xref: /openbmc/linux/security/selinux/xfrm.c (revision 01a6e126)
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux XFRM hook function implementations.
5  *
6  *  Authors:  Serge Hallyn <sergeh@us.ibm.com>
7  *	      Trent Jaeger <jaegert@us.ibm.com>
8  *
9  *  Updated: Venkat Yekkirala <vyekkirala@TrustedCS.com>
10  *
11  *           Granular IPSec Associations for use in MLS environments.
12  *
13  *  Copyright (C) 2005 International Business Machines Corporation
14  *  Copyright (C) 2006 Trusted Computer Solutions, Inc.
15  *
16  *	This program is free software; you can redistribute it and/or modify
17  *	it under the terms of the GNU General Public License version 2,
18  *	as published by the Free Software Foundation.
19  */
20 
21 /*
22  * USAGE:
23  * NOTES:
24  *   1. Make sure to enable the following options in your kernel config:
25  *	CONFIG_SECURITY=y
26  *	CONFIG_SECURITY_NETWORK=y
27  *	CONFIG_SECURITY_NETWORK_XFRM=y
28  *	CONFIG_SECURITY_SELINUX=m/y
29  * ISSUES:
30  *   1. Caching packets, so they are not dropped during negotiation
31  *   2. Emulating a reasonable SO_PEERSEC across machines
32  *   3. Testing addition of sk_policy's with security context via setsockopt
33  */
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/security.h>
37 #include <linux/types.h>
38 #include <linux/slab.h>
39 #include <linux/ip.h>
40 #include <linux/tcp.h>
41 #include <linux/skbuff.h>
42 #include <linux/xfrm.h>
43 #include <net/xfrm.h>
44 #include <net/checksum.h>
45 #include <net/udp.h>
46 #include <linux/atomic.h>
47 
48 #include "avc.h"
49 #include "objsec.h"
50 #include "xfrm.h"
51 
52 /* Labeled XFRM instance counter */
53 atomic_t selinux_xfrm_refcount = ATOMIC_INIT(0);
54 
55 /*
56  * Returns true if the context is an LSM/SELinux context.
57  */
58 static inline int selinux_authorizable_ctx(struct xfrm_sec_ctx *ctx)
59 {
60 	return (ctx &&
61 		(ctx->ctx_doi == XFRM_SC_DOI_LSM) &&
62 		(ctx->ctx_alg == XFRM_SC_ALG_SELINUX));
63 }
64 
65 /*
66  * Returns true if the xfrm contains a security blob for SELinux.
67  */
68 static inline int selinux_authorizable_xfrm(struct xfrm_state *x)
69 {
70 	return selinux_authorizable_ctx(x->security);
71 }
72 
73 /*
74  * Allocates a xfrm_sec_state and populates it using the supplied security
75  * xfrm_user_sec_ctx context.
76  */
77 static int selinux_xfrm_alloc_user(struct xfrm_sec_ctx **ctxp,
78 				   struct xfrm_user_sec_ctx *uctx,
79 				   gfp_t gfp)
80 {
81 	int rc;
82 	const struct task_security_struct *tsec = current_security();
83 	struct xfrm_sec_ctx *ctx = NULL;
84 	u32 str_len;
85 
86 	if (ctxp == NULL || uctx == NULL ||
87 	    uctx->ctx_doi != XFRM_SC_DOI_LSM ||
88 	    uctx->ctx_alg != XFRM_SC_ALG_SELINUX)
89 		return -EINVAL;
90 
91 	str_len = uctx->ctx_len;
92 	if (str_len >= PAGE_SIZE)
93 		return -ENOMEM;
94 
95 	ctx = kmalloc(sizeof(*ctx) + str_len + 1, gfp);
96 	if (!ctx)
97 		return -ENOMEM;
98 
99 	ctx->ctx_doi = XFRM_SC_DOI_LSM;
100 	ctx->ctx_alg = XFRM_SC_ALG_SELINUX;
101 	ctx->ctx_len = str_len;
102 	memcpy(ctx->ctx_str, &uctx[1], str_len);
103 	ctx->ctx_str[str_len] = '\0';
104 	rc = security_context_to_sid(ctx->ctx_str, str_len, &ctx->ctx_sid, gfp);
105 	if (rc)
106 		goto err;
107 
108 	rc = avc_has_perm(tsec->sid, ctx->ctx_sid,
109 			  SECCLASS_ASSOCIATION, ASSOCIATION__SETCONTEXT, NULL);
110 	if (rc)
111 		goto err;
112 
113 	*ctxp = ctx;
114 	atomic_inc(&selinux_xfrm_refcount);
115 	return 0;
116 
117 err:
118 	kfree(ctx);
119 	return rc;
120 }
121 
122 /*
123  * Free the xfrm_sec_ctx structure.
124  */
125 static void selinux_xfrm_free(struct xfrm_sec_ctx *ctx)
126 {
127 	if (!ctx)
128 		return;
129 
130 	atomic_dec(&selinux_xfrm_refcount);
131 	kfree(ctx);
132 }
133 
134 /*
135  * Authorize the deletion of a labeled SA or policy rule.
136  */
137 static int selinux_xfrm_delete(struct xfrm_sec_ctx *ctx)
138 {
139 	const struct task_security_struct *tsec = current_security();
140 
141 	if (!ctx)
142 		return 0;
143 
144 	return avc_has_perm(tsec->sid, ctx->ctx_sid,
145 			    SECCLASS_ASSOCIATION, ASSOCIATION__SETCONTEXT,
146 			    NULL);
147 }
148 
149 /*
150  * LSM hook implementation that authorizes that a flow can use a xfrm policy
151  * rule.
152  */
153 int selinux_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
154 {
155 	int rc;
156 
157 	/* All flows should be treated as polmatch'ing an otherwise applicable
158 	 * "non-labeled" policy. This would prevent inadvertent "leaks". */
159 	if (!ctx)
160 		return 0;
161 
162 	/* Context sid is either set to label or ANY_ASSOC */
163 	if (!selinux_authorizable_ctx(ctx))
164 		return -EINVAL;
165 
166 	rc = avc_has_perm(fl_secid, ctx->ctx_sid,
167 			  SECCLASS_ASSOCIATION, ASSOCIATION__POLMATCH, NULL);
168 	return (rc == -EACCES ? -ESRCH : rc);
169 }
170 
171 /*
172  * LSM hook implementation that authorizes that a state matches
173  * the given policy, flow combo.
174  */
175 int selinux_xfrm_state_pol_flow_match(struct xfrm_state *x,
176 				      struct xfrm_policy *xp,
177 				      const struct flowi *fl)
178 {
179 	u32 state_sid;
180 
181 	if (!xp->security)
182 		if (x->security)
183 			/* unlabeled policy and labeled SA can't match */
184 			return 0;
185 		else
186 			/* unlabeled policy and unlabeled SA match all flows */
187 			return 1;
188 	else
189 		if (!x->security)
190 			/* unlabeled SA and labeled policy can't match */
191 			return 0;
192 		else
193 			if (!selinux_authorizable_xfrm(x))
194 				/* Not a SELinux-labeled SA */
195 				return 0;
196 
197 	state_sid = x->security->ctx_sid;
198 
199 	if (fl->flowi_secid != state_sid)
200 		return 0;
201 
202 	/* We don't need a separate SA Vs. policy polmatch check since the SA
203 	 * is now of the same label as the flow and a flow Vs. policy polmatch
204 	 * check had already happened in selinux_xfrm_policy_lookup() above. */
205 	return (avc_has_perm(fl->flowi_secid, state_sid,
206 			    SECCLASS_ASSOCIATION, ASSOCIATION__SENDTO,
207 			    NULL) ? 0 : 1);
208 }
209 
210 static u32 selinux_xfrm_skb_sid_egress(struct sk_buff *skb)
211 {
212 	struct dst_entry *dst = skb_dst(skb);
213 	struct xfrm_state *x;
214 
215 	if (dst == NULL)
216 		return SECSID_NULL;
217 	x = dst->xfrm;
218 	if (x == NULL || !selinux_authorizable_xfrm(x))
219 		return SECSID_NULL;
220 
221 	return x->security->ctx_sid;
222 }
223 
224 static int selinux_xfrm_skb_sid_ingress(struct sk_buff *skb,
225 					u32 *sid, int ckall)
226 {
227 	u32 sid_session = SECSID_NULL;
228 	struct sec_path *sp = skb->sp;
229 
230 	if (sp) {
231 		int i;
232 
233 		for (i = sp->len - 1; i >= 0; i--) {
234 			struct xfrm_state *x = sp->xvec[i];
235 			if (selinux_authorizable_xfrm(x)) {
236 				struct xfrm_sec_ctx *ctx = x->security;
237 
238 				if (sid_session == SECSID_NULL) {
239 					sid_session = ctx->ctx_sid;
240 					if (!ckall)
241 						goto out;
242 				} else if (sid_session != ctx->ctx_sid) {
243 					*sid = SECSID_NULL;
244 					return -EINVAL;
245 				}
246 			}
247 		}
248 	}
249 
250 out:
251 	*sid = sid_session;
252 	return 0;
253 }
254 
255 /*
256  * LSM hook implementation that checks and/or returns the xfrm sid for the
257  * incoming packet.
258  */
259 int selinux_xfrm_decode_session(struct sk_buff *skb, u32 *sid, int ckall)
260 {
261 	if (skb == NULL) {
262 		*sid = SECSID_NULL;
263 		return 0;
264 	}
265 	return selinux_xfrm_skb_sid_ingress(skb, sid, ckall);
266 }
267 
268 int selinux_xfrm_skb_sid(struct sk_buff *skb, u32 *sid)
269 {
270 	int rc;
271 
272 	rc = selinux_xfrm_skb_sid_ingress(skb, sid, 0);
273 	if (rc == 0 && *sid == SECSID_NULL)
274 		*sid = selinux_xfrm_skb_sid_egress(skb);
275 
276 	return rc;
277 }
278 
279 /*
280  * LSM hook implementation that allocs and transfers uctx spec to xfrm_policy.
281  */
282 int selinux_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
283 			      struct xfrm_user_sec_ctx *uctx,
284 			      gfp_t gfp)
285 {
286 	return selinux_xfrm_alloc_user(ctxp, uctx, gfp);
287 }
288 
289 /*
290  * LSM hook implementation that copies security data structure from old to new
291  * for policy cloning.
292  */
293 int selinux_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
294 			      struct xfrm_sec_ctx **new_ctxp)
295 {
296 	struct xfrm_sec_ctx *new_ctx;
297 
298 	if (!old_ctx)
299 		return 0;
300 
301 	new_ctx = kmemdup(old_ctx, sizeof(*old_ctx) + old_ctx->ctx_len,
302 			  GFP_ATOMIC);
303 	if (!new_ctx)
304 		return -ENOMEM;
305 	atomic_inc(&selinux_xfrm_refcount);
306 	*new_ctxp = new_ctx;
307 
308 	return 0;
309 }
310 
311 /*
312  * LSM hook implementation that frees xfrm_sec_ctx security information.
313  */
314 void selinux_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
315 {
316 	selinux_xfrm_free(ctx);
317 }
318 
319 /*
320  * LSM hook implementation that authorizes deletion of labeled policies.
321  */
322 int selinux_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
323 {
324 	return selinux_xfrm_delete(ctx);
325 }
326 
327 /*
328  * LSM hook implementation that allocates a xfrm_sec_state, populates it using
329  * the supplied security context, and assigns it to the xfrm_state.
330  */
331 int selinux_xfrm_state_alloc(struct xfrm_state *x,
332 			     struct xfrm_user_sec_ctx *uctx)
333 {
334 	return selinux_xfrm_alloc_user(&x->security, uctx, GFP_KERNEL);
335 }
336 
337 /*
338  * LSM hook implementation that allocates a xfrm_sec_state and populates based
339  * on a secid.
340  */
341 int selinux_xfrm_state_alloc_acquire(struct xfrm_state *x,
342 				     struct xfrm_sec_ctx *polsec, u32 secid)
343 {
344 	int rc;
345 	struct xfrm_sec_ctx *ctx;
346 	char *ctx_str = NULL;
347 	int str_len;
348 
349 	if (!polsec)
350 		return 0;
351 
352 	if (secid == 0)
353 		return -EINVAL;
354 
355 	rc = security_sid_to_context(secid, &ctx_str, &str_len);
356 	if (rc)
357 		return rc;
358 
359 	ctx = kmalloc(sizeof(*ctx) + str_len, GFP_ATOMIC);
360 	if (!ctx) {
361 		rc = -ENOMEM;
362 		goto out;
363 	}
364 
365 	ctx->ctx_doi = XFRM_SC_DOI_LSM;
366 	ctx->ctx_alg = XFRM_SC_ALG_SELINUX;
367 	ctx->ctx_sid = secid;
368 	ctx->ctx_len = str_len;
369 	memcpy(ctx->ctx_str, ctx_str, str_len);
370 
371 	x->security = ctx;
372 	atomic_inc(&selinux_xfrm_refcount);
373 out:
374 	kfree(ctx_str);
375 	return rc;
376 }
377 
378 /*
379  * LSM hook implementation that frees xfrm_state security information.
380  */
381 void selinux_xfrm_state_free(struct xfrm_state *x)
382 {
383 	selinux_xfrm_free(x->security);
384 }
385 
386 /*
387  * LSM hook implementation that authorizes deletion of labeled SAs.
388  */
389 int selinux_xfrm_state_delete(struct xfrm_state *x)
390 {
391 	return selinux_xfrm_delete(x->security);
392 }
393 
394 /*
395  * LSM hook that controls access to unlabelled packets.  If
396  * a xfrm_state is authorizable (defined by macro) then it was
397  * already authorized by the IPSec process.  If not, then
398  * we need to check for unlabelled access since this may not have
399  * gone thru the IPSec process.
400  */
401 int selinux_xfrm_sock_rcv_skb(u32 sk_sid, struct sk_buff *skb,
402 			      struct common_audit_data *ad)
403 {
404 	int i;
405 	struct sec_path *sp = skb->sp;
406 	u32 peer_sid = SECINITSID_UNLABELED;
407 
408 	if (sp) {
409 		for (i = 0; i < sp->len; i++) {
410 			struct xfrm_state *x = sp->xvec[i];
411 
412 			if (x && selinux_authorizable_xfrm(x)) {
413 				struct xfrm_sec_ctx *ctx = x->security;
414 				peer_sid = ctx->ctx_sid;
415 				break;
416 			}
417 		}
418 	}
419 
420 	/* This check even when there's no association involved is intended,
421 	 * according to Trent Jaeger, to make sure a process can't engage in
422 	 * non-IPsec communication unless explicitly allowed by policy. */
423 	return avc_has_perm(sk_sid, peer_sid,
424 			    SECCLASS_ASSOCIATION, ASSOCIATION__RECVFROM, ad);
425 }
426 
427 /*
428  * POSTROUTE_LAST hook's XFRM processing:
429  * If we have no security association, then we need to determine
430  * whether the socket is allowed to send to an unlabelled destination.
431  * If we do have a authorizable security association, then it has already been
432  * checked in the selinux_xfrm_state_pol_flow_match hook above.
433  */
434 int selinux_xfrm_postroute_last(u32 sk_sid, struct sk_buff *skb,
435 				struct common_audit_data *ad, u8 proto)
436 {
437 	struct dst_entry *dst;
438 
439 	switch (proto) {
440 	case IPPROTO_AH:
441 	case IPPROTO_ESP:
442 	case IPPROTO_COMP:
443 		/* We should have already seen this packet once before it
444 		 * underwent xfrm(s). No need to subject it to the unlabeled
445 		 * check. */
446 		return 0;
447 	default:
448 		break;
449 	}
450 
451 	dst = skb_dst(skb);
452 	if (dst) {
453 		struct dst_entry *iter;
454 
455 		for (iter = dst; iter != NULL; iter = xfrm_dst_child(iter)) {
456 			struct xfrm_state *x = iter->xfrm;
457 
458 			if (x && selinux_authorizable_xfrm(x))
459 				return 0;
460 		}
461 	}
462 
463 	/* This check even when there's no association involved is intended,
464 	 * according to Trent Jaeger, to make sure a process can't engage in
465 	 * non-IPsec communication unless explicitly allowed by policy. */
466 	return avc_has_perm(sk_sid, SECINITSID_UNLABELED,
467 			    SECCLASS_ASSOCIATION, ASSOCIATION__SENDTO, ad);
468 }
469