1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Security-Enhanced Linux (SELinux) security module
4 *
5 * This file contains the SELinux XFRM hook function implementations.
6 *
7 * Authors: Serge Hallyn <sergeh@us.ibm.com>
8 * Trent Jaeger <jaegert@us.ibm.com>
9 *
10 * Updated: Venkat Yekkirala <vyekkirala@TrustedCS.com>
11 *
12 * Granular IPSec Associations for use in MLS environments.
13 *
14 * Copyright (C) 2005 International Business Machines Corporation
15 * Copyright (C) 2006 Trusted Computer Solutions, Inc.
16 */
17
18 /*
19 * USAGE:
20 * NOTES:
21 * 1. Make sure to enable the following options in your kernel config:
22 * CONFIG_SECURITY=y
23 * CONFIG_SECURITY_NETWORK=y
24 * CONFIG_SECURITY_NETWORK_XFRM=y
25 * CONFIG_SECURITY_SELINUX=m/y
26 * ISSUES:
27 * 1. Caching packets, so they are not dropped during negotiation
28 * 2. Emulating a reasonable SO_PEERSEC across machines
29 * 3. Testing addition of sk_policy's with security context via setsockopt
30 */
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/security.h>
34 #include <linux/types.h>
35 #include <linux/slab.h>
36 #include <linux/ip.h>
37 #include <linux/tcp.h>
38 #include <linux/skbuff.h>
39 #include <linux/xfrm.h>
40 #include <net/xfrm.h>
41 #include <net/checksum.h>
42 #include <net/udp.h>
43 #include <linux/atomic.h>
44
45 #include "avc.h"
46 #include "objsec.h"
47 #include "xfrm.h"
48
49 /* Labeled XFRM instance counter */
50 atomic_t selinux_xfrm_refcount __read_mostly = ATOMIC_INIT(0);
51
52 /*
53 * Returns true if the context is an LSM/SELinux context.
54 */
selinux_authorizable_ctx(struct xfrm_sec_ctx * ctx)55 static inline int selinux_authorizable_ctx(struct xfrm_sec_ctx *ctx)
56 {
57 return (ctx &&
58 (ctx->ctx_doi == XFRM_SC_DOI_LSM) &&
59 (ctx->ctx_alg == XFRM_SC_ALG_SELINUX));
60 }
61
62 /*
63 * Returns true if the xfrm contains a security blob for SELinux.
64 */
selinux_authorizable_xfrm(struct xfrm_state * x)65 static inline int selinux_authorizable_xfrm(struct xfrm_state *x)
66 {
67 return selinux_authorizable_ctx(x->security);
68 }
69
70 /*
71 * Allocates a xfrm_sec_state and populates it using the supplied security
72 * xfrm_user_sec_ctx context.
73 */
selinux_xfrm_alloc_user(struct xfrm_sec_ctx ** ctxp,struct xfrm_user_sec_ctx * uctx,gfp_t gfp)74 static int selinux_xfrm_alloc_user(struct xfrm_sec_ctx **ctxp,
75 struct xfrm_user_sec_ctx *uctx,
76 gfp_t gfp)
77 {
78 int rc;
79 const struct task_security_struct *tsec = selinux_cred(current_cred());
80 struct xfrm_sec_ctx *ctx = NULL;
81 u32 str_len;
82
83 if (ctxp == NULL || uctx == NULL ||
84 uctx->ctx_doi != XFRM_SC_DOI_LSM ||
85 uctx->ctx_alg != XFRM_SC_ALG_SELINUX)
86 return -EINVAL;
87
88 str_len = uctx->ctx_len;
89 if (str_len >= PAGE_SIZE)
90 return -ENOMEM;
91
92 ctx = kmalloc(struct_size(ctx, ctx_str, str_len + 1), gfp);
93 if (!ctx)
94 return -ENOMEM;
95
96 ctx->ctx_doi = XFRM_SC_DOI_LSM;
97 ctx->ctx_alg = XFRM_SC_ALG_SELINUX;
98 ctx->ctx_len = str_len;
99 memcpy(ctx->ctx_str, &uctx[1], str_len);
100 ctx->ctx_str[str_len] = '\0';
101 rc = security_context_to_sid(ctx->ctx_str, str_len,
102 &ctx->ctx_sid, gfp);
103 if (rc)
104 goto err;
105
106 rc = avc_has_perm(tsec->sid, ctx->ctx_sid,
107 SECCLASS_ASSOCIATION, ASSOCIATION__SETCONTEXT, NULL);
108 if (rc)
109 goto err;
110
111 *ctxp = ctx;
112 atomic_inc(&selinux_xfrm_refcount);
113 return 0;
114
115 err:
116 kfree(ctx);
117 return rc;
118 }
119
120 /*
121 * Free the xfrm_sec_ctx structure.
122 */
selinux_xfrm_free(struct xfrm_sec_ctx * ctx)123 static void selinux_xfrm_free(struct xfrm_sec_ctx *ctx)
124 {
125 if (!ctx)
126 return;
127
128 atomic_dec(&selinux_xfrm_refcount);
129 kfree(ctx);
130 }
131
132 /*
133 * Authorize the deletion of a labeled SA or policy rule.
134 */
selinux_xfrm_delete(struct xfrm_sec_ctx * ctx)135 static int selinux_xfrm_delete(struct xfrm_sec_ctx *ctx)
136 {
137 const struct task_security_struct *tsec = selinux_cred(current_cred());
138
139 if (!ctx)
140 return 0;
141
142 return avc_has_perm(tsec->sid, ctx->ctx_sid,
143 SECCLASS_ASSOCIATION, ASSOCIATION__SETCONTEXT,
144 NULL);
145 }
146
147 /*
148 * LSM hook implementation that authorizes that a flow can use a xfrm policy
149 * rule.
150 */
selinux_xfrm_policy_lookup(struct xfrm_sec_ctx * ctx,u32 fl_secid)151 int selinux_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid)
152 {
153 int rc;
154
155 /* All flows should be treated as polmatch'ing an otherwise applicable
156 * "non-labeled" policy. This would prevent inadvertent "leaks". */
157 if (!ctx)
158 return 0;
159
160 /* Context sid is either set to label or ANY_ASSOC */
161 if (!selinux_authorizable_ctx(ctx))
162 return -EINVAL;
163
164 rc = avc_has_perm(fl_secid, ctx->ctx_sid,
165 SECCLASS_ASSOCIATION, ASSOCIATION__POLMATCH, NULL);
166 return (rc == -EACCES ? -ESRCH : rc);
167 }
168
169 /*
170 * LSM hook implementation that authorizes that a state matches
171 * the given policy, flow combo.
172 */
selinux_xfrm_state_pol_flow_match(struct xfrm_state * x,struct xfrm_policy * xp,const struct flowi_common * flic)173 int selinux_xfrm_state_pol_flow_match(struct xfrm_state *x,
174 struct xfrm_policy *xp,
175 const struct flowi_common *flic)
176 {
177 u32 state_sid;
178 u32 flic_sid;
179
180 if (!xp->security)
181 if (x->security)
182 /* unlabeled policy and labeled SA can't match */
183 return 0;
184 else
185 /* unlabeled policy and unlabeled SA match all flows */
186 return 1;
187 else
188 if (!x->security)
189 /* unlabeled SA and labeled policy can't match */
190 return 0;
191 else
192 if (!selinux_authorizable_xfrm(x))
193 /* Not a SELinux-labeled SA */
194 return 0;
195
196 state_sid = x->security->ctx_sid;
197 flic_sid = flic->flowic_secid;
198
199 if (flic_sid != state_sid)
200 return 0;
201
202 /* We don't need a separate SA Vs. policy polmatch check since the SA
203 * is now of the same label as the flow and a flow Vs. policy polmatch
204 * check had already happened in selinux_xfrm_policy_lookup() above. */
205 return (avc_has_perm(flic_sid, state_sid,
206 SECCLASS_ASSOCIATION, ASSOCIATION__SENDTO,
207 NULL) ? 0 : 1);
208 }
209
selinux_xfrm_skb_sid_egress(struct sk_buff * skb)210 static u32 selinux_xfrm_skb_sid_egress(struct sk_buff *skb)
211 {
212 struct dst_entry *dst = skb_dst(skb);
213 struct xfrm_state *x;
214
215 if (dst == NULL)
216 return SECSID_NULL;
217 x = dst->xfrm;
218 if (x == NULL || !selinux_authorizable_xfrm(x))
219 return SECSID_NULL;
220
221 return x->security->ctx_sid;
222 }
223
selinux_xfrm_skb_sid_ingress(struct sk_buff * skb,u32 * sid,int ckall)224 static int selinux_xfrm_skb_sid_ingress(struct sk_buff *skb,
225 u32 *sid, int ckall)
226 {
227 u32 sid_session = SECSID_NULL;
228 struct sec_path *sp = skb_sec_path(skb);
229
230 if (sp) {
231 int i;
232
233 for (i = sp->len - 1; i >= 0; i--) {
234 struct xfrm_state *x = sp->xvec[i];
235 if (selinux_authorizable_xfrm(x)) {
236 struct xfrm_sec_ctx *ctx = x->security;
237
238 if (sid_session == SECSID_NULL) {
239 sid_session = ctx->ctx_sid;
240 if (!ckall)
241 goto out;
242 } else if (sid_session != ctx->ctx_sid) {
243 *sid = SECSID_NULL;
244 return -EINVAL;
245 }
246 }
247 }
248 }
249
250 out:
251 *sid = sid_session;
252 return 0;
253 }
254
255 /*
256 * LSM hook implementation that checks and/or returns the xfrm sid for the
257 * incoming packet.
258 */
selinux_xfrm_decode_session(struct sk_buff * skb,u32 * sid,int ckall)259 int selinux_xfrm_decode_session(struct sk_buff *skb, u32 *sid, int ckall)
260 {
261 if (skb == NULL) {
262 *sid = SECSID_NULL;
263 return 0;
264 }
265 return selinux_xfrm_skb_sid_ingress(skb, sid, ckall);
266 }
267
selinux_xfrm_skb_sid(struct sk_buff * skb,u32 * sid)268 int selinux_xfrm_skb_sid(struct sk_buff *skb, u32 *sid)
269 {
270 int rc;
271
272 rc = selinux_xfrm_skb_sid_ingress(skb, sid, 0);
273 if (rc == 0 && *sid == SECSID_NULL)
274 *sid = selinux_xfrm_skb_sid_egress(skb);
275
276 return rc;
277 }
278
279 /*
280 * LSM hook implementation that allocs and transfers uctx spec to xfrm_policy.
281 */
selinux_xfrm_policy_alloc(struct xfrm_sec_ctx ** ctxp,struct xfrm_user_sec_ctx * uctx,gfp_t gfp)282 int selinux_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
283 struct xfrm_user_sec_ctx *uctx,
284 gfp_t gfp)
285 {
286 return selinux_xfrm_alloc_user(ctxp, uctx, gfp);
287 }
288
289 /*
290 * LSM hook implementation that copies security data structure from old to new
291 * for policy cloning.
292 */
selinux_xfrm_policy_clone(struct xfrm_sec_ctx * old_ctx,struct xfrm_sec_ctx ** new_ctxp)293 int selinux_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
294 struct xfrm_sec_ctx **new_ctxp)
295 {
296 struct xfrm_sec_ctx *new_ctx;
297
298 if (!old_ctx)
299 return 0;
300
301 new_ctx = kmemdup(old_ctx, sizeof(*old_ctx) + old_ctx->ctx_len,
302 GFP_ATOMIC);
303 if (!new_ctx)
304 return -ENOMEM;
305 atomic_inc(&selinux_xfrm_refcount);
306 *new_ctxp = new_ctx;
307
308 return 0;
309 }
310
311 /*
312 * LSM hook implementation that frees xfrm_sec_ctx security information.
313 */
selinux_xfrm_policy_free(struct xfrm_sec_ctx * ctx)314 void selinux_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
315 {
316 selinux_xfrm_free(ctx);
317 }
318
319 /*
320 * LSM hook implementation that authorizes deletion of labeled policies.
321 */
selinux_xfrm_policy_delete(struct xfrm_sec_ctx * ctx)322 int selinux_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
323 {
324 return selinux_xfrm_delete(ctx);
325 }
326
327 /*
328 * LSM hook implementation that allocates a xfrm_sec_state, populates it using
329 * the supplied security context, and assigns it to the xfrm_state.
330 */
selinux_xfrm_state_alloc(struct xfrm_state * x,struct xfrm_user_sec_ctx * uctx)331 int selinux_xfrm_state_alloc(struct xfrm_state *x,
332 struct xfrm_user_sec_ctx *uctx)
333 {
334 return selinux_xfrm_alloc_user(&x->security, uctx, GFP_KERNEL);
335 }
336
337 /*
338 * LSM hook implementation that allocates a xfrm_sec_state and populates based
339 * on a secid.
340 */
selinux_xfrm_state_alloc_acquire(struct xfrm_state * x,struct xfrm_sec_ctx * polsec,u32 secid)341 int selinux_xfrm_state_alloc_acquire(struct xfrm_state *x,
342 struct xfrm_sec_ctx *polsec, u32 secid)
343 {
344 int rc;
345 struct xfrm_sec_ctx *ctx;
346 char *ctx_str = NULL;
347 u32 str_len;
348
349 if (!polsec)
350 return 0;
351
352 if (secid == 0)
353 return -EINVAL;
354
355 rc = security_sid_to_context(secid, &ctx_str,
356 &str_len);
357 if (rc)
358 return rc;
359
360 ctx = kmalloc(struct_size(ctx, ctx_str, str_len), GFP_ATOMIC);
361 if (!ctx) {
362 rc = -ENOMEM;
363 goto out;
364 }
365
366 ctx->ctx_doi = XFRM_SC_DOI_LSM;
367 ctx->ctx_alg = XFRM_SC_ALG_SELINUX;
368 ctx->ctx_sid = secid;
369 ctx->ctx_len = str_len;
370 memcpy(ctx->ctx_str, ctx_str, str_len);
371
372 x->security = ctx;
373 atomic_inc(&selinux_xfrm_refcount);
374 out:
375 kfree(ctx_str);
376 return rc;
377 }
378
379 /*
380 * LSM hook implementation that frees xfrm_state security information.
381 */
selinux_xfrm_state_free(struct xfrm_state * x)382 void selinux_xfrm_state_free(struct xfrm_state *x)
383 {
384 selinux_xfrm_free(x->security);
385 }
386
387 /*
388 * LSM hook implementation that authorizes deletion of labeled SAs.
389 */
selinux_xfrm_state_delete(struct xfrm_state * x)390 int selinux_xfrm_state_delete(struct xfrm_state *x)
391 {
392 return selinux_xfrm_delete(x->security);
393 }
394
395 /*
396 * LSM hook that controls access to unlabelled packets. If
397 * a xfrm_state is authorizable (defined by macro) then it was
398 * already authorized by the IPSec process. If not, then
399 * we need to check for unlabelled access since this may not have
400 * gone thru the IPSec process.
401 */
selinux_xfrm_sock_rcv_skb(u32 sk_sid,struct sk_buff * skb,struct common_audit_data * ad)402 int selinux_xfrm_sock_rcv_skb(u32 sk_sid, struct sk_buff *skb,
403 struct common_audit_data *ad)
404 {
405 int i;
406 struct sec_path *sp = skb_sec_path(skb);
407 u32 peer_sid = SECINITSID_UNLABELED;
408
409 if (sp) {
410 for (i = 0; i < sp->len; i++) {
411 struct xfrm_state *x = sp->xvec[i];
412
413 if (x && selinux_authorizable_xfrm(x)) {
414 struct xfrm_sec_ctx *ctx = x->security;
415 peer_sid = ctx->ctx_sid;
416 break;
417 }
418 }
419 }
420
421 /* This check even when there's no association involved is intended,
422 * according to Trent Jaeger, to make sure a process can't engage in
423 * non-IPsec communication unless explicitly allowed by policy. */
424 return avc_has_perm(sk_sid, peer_sid,
425 SECCLASS_ASSOCIATION, ASSOCIATION__RECVFROM, ad);
426 }
427
428 /*
429 * POSTROUTE_LAST hook's XFRM processing:
430 * If we have no security association, then we need to determine
431 * whether the socket is allowed to send to an unlabelled destination.
432 * If we do have a authorizable security association, then it has already been
433 * checked in the selinux_xfrm_state_pol_flow_match hook above.
434 */
selinux_xfrm_postroute_last(u32 sk_sid,struct sk_buff * skb,struct common_audit_data * ad,u8 proto)435 int selinux_xfrm_postroute_last(u32 sk_sid, struct sk_buff *skb,
436 struct common_audit_data *ad, u8 proto)
437 {
438 struct dst_entry *dst;
439
440 switch (proto) {
441 case IPPROTO_AH:
442 case IPPROTO_ESP:
443 case IPPROTO_COMP:
444 /* We should have already seen this packet once before it
445 * underwent xfrm(s). No need to subject it to the unlabeled
446 * check. */
447 return 0;
448 default:
449 break;
450 }
451
452 dst = skb_dst(skb);
453 if (dst) {
454 struct dst_entry *iter;
455
456 for (iter = dst; iter != NULL; iter = xfrm_dst_child(iter)) {
457 struct xfrm_state *x = iter->xfrm;
458
459 if (x && selinux_authorizable_xfrm(x))
460 return 0;
461 }
462 }
463
464 /* This check even when there's no association involved is intended,
465 * according to Trent Jaeger, to make sure a process can't engage in
466 * non-IPsec communication unless explicitly allowed by policy. */
467 return avc_has_perm(sk_sid, SECINITSID_UNLABELED,
468 SECCLASS_ASSOCIATION, ASSOCIATION__SENDTO, ad);
469 }
470