xref: /openbmc/linux/security/selinux/xfrm.c (revision 12eb4683)
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux XFRM hook function implementations.
5  *
6  *  Authors:  Serge Hallyn <sergeh@us.ibm.com>
7  *	      Trent Jaeger <jaegert@us.ibm.com>
8  *
9  *  Updated: Venkat Yekkirala <vyekkirala@TrustedCS.com>
10  *
11  *           Granular IPSec Associations for use in MLS environments.
12  *
13  *  Copyright (C) 2005 International Business Machines Corporation
14  *  Copyright (C) 2006 Trusted Computer Solutions, Inc.
15  *
16  *	This program is free software; you can redistribute it and/or modify
17  *	it under the terms of the GNU General Public License version 2,
18  *	as published by the Free Software Foundation.
19  */
20 
21 /*
22  * USAGE:
23  * NOTES:
24  *   1. Make sure to enable the following options in your kernel config:
25  *	CONFIG_SECURITY=y
26  *	CONFIG_SECURITY_NETWORK=y
27  *	CONFIG_SECURITY_NETWORK_XFRM=y
28  *	CONFIG_SECURITY_SELINUX=m/y
29  * ISSUES:
30  *   1. Caching packets, so they are not dropped during negotiation
31  *   2. Emulating a reasonable SO_PEERSEC across machines
32  *   3. Testing addition of sk_policy's with security context via setsockopt
33  */
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/security.h>
37 #include <linux/types.h>
38 #include <linux/netfilter.h>
39 #include <linux/netfilter_ipv4.h>
40 #include <linux/netfilter_ipv6.h>
41 #include <linux/slab.h>
42 #include <linux/ip.h>
43 #include <linux/tcp.h>
44 #include <linux/skbuff.h>
45 #include <linux/xfrm.h>
46 #include <net/xfrm.h>
47 #include <net/checksum.h>
48 #include <net/udp.h>
49 #include <linux/atomic.h>
50 
51 #include "avc.h"
52 #include "objsec.h"
53 #include "xfrm.h"
54 
55 /* Labeled XFRM instance counter */
56 atomic_t selinux_xfrm_refcount = ATOMIC_INIT(0);
57 
58 /*
59  * Returns true if the context is an LSM/SELinux context.
60  */
61 static inline int selinux_authorizable_ctx(struct xfrm_sec_ctx *ctx)
62 {
63 	return (ctx &&
64 		(ctx->ctx_doi == XFRM_SC_DOI_LSM) &&
65 		(ctx->ctx_alg == XFRM_SC_ALG_SELINUX));
66 }
67 
68 /*
69  * Returns true if the xfrm contains a security blob for SELinux.
70  */
71 static inline int selinux_authorizable_xfrm(struct xfrm_state *x)
72 {
73 	return selinux_authorizable_ctx(x->security);
74 }
75 
76 /*
77  * Allocates a xfrm_sec_state and populates it using the supplied security
78  * xfrm_user_sec_ctx context.
79  */
80 static int selinux_xfrm_alloc_user(struct xfrm_sec_ctx **ctxp,
81 				   struct xfrm_user_sec_ctx *uctx)
82 {
83 	int rc;
84 	const struct task_security_struct *tsec = current_security();
85 	struct xfrm_sec_ctx *ctx = NULL;
86 	u32 str_len;
87 
88 	if (ctxp == NULL || uctx == NULL ||
89 	    uctx->ctx_doi != XFRM_SC_DOI_LSM ||
90 	    uctx->ctx_alg != XFRM_SC_ALG_SELINUX)
91 		return -EINVAL;
92 
93 	str_len = uctx->ctx_len;
94 	if (str_len >= PAGE_SIZE)
95 		return -ENOMEM;
96 
97 	ctx = kmalloc(sizeof(*ctx) + str_len + 1, GFP_KERNEL);
98 	if (!ctx)
99 		return -ENOMEM;
100 
101 	ctx->ctx_doi = XFRM_SC_DOI_LSM;
102 	ctx->ctx_alg = XFRM_SC_ALG_SELINUX;
103 	ctx->ctx_len = str_len;
104 	memcpy(ctx->ctx_str, &uctx[1], str_len);
105 	ctx->ctx_str[str_len] = '\0';
106 	rc = security_context_to_sid(ctx->ctx_str, str_len, &ctx->ctx_sid);
107 	if (rc)
108 		goto err;
109 
110 	rc = avc_has_perm(tsec->sid, ctx->ctx_sid,
111 			  SECCLASS_ASSOCIATION, ASSOCIATION__SETCONTEXT, NULL);
112 	if (rc)
113 		goto err;
114 
115 	*ctxp = ctx;
116 	atomic_inc(&selinux_xfrm_refcount);
117 	return 0;
118 
119 err:
120 	kfree(ctx);
121 	return rc;
122 }
123 
124 /*
125  * Free the xfrm_sec_ctx structure.
126  */
127 static void selinux_xfrm_free(struct xfrm_sec_ctx *ctx)
128 {
129 	if (!ctx)
130 		return;
131 
132 	atomic_dec(&selinux_xfrm_refcount);
133 	kfree(ctx);
134 }
135 
136 /*
137  * Authorize the deletion of a labeled SA or policy rule.
138  */
139 static int selinux_xfrm_delete(struct xfrm_sec_ctx *ctx)
140 {
141 	const struct task_security_struct *tsec = current_security();
142 
143 	if (!ctx)
144 		return 0;
145 
146 	return avc_has_perm(tsec->sid, ctx->ctx_sid,
147 			    SECCLASS_ASSOCIATION, ASSOCIATION__SETCONTEXT,
148 			    NULL);
149 }
150 
151 /*
152  * LSM hook implementation that authorizes that a flow can use a xfrm policy
153  * rule.
154  */
155 int selinux_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
156 {
157 	int rc;
158 
159 	/* All flows should be treated as polmatch'ing an otherwise applicable
160 	 * "non-labeled" policy. This would prevent inadvertent "leaks". */
161 	if (!ctx)
162 		return 0;
163 
164 	/* Context sid is either set to label or ANY_ASSOC */
165 	if (!selinux_authorizable_ctx(ctx))
166 		return -EINVAL;
167 
168 	rc = avc_has_perm(fl_secid, ctx->ctx_sid,
169 			  SECCLASS_ASSOCIATION, ASSOCIATION__POLMATCH, NULL);
170 	return (rc == -EACCES ? -ESRCH : rc);
171 }
172 
173 /*
174  * LSM hook implementation that authorizes that a state matches
175  * the given policy, flow combo.
176  */
177 int selinux_xfrm_state_pol_flow_match(struct xfrm_state *x,
178 				      struct xfrm_policy *xp,
179 				      const struct flowi *fl)
180 {
181 	u32 state_sid;
182 
183 	if (!xp->security)
184 		if (x->security)
185 			/* unlabeled policy and labeled SA can't match */
186 			return 0;
187 		else
188 			/* unlabeled policy and unlabeled SA match all flows */
189 			return 1;
190 	else
191 		if (!x->security)
192 			/* unlabeled SA and labeled policy can't match */
193 			return 0;
194 		else
195 			if (!selinux_authorizable_xfrm(x))
196 				/* Not a SELinux-labeled SA */
197 				return 0;
198 
199 	state_sid = x->security->ctx_sid;
200 
201 	if (fl->flowi_secid != state_sid)
202 		return 0;
203 
204 	/* We don't need a separate SA Vs. policy polmatch check since the SA
205 	 * is now of the same label as the flow and a flow Vs. policy polmatch
206 	 * check had already happened in selinux_xfrm_policy_lookup() above. */
207 	return (avc_has_perm(fl->flowi_secid, state_sid,
208 			    SECCLASS_ASSOCIATION, ASSOCIATION__SENDTO,
209 			    NULL) ? 0 : 1);
210 }
211 
212 static u32 selinux_xfrm_skb_sid_egress(struct sk_buff *skb)
213 {
214 	struct dst_entry *dst = skb_dst(skb);
215 	struct xfrm_state *x;
216 
217 	if (dst == NULL)
218 		return SECSID_NULL;
219 	x = dst->xfrm;
220 	if (x == NULL || !selinux_authorizable_xfrm(x))
221 		return SECSID_NULL;
222 
223 	return x->security->ctx_sid;
224 }
225 
226 static int selinux_xfrm_skb_sid_ingress(struct sk_buff *skb,
227 					u32 *sid, int ckall)
228 {
229 	u32 sid_session = SECSID_NULL;
230 	struct sec_path *sp = skb->sp;
231 
232 	if (sp) {
233 		int i;
234 
235 		for (i = sp->len - 1; i >= 0; i--) {
236 			struct xfrm_state *x = sp->xvec[i];
237 			if (selinux_authorizable_xfrm(x)) {
238 				struct xfrm_sec_ctx *ctx = x->security;
239 
240 				if (sid_session == SECSID_NULL) {
241 					sid_session = ctx->ctx_sid;
242 					if (!ckall)
243 						goto out;
244 				} else if (sid_session != ctx->ctx_sid) {
245 					*sid = SECSID_NULL;
246 					return -EINVAL;
247 				}
248 			}
249 		}
250 	}
251 
252 out:
253 	*sid = sid_session;
254 	return 0;
255 }
256 
257 /*
258  * LSM hook implementation that checks and/or returns the xfrm sid for the
259  * incoming packet.
260  */
261 int selinux_xfrm_decode_session(struct sk_buff *skb, u32 *sid, int ckall)
262 {
263 	if (skb == NULL) {
264 		*sid = SECSID_NULL;
265 		return 0;
266 	}
267 	return selinux_xfrm_skb_sid_ingress(skb, sid, ckall);
268 }
269 
270 int selinux_xfrm_skb_sid(struct sk_buff *skb, u32 *sid)
271 {
272 	int rc;
273 
274 	rc = selinux_xfrm_skb_sid_ingress(skb, sid, 0);
275 	if (rc == 0 && *sid == SECSID_NULL)
276 		*sid = selinux_xfrm_skb_sid_egress(skb);
277 
278 	return rc;
279 }
280 
281 /*
282  * LSM hook implementation that allocs and transfers uctx spec to xfrm_policy.
283  */
284 int selinux_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
285 			      struct xfrm_user_sec_ctx *uctx)
286 {
287 	return selinux_xfrm_alloc_user(ctxp, uctx);
288 }
289 
290 /*
291  * LSM hook implementation that copies security data structure from old to new
292  * for policy cloning.
293  */
294 int selinux_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
295 			      struct xfrm_sec_ctx **new_ctxp)
296 {
297 	struct xfrm_sec_ctx *new_ctx;
298 
299 	if (!old_ctx)
300 		return 0;
301 
302 	new_ctx = kmemdup(old_ctx, sizeof(*old_ctx) + old_ctx->ctx_len,
303 			  GFP_ATOMIC);
304 	if (!new_ctx)
305 		return -ENOMEM;
306 	atomic_inc(&selinux_xfrm_refcount);
307 	*new_ctxp = new_ctx;
308 
309 	return 0;
310 }
311 
312 /*
313  * LSM hook implementation that frees xfrm_sec_ctx security information.
314  */
315 void selinux_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
316 {
317 	selinux_xfrm_free(ctx);
318 }
319 
320 /*
321  * LSM hook implementation that authorizes deletion of labeled policies.
322  */
323 int selinux_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
324 {
325 	return selinux_xfrm_delete(ctx);
326 }
327 
328 /*
329  * LSM hook implementation that allocates a xfrm_sec_state, populates it using
330  * the supplied security context, and assigns it to the xfrm_state.
331  */
332 int selinux_xfrm_state_alloc(struct xfrm_state *x,
333 			     struct xfrm_user_sec_ctx *uctx)
334 {
335 	return selinux_xfrm_alloc_user(&x->security, uctx);
336 }
337 
338 /*
339  * LSM hook implementation that allocates a xfrm_sec_state and populates based
340  * on a secid.
341  */
342 int selinux_xfrm_state_alloc_acquire(struct xfrm_state *x,
343 				     struct xfrm_sec_ctx *polsec, u32 secid)
344 {
345 	int rc;
346 	struct xfrm_sec_ctx *ctx;
347 	char *ctx_str = NULL;
348 	int str_len;
349 
350 	if (!polsec)
351 		return 0;
352 
353 	if (secid == 0)
354 		return -EINVAL;
355 
356 	rc = security_sid_to_context(secid, &ctx_str, &str_len);
357 	if (rc)
358 		return rc;
359 
360 	ctx = kmalloc(sizeof(*ctx) + str_len, GFP_ATOMIC);
361 	if (!ctx) {
362 		rc = -ENOMEM;
363 		goto out;
364 	}
365 
366 	ctx->ctx_doi = XFRM_SC_DOI_LSM;
367 	ctx->ctx_alg = XFRM_SC_ALG_SELINUX;
368 	ctx->ctx_sid = secid;
369 	ctx->ctx_len = str_len;
370 	memcpy(ctx->ctx_str, ctx_str, str_len);
371 
372 	x->security = ctx;
373 	atomic_inc(&selinux_xfrm_refcount);
374 out:
375 	kfree(ctx_str);
376 	return rc;
377 }
378 
379 /*
380  * LSM hook implementation that frees xfrm_state security information.
381  */
382 void selinux_xfrm_state_free(struct xfrm_state *x)
383 {
384 	selinux_xfrm_free(x->security);
385 }
386 
387 /*
388  * LSM hook implementation that authorizes deletion of labeled SAs.
389  */
390 int selinux_xfrm_state_delete(struct xfrm_state *x)
391 {
392 	return selinux_xfrm_delete(x->security);
393 }
394 
395 /*
396  * LSM hook that controls access to unlabelled packets.  If
397  * a xfrm_state is authorizable (defined by macro) then it was
398  * already authorized by the IPSec process.  If not, then
399  * we need to check for unlabelled access since this may not have
400  * gone thru the IPSec process.
401  */
402 int selinux_xfrm_sock_rcv_skb(u32 sk_sid, struct sk_buff *skb,
403 			      struct common_audit_data *ad)
404 {
405 	int i;
406 	struct sec_path *sp = skb->sp;
407 	u32 peer_sid = SECINITSID_UNLABELED;
408 
409 	if (sp) {
410 		for (i = 0; i < sp->len; i++) {
411 			struct xfrm_state *x = sp->xvec[i];
412 
413 			if (x && selinux_authorizable_xfrm(x)) {
414 				struct xfrm_sec_ctx *ctx = x->security;
415 				peer_sid = ctx->ctx_sid;
416 				break;
417 			}
418 		}
419 	}
420 
421 	/* This check even when there's no association involved is intended,
422 	 * according to Trent Jaeger, to make sure a process can't engage in
423 	 * non-IPsec communication unless explicitly allowed by policy. */
424 	return avc_has_perm(sk_sid, peer_sid,
425 			    SECCLASS_ASSOCIATION, ASSOCIATION__RECVFROM, ad);
426 }
427 
428 /*
429  * POSTROUTE_LAST hook's XFRM processing:
430  * If we have no security association, then we need to determine
431  * whether the socket is allowed to send to an unlabelled destination.
432  * If we do have a authorizable security association, then it has already been
433  * checked in the selinux_xfrm_state_pol_flow_match hook above.
434  */
435 int selinux_xfrm_postroute_last(u32 sk_sid, struct sk_buff *skb,
436 				struct common_audit_data *ad, u8 proto)
437 {
438 	struct dst_entry *dst;
439 
440 	switch (proto) {
441 	case IPPROTO_AH:
442 	case IPPROTO_ESP:
443 	case IPPROTO_COMP:
444 		/* We should have already seen this packet once before it
445 		 * underwent xfrm(s). No need to subject it to the unlabeled
446 		 * check. */
447 		return 0;
448 	default:
449 		break;
450 	}
451 
452 	dst = skb_dst(skb);
453 	if (dst) {
454 		struct dst_entry *iter;
455 
456 		for (iter = dst; iter != NULL; iter = iter->child) {
457 			struct xfrm_state *x = iter->xfrm;
458 
459 			if (x && selinux_authorizable_xfrm(x))
460 				return 0;
461 		}
462 	}
463 
464 	/* This check even when there's no association involved is intended,
465 	 * according to Trent Jaeger, to make sure a process can't engage in
466 	 * non-IPsec communication unless explicitly allowed by policy. */
467 	return avc_has_perm(sk_sid, SECINITSID_UNLABELED,
468 			    SECCLASS_ASSOCIATION, ASSOCIATION__SENDTO, ad);
469 }
470