dst_entry *dst; 439 440 switch (proto) { 441 case IPPROTO_AH: 442 case IPPROTO_ESP: 443 case IPPROTO_COMP: 444 /* We should have already seen this packet once before it 445 * underwent xfrm(s). No need to subject it to the unlabeled 446 * check. */ 447 return 0; 448 default: 449 break; 450 } 451 452 dst = skb_dst(skb); 453 if (dst) { 454 struct dst_entry *iter; 455 456 for (iter = dst; iter != NULL; iter = iter->child) { 457 struct xfrm_state *x = iter->xfrm; 458 459 if (x && selinux_authorizable_xfrm(x)) 460 return 0; 461 } 462 } 463 464 /* This check even when there's no association involved is intended, 465 * according to Trent Jaeger, to make sure a process can't engage in 466 * non-IPsec communication unless explicitly allowed by policy. */ 467 return avc_has_perm(sk_sid, SECINITSID_UNLABELED, 468 SECCLASS_ASSOCIATION, ASSOCIATION__SENDTO, ad); 469 } 470