1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VMware vSockets Driver
4  *
5  * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6  */
7 
8 #include <linux/types.h>
9 #include <linux/bitops.h>
10 #include <linux/cred.h>
11 #include <linux/init.h>
12 #include <linux/io.h>
13 #include <linux/kernel.h>
14 #include <linux/kmod.h>
15 #include <linux/list.h>
16 #include <linux/module.h>
17 #include <linux/mutex.h>
18 #include <linux/net.h>
19 #include <linux/poll.h>
20 #include <linux/skbuff.h>
21 #include <linux/smp.h>
22 #include <linux/socket.h>
23 #include <linux/stddef.h>
24 #include <linux/unistd.h>
25 #include <linux/wait.h>
26 #include <linux/workqueue.h>
27 #include <net/sock.h>
28 #include <net/af_vsock.h>
29 
30 #include "vmci_transport_notify.h"
31 
32 static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg);
33 static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg);
34 static void vmci_transport_peer_detach_cb(u32 sub_id,
35 					  const struct vmci_event_data *ed,
36 					  void *client_data);
37 static void vmci_transport_recv_pkt_work(struct work_struct *work);
38 static void vmci_transport_cleanup(struct work_struct *work);
39 static int vmci_transport_recv_listen(struct sock *sk,
40 				      struct vmci_transport_packet *pkt);
41 static int vmci_transport_recv_connecting_server(
42 					struct sock *sk,
43 					struct sock *pending,
44 					struct vmci_transport_packet *pkt);
45 static int vmci_transport_recv_connecting_client(
46 					struct sock *sk,
47 					struct vmci_transport_packet *pkt);
48 static int vmci_transport_recv_connecting_client_negotiate(
49 					struct sock *sk,
50 					struct vmci_transport_packet *pkt);
51 static int vmci_transport_recv_connecting_client_invalid(
52 					struct sock *sk,
53 					struct vmci_transport_packet *pkt);
54 static int vmci_transport_recv_connected(struct sock *sk,
55 					 struct vmci_transport_packet *pkt);
56 static bool vmci_transport_old_proto_override(bool *old_pkt_proto);
57 static u16 vmci_transport_new_proto_supported_versions(void);
58 static bool vmci_transport_proto_to_notify_struct(struct sock *sk, u16 *proto,
59 						  bool old_pkt_proto);
60 static bool vmci_check_transport(struct vsock_sock *vsk);
61 
62 struct vmci_transport_recv_pkt_info {
63 	struct work_struct work;
64 	struct sock *sk;
65 	struct vmci_transport_packet pkt;
66 };
67 
68 static LIST_HEAD(vmci_transport_cleanup_list);
69 static DEFINE_SPINLOCK(vmci_transport_cleanup_lock);
70 static DECLARE_WORK(vmci_transport_cleanup_work, vmci_transport_cleanup);
71 
72 static struct vmci_handle vmci_transport_stream_handle = { VMCI_INVALID_ID,
73 							   VMCI_INVALID_ID };
74 static u32 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
75 
76 static int PROTOCOL_OVERRIDE = -1;
77 
78 /* Helper function to convert from a VMCI error code to a VSock error code. */
79 
80 static s32 vmci_transport_error_to_vsock_error(s32 vmci_error)
81 {
82 	switch (vmci_error) {
83 	case VMCI_ERROR_NO_MEM:
84 		return -ENOMEM;
85 	case VMCI_ERROR_DUPLICATE_ENTRY:
86 	case VMCI_ERROR_ALREADY_EXISTS:
87 		return -EADDRINUSE;
88 	case VMCI_ERROR_NO_ACCESS:
89 		return -EPERM;
90 	case VMCI_ERROR_NO_RESOURCES:
91 		return -ENOBUFS;
92 	case VMCI_ERROR_INVALID_RESOURCE:
93 		return -EHOSTUNREACH;
94 	case VMCI_ERROR_INVALID_ARGS:
95 	default:
96 		break;
97 	}
98 	return -EINVAL;
99 }
100 
101 static u32 vmci_transport_peer_rid(u32 peer_cid)
102 {
103 	if (VMADDR_CID_HYPERVISOR == peer_cid)
104 		return VMCI_TRANSPORT_HYPERVISOR_PACKET_RID;
105 
106 	return VMCI_TRANSPORT_PACKET_RID;
107 }
108 
109 static inline void
110 vmci_transport_packet_init(struct vmci_transport_packet *pkt,
111 			   struct sockaddr_vm *src,
112 			   struct sockaddr_vm *dst,
113 			   u8 type,
114 			   u64 size,
115 			   u64 mode,
116 			   struct vmci_transport_waiting_info *wait,
117 			   u16 proto,
118 			   struct vmci_handle handle)
119 {
120 	/* We register the stream control handler as an any cid handle so we
121 	 * must always send from a source address of VMADDR_CID_ANY
122 	 */
123 	pkt->dg.src = vmci_make_handle(VMADDR_CID_ANY,
124 				       VMCI_TRANSPORT_PACKET_RID);
125 	pkt->dg.dst = vmci_make_handle(dst->svm_cid,
126 				       vmci_transport_peer_rid(dst->svm_cid));
127 	pkt->dg.payload_size = sizeof(*pkt) - sizeof(pkt->dg);
128 	pkt->version = VMCI_TRANSPORT_PACKET_VERSION;
129 	pkt->type = type;
130 	pkt->src_port = src->svm_port;
131 	pkt->dst_port = dst->svm_port;
132 	memset(&pkt->proto, 0, sizeof(pkt->proto));
133 	memset(&pkt->_reserved2, 0, sizeof(pkt->_reserved2));
134 
135 	switch (pkt->type) {
136 	case VMCI_TRANSPORT_PACKET_TYPE_INVALID:
137 		pkt->u.size = 0;
138 		break;
139 
140 	case VMCI_TRANSPORT_PACKET_TYPE_REQUEST:
141 	case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE:
142 		pkt->u.size = size;
143 		break;
144 
145 	case VMCI_TRANSPORT_PACKET_TYPE_OFFER:
146 	case VMCI_TRANSPORT_PACKET_TYPE_ATTACH:
147 		pkt->u.handle = handle;
148 		break;
149 
150 	case VMCI_TRANSPORT_PACKET_TYPE_WROTE:
151 	case VMCI_TRANSPORT_PACKET_TYPE_READ:
152 	case VMCI_TRANSPORT_PACKET_TYPE_RST:
153 		pkt->u.size = 0;
154 		break;
155 
156 	case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN:
157 		pkt->u.mode = mode;
158 		break;
159 
160 	case VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ:
161 	case VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE:
162 		memcpy(&pkt->u.wait, wait, sizeof(pkt->u.wait));
163 		break;
164 
165 	case VMCI_TRANSPORT_PACKET_TYPE_REQUEST2:
166 	case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2:
167 		pkt->u.size = size;
168 		pkt->proto = proto;
169 		break;
170 	}
171 }
172 
173 static inline void
174 vmci_transport_packet_get_addresses(struct vmci_transport_packet *pkt,
175 				    struct sockaddr_vm *local,
176 				    struct sockaddr_vm *remote)
177 {
178 	vsock_addr_init(local, pkt->dg.dst.context, pkt->dst_port);
179 	vsock_addr_init(remote, pkt->dg.src.context, pkt->src_port);
180 }
181 
182 static int
183 __vmci_transport_send_control_pkt(struct vmci_transport_packet *pkt,
184 				  struct sockaddr_vm *src,
185 				  struct sockaddr_vm *dst,
186 				  enum vmci_transport_packet_type type,
187 				  u64 size,
188 				  u64 mode,
189 				  struct vmci_transport_waiting_info *wait,
190 				  u16 proto,
191 				  struct vmci_handle handle,
192 				  bool convert_error)
193 {
194 	int err;
195 
196 	vmci_transport_packet_init(pkt, src, dst, type, size, mode, wait,
197 				   proto, handle);
198 	err = vmci_datagram_send(&pkt->dg);
199 	if (convert_error && (err < 0))
200 		return vmci_transport_error_to_vsock_error(err);
201 
202 	return err;
203 }
204 
205 static int
206 vmci_transport_reply_control_pkt_fast(struct vmci_transport_packet *pkt,
207 				      enum vmci_transport_packet_type type,
208 				      u64 size,
209 				      u64 mode,
210 				      struct vmci_transport_waiting_info *wait,
211 				      struct vmci_handle handle)
212 {
213 	struct vmci_transport_packet reply;
214 	struct sockaddr_vm src, dst;
215 
216 	if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST) {
217 		return 0;
218 	} else {
219 		vmci_transport_packet_get_addresses(pkt, &src, &dst);
220 		return __vmci_transport_send_control_pkt(&reply, &src, &dst,
221 							 type,
222 							 size, mode, wait,
223 							 VSOCK_PROTO_INVALID,
224 							 handle, true);
225 	}
226 }
227 
228 static int
229 vmci_transport_send_control_pkt_bh(struct sockaddr_vm *src,
230 				   struct sockaddr_vm *dst,
231 				   enum vmci_transport_packet_type type,
232 				   u64 size,
233 				   u64 mode,
234 				   struct vmci_transport_waiting_info *wait,
235 				   struct vmci_handle handle)
236 {
237 	/* Note that it is safe to use a single packet across all CPUs since
238 	 * two tasklets of the same type are guaranteed to not ever run
239 	 * simultaneously. If that ever changes, or VMCI stops using tasklets,
240 	 * we can use per-cpu packets.
241 	 */
242 	static struct vmci_transport_packet pkt;
243 
244 	return __vmci_transport_send_control_pkt(&pkt, src, dst, type,
245 						 size, mode, wait,
246 						 VSOCK_PROTO_INVALID, handle,
247 						 false);
248 }
249 
250 static int
251 vmci_transport_alloc_send_control_pkt(struct sockaddr_vm *src,
252 				      struct sockaddr_vm *dst,
253 				      enum vmci_transport_packet_type type,
254 				      u64 size,
255 				      u64 mode,
256 				      struct vmci_transport_waiting_info *wait,
257 				      u16 proto,
258 				      struct vmci_handle handle)
259 {
260 	struct vmci_transport_packet *pkt;
261 	int err;
262 
263 	pkt = kmalloc(sizeof(*pkt), GFP_KERNEL);
264 	if (!pkt)
265 		return -ENOMEM;
266 
267 	err = __vmci_transport_send_control_pkt(pkt, src, dst, type, size,
268 						mode, wait, proto, handle,
269 						true);
270 	kfree(pkt);
271 
272 	return err;
273 }
274 
275 static int
276 vmci_transport_send_control_pkt(struct sock *sk,
277 				enum vmci_transport_packet_type type,
278 				u64 size,
279 				u64 mode,
280 				struct vmci_transport_waiting_info *wait,
281 				u16 proto,
282 				struct vmci_handle handle)
283 {
284 	struct vsock_sock *vsk;
285 
286 	vsk = vsock_sk(sk);
287 
288 	if (!vsock_addr_bound(&vsk->local_addr))
289 		return -EINVAL;
290 
291 	if (!vsock_addr_bound(&vsk->remote_addr))
292 		return -EINVAL;
293 
294 	return vmci_transport_alloc_send_control_pkt(&vsk->local_addr,
295 						     &vsk->remote_addr,
296 						     type, size, mode,
297 						     wait, proto, handle);
298 }
299 
300 static int vmci_transport_send_reset_bh(struct sockaddr_vm *dst,
301 					struct sockaddr_vm *src,
302 					struct vmci_transport_packet *pkt)
303 {
304 	if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST)
305 		return 0;
306 	return vmci_transport_send_control_pkt_bh(
307 					dst, src,
308 					VMCI_TRANSPORT_PACKET_TYPE_RST, 0,
309 					0, NULL, VMCI_INVALID_HANDLE);
310 }
311 
312 static int vmci_transport_send_reset(struct sock *sk,
313 				     struct vmci_transport_packet *pkt)
314 {
315 	struct sockaddr_vm *dst_ptr;
316 	struct sockaddr_vm dst;
317 	struct vsock_sock *vsk;
318 
319 	if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST)
320 		return 0;
321 
322 	vsk = vsock_sk(sk);
323 
324 	if (!vsock_addr_bound(&vsk->local_addr))
325 		return -EINVAL;
326 
327 	if (vsock_addr_bound(&vsk->remote_addr)) {
328 		dst_ptr = &vsk->remote_addr;
329 	} else {
330 		vsock_addr_init(&dst, pkt->dg.src.context,
331 				pkt->src_port);
332 		dst_ptr = &dst;
333 	}
334 	return vmci_transport_alloc_send_control_pkt(&vsk->local_addr, dst_ptr,
335 					     VMCI_TRANSPORT_PACKET_TYPE_RST,
336 					     0, 0, NULL, VSOCK_PROTO_INVALID,
337 					     VMCI_INVALID_HANDLE);
338 }
339 
340 static int vmci_transport_send_negotiate(struct sock *sk, size_t size)
341 {
342 	return vmci_transport_send_control_pkt(
343 					sk,
344 					VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE,
345 					size, 0, NULL,
346 					VSOCK_PROTO_INVALID,
347 					VMCI_INVALID_HANDLE);
348 }
349 
350 static int vmci_transport_send_negotiate2(struct sock *sk, size_t size,
351 					  u16 version)
352 {
353 	return vmci_transport_send_control_pkt(
354 					sk,
355 					VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2,
356 					size, 0, NULL, version,
357 					VMCI_INVALID_HANDLE);
358 }
359 
360 static int vmci_transport_send_qp_offer(struct sock *sk,
361 					struct vmci_handle handle)
362 {
363 	return vmci_transport_send_control_pkt(
364 					sk, VMCI_TRANSPORT_PACKET_TYPE_OFFER, 0,
365 					0, NULL,
366 					VSOCK_PROTO_INVALID, handle);
367 }
368 
369 static int vmci_transport_send_attach(struct sock *sk,
370 				      struct vmci_handle handle)
371 {
372 	return vmci_transport_send_control_pkt(
373 					sk, VMCI_TRANSPORT_PACKET_TYPE_ATTACH,
374 					0, 0, NULL, VSOCK_PROTO_INVALID,
375 					handle);
376 }
377 
378 static int vmci_transport_reply_reset(struct vmci_transport_packet *pkt)
379 {
380 	return vmci_transport_reply_control_pkt_fast(
381 						pkt,
382 						VMCI_TRANSPORT_PACKET_TYPE_RST,
383 						0, 0, NULL,
384 						VMCI_INVALID_HANDLE);
385 }
386 
387 static int vmci_transport_send_invalid_bh(struct sockaddr_vm *dst,
388 					  struct sockaddr_vm *src)
389 {
390 	return vmci_transport_send_control_pkt_bh(
391 					dst, src,
392 					VMCI_TRANSPORT_PACKET_TYPE_INVALID,
393 					0, 0, NULL, VMCI_INVALID_HANDLE);
394 }
395 
396 int vmci_transport_send_wrote_bh(struct sockaddr_vm *dst,
397 				 struct sockaddr_vm *src)
398 {
399 	return vmci_transport_send_control_pkt_bh(
400 					dst, src,
401 					VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0,
402 					0, NULL, VMCI_INVALID_HANDLE);
403 }
404 
405 int vmci_transport_send_read_bh(struct sockaddr_vm *dst,
406 				struct sockaddr_vm *src)
407 {
408 	return vmci_transport_send_control_pkt_bh(
409 					dst, src,
410 					VMCI_TRANSPORT_PACKET_TYPE_READ, 0,
411 					0, NULL, VMCI_INVALID_HANDLE);
412 }
413 
414 int vmci_transport_send_wrote(struct sock *sk)
415 {
416 	return vmci_transport_send_control_pkt(
417 					sk, VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0,
418 					0, NULL, VSOCK_PROTO_INVALID,
419 					VMCI_INVALID_HANDLE);
420 }
421 
422 int vmci_transport_send_read(struct sock *sk)
423 {
424 	return vmci_transport_send_control_pkt(
425 					sk, VMCI_TRANSPORT_PACKET_TYPE_READ, 0,
426 					0, NULL, VSOCK_PROTO_INVALID,
427 					VMCI_INVALID_HANDLE);
428 }
429 
430 int vmci_transport_send_waiting_write(struct sock *sk,
431 				      struct vmci_transport_waiting_info *wait)
432 {
433 	return vmci_transport_send_control_pkt(
434 				sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE,
435 				0, 0, wait, VSOCK_PROTO_INVALID,
436 				VMCI_INVALID_HANDLE);
437 }
438 
439 int vmci_transport_send_waiting_read(struct sock *sk,
440 				     struct vmci_transport_waiting_info *wait)
441 {
442 	return vmci_transport_send_control_pkt(
443 				sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ,
444 				0, 0, wait, VSOCK_PROTO_INVALID,
445 				VMCI_INVALID_HANDLE);
446 }
447 
448 static int vmci_transport_shutdown(struct vsock_sock *vsk, int mode)
449 {
450 	return vmci_transport_send_control_pkt(
451 					&vsk->sk,
452 					VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN,
453 					0, mode, NULL,
454 					VSOCK_PROTO_INVALID,
455 					VMCI_INVALID_HANDLE);
456 }
457 
458 static int vmci_transport_send_conn_request(struct sock *sk, size_t size)
459 {
460 	return vmci_transport_send_control_pkt(sk,
461 					VMCI_TRANSPORT_PACKET_TYPE_REQUEST,
462 					size, 0, NULL,
463 					VSOCK_PROTO_INVALID,
464 					VMCI_INVALID_HANDLE);
465 }
466 
467 static int vmci_transport_send_conn_request2(struct sock *sk, size_t size,
468 					     u16 version)
469 {
470 	return vmci_transport_send_control_pkt(
471 					sk, VMCI_TRANSPORT_PACKET_TYPE_REQUEST2,
472 					size, 0, NULL, version,
473 					VMCI_INVALID_HANDLE);
474 }
475 
476 static struct sock *vmci_transport_get_pending(
477 					struct sock *listener,
478 					struct vmci_transport_packet *pkt)
479 {
480 	struct vsock_sock *vlistener;
481 	struct vsock_sock *vpending;
482 	struct sock *pending;
483 	struct sockaddr_vm src;
484 
485 	vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port);
486 
487 	vlistener = vsock_sk(listener);
488 
489 	list_for_each_entry(vpending, &vlistener->pending_links,
490 			    pending_links) {
491 		if (vsock_addr_equals_addr(&src, &vpending->remote_addr) &&
492 		    pkt->dst_port == vpending->local_addr.svm_port) {
493 			pending = sk_vsock(vpending);
494 			sock_hold(pending);
495 			goto found;
496 		}
497 	}
498 
499 	pending = NULL;
500 found:
501 	return pending;
502 
503 }
504 
505 static void vmci_transport_release_pending(struct sock *pending)
506 {
507 	sock_put(pending);
508 }
509 
510 /* We allow two kinds of sockets to communicate with a restricted VM: 1)
511  * trusted sockets 2) sockets from applications running as the same user as the
512  * VM (this is only true for the host side and only when using hosted products)
513  */
514 
515 static bool vmci_transport_is_trusted(struct vsock_sock *vsock, u32 peer_cid)
516 {
517 	return vsock->trusted ||
518 	       vmci_is_context_owner(peer_cid, vsock->owner->uid);
519 }
520 
521 /* We allow sending datagrams to and receiving datagrams from a restricted VM
522  * only if it is trusted as described in vmci_transport_is_trusted.
523  */
524 
525 static bool vmci_transport_allow_dgram(struct vsock_sock *vsock, u32 peer_cid)
526 {
527 	if (VMADDR_CID_HYPERVISOR == peer_cid)
528 		return true;
529 
530 	if (vsock->cached_peer != peer_cid) {
531 		vsock->cached_peer = peer_cid;
532 		if (!vmci_transport_is_trusted(vsock, peer_cid) &&
533 		    (vmci_context_get_priv_flags(peer_cid) &
534 		     VMCI_PRIVILEGE_FLAG_RESTRICTED)) {
535 			vsock->cached_peer_allow_dgram = false;
536 		} else {
537 			vsock->cached_peer_allow_dgram = true;
538 		}
539 	}
540 
541 	return vsock->cached_peer_allow_dgram;
542 }
543 
544 static int
545 vmci_transport_queue_pair_alloc(struct vmci_qp **qpair,
546 				struct vmci_handle *handle,
547 				u64 produce_size,
548 				u64 consume_size,
549 				u32 peer, u32 flags, bool trusted)
550 {
551 	int err = 0;
552 
553 	if (trusted) {
554 		/* Try to allocate our queue pair as trusted. This will only
555 		 * work if vsock is running in the host.
556 		 */
557 
558 		err = vmci_qpair_alloc(qpair, handle, produce_size,
559 				       consume_size,
560 				       peer, flags,
561 				       VMCI_PRIVILEGE_FLAG_TRUSTED);
562 		if (err != VMCI_ERROR_NO_ACCESS)
563 			goto out;
564 
565 	}
566 
567 	err = vmci_qpair_alloc(qpair, handle, produce_size, consume_size,
568 			       peer, flags, VMCI_NO_PRIVILEGE_FLAGS);
569 out:
570 	if (err < 0) {
571 		pr_err_once("Could not attach to queue pair with %d\n", err);
572 		err = vmci_transport_error_to_vsock_error(err);
573 	}
574 
575 	return err;
576 }
577 
578 static int
579 vmci_transport_datagram_create_hnd(u32 resource_id,
580 				   u32 flags,
581 				   vmci_datagram_recv_cb recv_cb,
582 				   void *client_data,
583 				   struct vmci_handle *out_handle)
584 {
585 	int err = 0;
586 
587 	/* Try to allocate our datagram handler as trusted. This will only work
588 	 * if vsock is running in the host.
589 	 */
590 
591 	err = vmci_datagram_create_handle_priv(resource_id, flags,
592 					       VMCI_PRIVILEGE_FLAG_TRUSTED,
593 					       recv_cb,
594 					       client_data, out_handle);
595 
596 	if (err == VMCI_ERROR_NO_ACCESS)
597 		err = vmci_datagram_create_handle(resource_id, flags,
598 						  recv_cb, client_data,
599 						  out_handle);
600 
601 	return err;
602 }
603 
604 /* This is invoked as part of a tasklet that's scheduled when the VMCI
605  * interrupt fires.  This is run in bottom-half context and if it ever needs to
606  * sleep it should defer that work to a work queue.
607  */
608 
609 static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg)
610 {
611 	struct sock *sk;
612 	size_t size;
613 	struct sk_buff *skb;
614 	struct vsock_sock *vsk;
615 
616 	sk = (struct sock *)data;
617 
618 	/* This handler is privileged when this module is running on the host.
619 	 * We will get datagrams from all endpoints (even VMs that are in a
620 	 * restricted context). If we get one from a restricted context then
621 	 * the destination socket must be trusted.
622 	 *
623 	 * NOTE: We access the socket struct without holding the lock here.
624 	 * This is ok because the field we are interested is never modified
625 	 * outside of the create and destruct socket functions.
626 	 */
627 	vsk = vsock_sk(sk);
628 	if (!vmci_transport_allow_dgram(vsk, dg->src.context))
629 		return VMCI_ERROR_NO_ACCESS;
630 
631 	size = VMCI_DG_SIZE(dg);
632 
633 	/* Attach the packet to the socket's receive queue as an sk_buff. */
634 	skb = alloc_skb(size, GFP_ATOMIC);
635 	if (!skb)
636 		return VMCI_ERROR_NO_MEM;
637 
638 	/* sk_receive_skb() will do a sock_put(), so hold here. */
639 	sock_hold(sk);
640 	skb_put(skb, size);
641 	memcpy(skb->data, dg, size);
642 	sk_receive_skb(sk, skb, 0);
643 
644 	return VMCI_SUCCESS;
645 }
646 
647 static bool vmci_transport_stream_allow(u32 cid, u32 port)
648 {
649 	static const u32 non_socket_contexts[] = {
650 		VMADDR_CID_LOCAL,
651 	};
652 	int i;
653 
654 	BUILD_BUG_ON(sizeof(cid) != sizeof(*non_socket_contexts));
655 
656 	for (i = 0; i < ARRAY_SIZE(non_socket_contexts); i++) {
657 		if (cid == non_socket_contexts[i])
658 			return false;
659 	}
660 
661 	return true;
662 }
663 
664 /* This is invoked as part of a tasklet that's scheduled when the VMCI
665  * interrupt fires.  This is run in bottom-half context but it defers most of
666  * its work to the packet handling work queue.
667  */
668 
669 static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg)
670 {
671 	struct sock *sk;
672 	struct sockaddr_vm dst;
673 	struct sockaddr_vm src;
674 	struct vmci_transport_packet *pkt;
675 	struct vsock_sock *vsk;
676 	bool bh_process_pkt;
677 	int err;
678 
679 	sk = NULL;
680 	err = VMCI_SUCCESS;
681 	bh_process_pkt = false;
682 
683 	/* Ignore incoming packets from contexts without sockets, or resources
684 	 * that aren't vsock implementations.
685 	 */
686 
687 	if (!vmci_transport_stream_allow(dg->src.context, -1)
688 	    || vmci_transport_peer_rid(dg->src.context) != dg->src.resource)
689 		return VMCI_ERROR_NO_ACCESS;
690 
691 	if (VMCI_DG_SIZE(dg) < sizeof(*pkt))
692 		/* Drop datagrams that do not contain full VSock packets. */
693 		return VMCI_ERROR_INVALID_ARGS;
694 
695 	pkt = (struct vmci_transport_packet *)dg;
696 
697 	/* Find the socket that should handle this packet.  First we look for a
698 	 * connected socket and if there is none we look for a socket bound to
699 	 * the destintation address.
700 	 */
701 	vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port);
702 	vsock_addr_init(&dst, pkt->dg.dst.context, pkt->dst_port);
703 
704 	sk = vsock_find_connected_socket(&src, &dst);
705 	if (!sk) {
706 		sk = vsock_find_bound_socket(&dst);
707 		if (!sk) {
708 			/* We could not find a socket for this specified
709 			 * address.  If this packet is a RST, we just drop it.
710 			 * If it is another packet, we send a RST.  Note that
711 			 * we do not send a RST reply to RSTs so that we do not
712 			 * continually send RSTs between two endpoints.
713 			 *
714 			 * Note that since this is a reply, dst is src and src
715 			 * is dst.
716 			 */
717 			if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0)
718 				pr_err("unable to send reset\n");
719 
720 			err = VMCI_ERROR_NOT_FOUND;
721 			goto out;
722 		}
723 	}
724 
725 	/* If the received packet type is beyond all types known to this
726 	 * implementation, reply with an invalid message.  Hopefully this will
727 	 * help when implementing backwards compatibility in the future.
728 	 */
729 	if (pkt->type >= VMCI_TRANSPORT_PACKET_TYPE_MAX) {
730 		vmci_transport_send_invalid_bh(&dst, &src);
731 		err = VMCI_ERROR_INVALID_ARGS;
732 		goto out;
733 	}
734 
735 	/* This handler is privileged when this module is running on the host.
736 	 * We will get datagram connect requests from all endpoints (even VMs
737 	 * that are in a restricted context). If we get one from a restricted
738 	 * context then the destination socket must be trusted.
739 	 *
740 	 * NOTE: We access the socket struct without holding the lock here.
741 	 * This is ok because the field we are interested is never modified
742 	 * outside of the create and destruct socket functions.
743 	 */
744 	vsk = vsock_sk(sk);
745 	if (!vmci_transport_allow_dgram(vsk, pkt->dg.src.context)) {
746 		err = VMCI_ERROR_NO_ACCESS;
747 		goto out;
748 	}
749 
750 	/* We do most everything in a work queue, but let's fast path the
751 	 * notification of reads and writes to help data transfer performance.
752 	 * We can only do this if there is no process context code executing
753 	 * for this socket since that may change the state.
754 	 */
755 	bh_lock_sock(sk);
756 
757 	if (!sock_owned_by_user(sk)) {
758 		/* The local context ID may be out of date, update it. */
759 		vsk->local_addr.svm_cid = dst.svm_cid;
760 
761 		if (sk->sk_state == TCP_ESTABLISHED)
762 			vmci_trans(vsk)->notify_ops->handle_notify_pkt(
763 					sk, pkt, true, &dst, &src,
764 					&bh_process_pkt);
765 	}
766 
767 	bh_unlock_sock(sk);
768 
769 	if (!bh_process_pkt) {
770 		struct vmci_transport_recv_pkt_info *recv_pkt_info;
771 
772 		recv_pkt_info = kmalloc(sizeof(*recv_pkt_info), GFP_ATOMIC);
773 		if (!recv_pkt_info) {
774 			if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0)
775 				pr_err("unable to send reset\n");
776 
777 			err = VMCI_ERROR_NO_MEM;
778 			goto out;
779 		}
780 
781 		recv_pkt_info->sk = sk;
782 		memcpy(&recv_pkt_info->pkt, pkt, sizeof(recv_pkt_info->pkt));
783 		INIT_WORK(&recv_pkt_info->work, vmci_transport_recv_pkt_work);
784 
785 		schedule_work(&recv_pkt_info->work);
786 		/* Clear sk so that the reference count incremented by one of
787 		 * the Find functions above is not decremented below.  We need
788 		 * that reference count for the packet handler we've scheduled
789 		 * to run.
790 		 */
791 		sk = NULL;
792 	}
793 
794 out:
795 	if (sk)
796 		sock_put(sk);
797 
798 	return err;
799 }
800 
801 static void vmci_transport_handle_detach(struct sock *sk)
802 {
803 	struct vsock_sock *vsk;
804 
805 	vsk = vsock_sk(sk);
806 	if (!vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)) {
807 		sock_set_flag(sk, SOCK_DONE);
808 
809 		/* On a detach the peer will not be sending or receiving
810 		 * anymore.
811 		 */
812 		vsk->peer_shutdown = SHUTDOWN_MASK;
813 
814 		/* We should not be sending anymore since the peer won't be
815 		 * there to receive, but we can still receive if there is data
816 		 * left in our consume queue. If the local endpoint is a host,
817 		 * we can't call vsock_stream_has_data, since that may block,
818 		 * but a host endpoint can't read data once the VM has
819 		 * detached, so there is no available data in that case.
820 		 */
821 		if (vsk->local_addr.svm_cid == VMADDR_CID_HOST ||
822 		    vsock_stream_has_data(vsk) <= 0) {
823 			if (sk->sk_state == TCP_SYN_SENT) {
824 				/* The peer may detach from a queue pair while
825 				 * we are still in the connecting state, i.e.,
826 				 * if the peer VM is killed after attaching to
827 				 * a queue pair, but before we complete the
828 				 * handshake. In that case, we treat the detach
829 				 * event like a reset.
830 				 */
831 
832 				sk->sk_state = TCP_CLOSE;
833 				sk->sk_err = ECONNRESET;
834 				sk->sk_error_report(sk);
835 				return;
836 			}
837 			sk->sk_state = TCP_CLOSE;
838 		}
839 		sk->sk_state_change(sk);
840 	}
841 }
842 
843 static void vmci_transport_peer_detach_cb(u32 sub_id,
844 					  const struct vmci_event_data *e_data,
845 					  void *client_data)
846 {
847 	struct vmci_transport *trans = client_data;
848 	const struct vmci_event_payload_qp *e_payload;
849 
850 	e_payload = vmci_event_data_const_payload(e_data);
851 
852 	/* XXX This is lame, we should provide a way to lookup sockets by
853 	 * qp_handle.
854 	 */
855 	if (vmci_handle_is_invalid(e_payload->handle) ||
856 	    !vmci_handle_is_equal(trans->qp_handle, e_payload->handle))
857 		return;
858 
859 	/* We don't ask for delayed CBs when we subscribe to this event (we
860 	 * pass 0 as flags to vmci_event_subscribe()).  VMCI makes no
861 	 * guarantees in that case about what context we might be running in,
862 	 * so it could be BH or process, blockable or non-blockable.  So we
863 	 * need to account for all possible contexts here.
864 	 */
865 	spin_lock_bh(&trans->lock);
866 	if (!trans->sk)
867 		goto out;
868 
869 	/* Apart from here, trans->lock is only grabbed as part of sk destruct,
870 	 * where trans->sk isn't locked.
871 	 */
872 	bh_lock_sock(trans->sk);
873 
874 	vmci_transport_handle_detach(trans->sk);
875 
876 	bh_unlock_sock(trans->sk);
877  out:
878 	spin_unlock_bh(&trans->lock);
879 }
880 
881 static void vmci_transport_qp_resumed_cb(u32 sub_id,
882 					 const struct vmci_event_data *e_data,
883 					 void *client_data)
884 {
885 	vsock_for_each_connected_socket(vmci_transport_handle_detach);
886 }
887 
888 static void vmci_transport_recv_pkt_work(struct work_struct *work)
889 {
890 	struct vmci_transport_recv_pkt_info *recv_pkt_info;
891 	struct vmci_transport_packet *pkt;
892 	struct sock *sk;
893 
894 	recv_pkt_info =
895 		container_of(work, struct vmci_transport_recv_pkt_info, work);
896 	sk = recv_pkt_info->sk;
897 	pkt = &recv_pkt_info->pkt;
898 
899 	lock_sock(sk);
900 
901 	/* The local context ID may be out of date. */
902 	vsock_sk(sk)->local_addr.svm_cid = pkt->dg.dst.context;
903 
904 	switch (sk->sk_state) {
905 	case TCP_LISTEN:
906 		vmci_transport_recv_listen(sk, pkt);
907 		break;
908 	case TCP_SYN_SENT:
909 		/* Processing of pending connections for servers goes through
910 		 * the listening socket, so see vmci_transport_recv_listen()
911 		 * for that path.
912 		 */
913 		vmci_transport_recv_connecting_client(sk, pkt);
914 		break;
915 	case TCP_ESTABLISHED:
916 		vmci_transport_recv_connected(sk, pkt);
917 		break;
918 	default:
919 		/* Because this function does not run in the same context as
920 		 * vmci_transport_recv_stream_cb it is possible that the
921 		 * socket has closed. We need to let the other side know or it
922 		 * could be sitting in a connect and hang forever. Send a
923 		 * reset to prevent that.
924 		 */
925 		vmci_transport_send_reset(sk, pkt);
926 		break;
927 	}
928 
929 	release_sock(sk);
930 	kfree(recv_pkt_info);
931 	/* Release reference obtained in the stream callback when we fetched
932 	 * this socket out of the bound or connected list.
933 	 */
934 	sock_put(sk);
935 }
936 
937 static int vmci_transport_recv_listen(struct sock *sk,
938 				      struct vmci_transport_packet *pkt)
939 {
940 	struct sock *pending;
941 	struct vsock_sock *vpending;
942 	int err;
943 	u64 qp_size;
944 	bool old_request = false;
945 	bool old_pkt_proto = false;
946 
947 	/* Because we are in the listen state, we could be receiving a packet
948 	 * for ourself or any previous connection requests that we received.
949 	 * If it's the latter, we try to find a socket in our list of pending
950 	 * connections and, if we do, call the appropriate handler for the
951 	 * state that that socket is in.  Otherwise we try to service the
952 	 * connection request.
953 	 */
954 	pending = vmci_transport_get_pending(sk, pkt);
955 	if (pending) {
956 		lock_sock(pending);
957 
958 		/* The local context ID may be out of date. */
959 		vsock_sk(pending)->local_addr.svm_cid = pkt->dg.dst.context;
960 
961 		switch (pending->sk_state) {
962 		case TCP_SYN_SENT:
963 			err = vmci_transport_recv_connecting_server(sk,
964 								    pending,
965 								    pkt);
966 			break;
967 		default:
968 			vmci_transport_send_reset(pending, pkt);
969 			err = -EINVAL;
970 		}
971 
972 		if (err < 0)
973 			vsock_remove_pending(sk, pending);
974 
975 		release_sock(pending);
976 		vmci_transport_release_pending(pending);
977 
978 		return err;
979 	}
980 
981 	/* The listen state only accepts connection requests.  Reply with a
982 	 * reset unless we received a reset.
983 	 */
984 
985 	if (!(pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST ||
986 	      pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)) {
987 		vmci_transport_reply_reset(pkt);
988 		return -EINVAL;
989 	}
990 
991 	if (pkt->u.size == 0) {
992 		vmci_transport_reply_reset(pkt);
993 		return -EINVAL;
994 	}
995 
996 	/* If this socket can't accommodate this connection request, we send a
997 	 * reset.  Otherwise we create and initialize a child socket and reply
998 	 * with a connection negotiation.
999 	 */
1000 	if (sk->sk_ack_backlog >= sk->sk_max_ack_backlog) {
1001 		vmci_transport_reply_reset(pkt);
1002 		return -ECONNREFUSED;
1003 	}
1004 
1005 	pending = vsock_create_connected(sk);
1006 	if (!pending) {
1007 		vmci_transport_send_reset(sk, pkt);
1008 		return -ENOMEM;
1009 	}
1010 
1011 	vpending = vsock_sk(pending);
1012 
1013 	vsock_addr_init(&vpending->local_addr, pkt->dg.dst.context,
1014 			pkt->dst_port);
1015 	vsock_addr_init(&vpending->remote_addr, pkt->dg.src.context,
1016 			pkt->src_port);
1017 
1018 	err = vsock_assign_transport(vpending, vsock_sk(sk));
1019 	/* Transport assigned (looking at remote_addr) must be the same
1020 	 * where we received the request.
1021 	 */
1022 	if (err || !vmci_check_transport(vpending)) {
1023 		vmci_transport_send_reset(sk, pkt);
1024 		sock_put(pending);
1025 		return err;
1026 	}
1027 
1028 	/* If the proposed size fits within our min/max, accept it. Otherwise
1029 	 * propose our own size.
1030 	 */
1031 	if (pkt->u.size >= vpending->buffer_min_size &&
1032 	    pkt->u.size <= vpending->buffer_max_size) {
1033 		qp_size = pkt->u.size;
1034 	} else {
1035 		qp_size = vpending->buffer_size;
1036 	}
1037 
1038 	/* Figure out if we are using old or new requests based on the
1039 	 * overrides pkt types sent by our peer.
1040 	 */
1041 	if (vmci_transport_old_proto_override(&old_pkt_proto)) {
1042 		old_request = old_pkt_proto;
1043 	} else {
1044 		if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST)
1045 			old_request = true;
1046 		else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)
1047 			old_request = false;
1048 
1049 	}
1050 
1051 	if (old_request) {
1052 		/* Handle a REQUEST (or override) */
1053 		u16 version = VSOCK_PROTO_INVALID;
1054 		if (vmci_transport_proto_to_notify_struct(
1055 			pending, &version, true))
1056 			err = vmci_transport_send_negotiate(pending, qp_size);
1057 		else
1058 			err = -EINVAL;
1059 
1060 	} else {
1061 		/* Handle a REQUEST2 (or override) */
1062 		int proto_int = pkt->proto;
1063 		int pos;
1064 		u16 active_proto_version = 0;
1065 
1066 		/* The list of possible protocols is the intersection of all
1067 		 * protocols the client supports ... plus all the protocols we
1068 		 * support.
1069 		 */
1070 		proto_int &= vmci_transport_new_proto_supported_versions();
1071 
1072 		/* We choose the highest possible protocol version and use that
1073 		 * one.
1074 		 */
1075 		pos = fls(proto_int);
1076 		if (pos) {
1077 			active_proto_version = (1 << (pos - 1));
1078 			if (vmci_transport_proto_to_notify_struct(
1079 				pending, &active_proto_version, false))
1080 				err = vmci_transport_send_negotiate2(pending,
1081 							qp_size,
1082 							active_proto_version);
1083 			else
1084 				err = -EINVAL;
1085 
1086 		} else {
1087 			err = -EINVAL;
1088 		}
1089 	}
1090 
1091 	if (err < 0) {
1092 		vmci_transport_send_reset(sk, pkt);
1093 		sock_put(pending);
1094 		err = vmci_transport_error_to_vsock_error(err);
1095 		goto out;
1096 	}
1097 
1098 	vsock_add_pending(sk, pending);
1099 	sk_acceptq_added(sk);
1100 
1101 	pending->sk_state = TCP_SYN_SENT;
1102 	vmci_trans(vpending)->produce_size =
1103 		vmci_trans(vpending)->consume_size = qp_size;
1104 	vpending->buffer_size = qp_size;
1105 
1106 	vmci_trans(vpending)->notify_ops->process_request(pending);
1107 
1108 	/* We might never receive another message for this socket and it's not
1109 	 * connected to any process, so we have to ensure it gets cleaned up
1110 	 * ourself.  Our delayed work function will take care of that.  Note
1111 	 * that we do not ever cancel this function since we have few
1112 	 * guarantees about its state when calling cancel_delayed_work().
1113 	 * Instead we hold a reference on the socket for that function and make
1114 	 * it capable of handling cases where it needs to do nothing but
1115 	 * release that reference.
1116 	 */
1117 	vpending->listener = sk;
1118 	sock_hold(sk);
1119 	sock_hold(pending);
1120 	schedule_delayed_work(&vpending->pending_work, HZ);
1121 
1122 out:
1123 	return err;
1124 }
1125 
1126 static int
1127 vmci_transport_recv_connecting_server(struct sock *listener,
1128 				      struct sock *pending,
1129 				      struct vmci_transport_packet *pkt)
1130 {
1131 	struct vsock_sock *vpending;
1132 	struct vmci_handle handle;
1133 	struct vmci_qp *qpair;
1134 	bool is_local;
1135 	u32 flags;
1136 	u32 detach_sub_id;
1137 	int err;
1138 	int skerr;
1139 
1140 	vpending = vsock_sk(pending);
1141 	detach_sub_id = VMCI_INVALID_ID;
1142 
1143 	switch (pkt->type) {
1144 	case VMCI_TRANSPORT_PACKET_TYPE_OFFER:
1145 		if (vmci_handle_is_invalid(pkt->u.handle)) {
1146 			vmci_transport_send_reset(pending, pkt);
1147 			skerr = EPROTO;
1148 			err = -EINVAL;
1149 			goto destroy;
1150 		}
1151 		break;
1152 	default:
1153 		/* Close and cleanup the connection. */
1154 		vmci_transport_send_reset(pending, pkt);
1155 		skerr = EPROTO;
1156 		err = pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST ? 0 : -EINVAL;
1157 		goto destroy;
1158 	}
1159 
1160 	/* In order to complete the connection we need to attach to the offered
1161 	 * queue pair and send an attach notification.  We also subscribe to the
1162 	 * detach event so we know when our peer goes away, and we do that
1163 	 * before attaching so we don't miss an event.  If all this succeeds,
1164 	 * we update our state and wakeup anything waiting in accept() for a
1165 	 * connection.
1166 	 */
1167 
1168 	/* We don't care about attach since we ensure the other side has
1169 	 * attached by specifying the ATTACH_ONLY flag below.
1170 	 */
1171 	err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH,
1172 				   vmci_transport_peer_detach_cb,
1173 				   vmci_trans(vpending), &detach_sub_id);
1174 	if (err < VMCI_SUCCESS) {
1175 		vmci_transport_send_reset(pending, pkt);
1176 		err = vmci_transport_error_to_vsock_error(err);
1177 		skerr = -err;
1178 		goto destroy;
1179 	}
1180 
1181 	vmci_trans(vpending)->detach_sub_id = detach_sub_id;
1182 
1183 	/* Now attach to the queue pair the client created. */
1184 	handle = pkt->u.handle;
1185 
1186 	/* vpending->local_addr always has a context id so we do not need to
1187 	 * worry about VMADDR_CID_ANY in this case.
1188 	 */
1189 	is_local =
1190 	    vpending->remote_addr.svm_cid == vpending->local_addr.svm_cid;
1191 	flags = VMCI_QPFLAG_ATTACH_ONLY;
1192 	flags |= is_local ? VMCI_QPFLAG_LOCAL : 0;
1193 
1194 	err = vmci_transport_queue_pair_alloc(
1195 					&qpair,
1196 					&handle,
1197 					vmci_trans(vpending)->produce_size,
1198 					vmci_trans(vpending)->consume_size,
1199 					pkt->dg.src.context,
1200 					flags,
1201 					vmci_transport_is_trusted(
1202 						vpending,
1203 						vpending->remote_addr.svm_cid));
1204 	if (err < 0) {
1205 		vmci_transport_send_reset(pending, pkt);
1206 		skerr = -err;
1207 		goto destroy;
1208 	}
1209 
1210 	vmci_trans(vpending)->qp_handle = handle;
1211 	vmci_trans(vpending)->qpair = qpair;
1212 
1213 	/* When we send the attach message, we must be ready to handle incoming
1214 	 * control messages on the newly connected socket. So we move the
1215 	 * pending socket to the connected state before sending the attach
1216 	 * message. Otherwise, an incoming packet triggered by the attach being
1217 	 * received by the peer may be processed concurrently with what happens
1218 	 * below after sending the attach message, and that incoming packet
1219 	 * will find the listening socket instead of the (currently) pending
1220 	 * socket. Note that enqueueing the socket increments the reference
1221 	 * count, so even if a reset comes before the connection is accepted,
1222 	 * the socket will be valid until it is removed from the queue.
1223 	 *
1224 	 * If we fail sending the attach below, we remove the socket from the
1225 	 * connected list and move the socket to TCP_CLOSE before
1226 	 * releasing the lock, so a pending slow path processing of an incoming
1227 	 * packet will not see the socket in the connected state in that case.
1228 	 */
1229 	pending->sk_state = TCP_ESTABLISHED;
1230 
1231 	vsock_insert_connected(vpending);
1232 
1233 	/* Notify our peer of our attach. */
1234 	err = vmci_transport_send_attach(pending, handle);
1235 	if (err < 0) {
1236 		vsock_remove_connected(vpending);
1237 		pr_err("Could not send attach\n");
1238 		vmci_transport_send_reset(pending, pkt);
1239 		err = vmci_transport_error_to_vsock_error(err);
1240 		skerr = -err;
1241 		goto destroy;
1242 	}
1243 
1244 	/* We have a connection. Move the now connected socket from the
1245 	 * listener's pending list to the accept queue so callers of accept()
1246 	 * can find it.
1247 	 */
1248 	vsock_remove_pending(listener, pending);
1249 	vsock_enqueue_accept(listener, pending);
1250 
1251 	/* Callers of accept() will be be waiting on the listening socket, not
1252 	 * the pending socket.
1253 	 */
1254 	listener->sk_data_ready(listener);
1255 
1256 	return 0;
1257 
1258 destroy:
1259 	pending->sk_err = skerr;
1260 	pending->sk_state = TCP_CLOSE;
1261 	/* As long as we drop our reference, all necessary cleanup will handle
1262 	 * when the cleanup function drops its reference and our destruct
1263 	 * implementation is called.  Note that since the listen handler will
1264 	 * remove pending from the pending list upon our failure, the cleanup
1265 	 * function won't drop the additional reference, which is why we do it
1266 	 * here.
1267 	 */
1268 	sock_put(pending);
1269 
1270 	return err;
1271 }
1272 
1273 static int
1274 vmci_transport_recv_connecting_client(struct sock *sk,
1275 				      struct vmci_transport_packet *pkt)
1276 {
1277 	struct vsock_sock *vsk;
1278 	int err;
1279 	int skerr;
1280 
1281 	vsk = vsock_sk(sk);
1282 
1283 	switch (pkt->type) {
1284 	case VMCI_TRANSPORT_PACKET_TYPE_ATTACH:
1285 		if (vmci_handle_is_invalid(pkt->u.handle) ||
1286 		    !vmci_handle_is_equal(pkt->u.handle,
1287 					  vmci_trans(vsk)->qp_handle)) {
1288 			skerr = EPROTO;
1289 			err = -EINVAL;
1290 			goto destroy;
1291 		}
1292 
1293 		/* Signify the socket is connected and wakeup the waiter in
1294 		 * connect(). Also place the socket in the connected table for
1295 		 * accounting (it can already be found since it's in the bound
1296 		 * table).
1297 		 */
1298 		sk->sk_state = TCP_ESTABLISHED;
1299 		sk->sk_socket->state = SS_CONNECTED;
1300 		vsock_insert_connected(vsk);
1301 		sk->sk_state_change(sk);
1302 
1303 		break;
1304 	case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE:
1305 	case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2:
1306 		if (pkt->u.size == 0
1307 		    || pkt->dg.src.context != vsk->remote_addr.svm_cid
1308 		    || pkt->src_port != vsk->remote_addr.svm_port
1309 		    || !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)
1310 		    || vmci_trans(vsk)->qpair
1311 		    || vmci_trans(vsk)->produce_size != 0
1312 		    || vmci_trans(vsk)->consume_size != 0
1313 		    || vmci_trans(vsk)->detach_sub_id != VMCI_INVALID_ID) {
1314 			skerr = EPROTO;
1315 			err = -EINVAL;
1316 
1317 			goto destroy;
1318 		}
1319 
1320 		err = vmci_transport_recv_connecting_client_negotiate(sk, pkt);
1321 		if (err) {
1322 			skerr = -err;
1323 			goto destroy;
1324 		}
1325 
1326 		break;
1327 	case VMCI_TRANSPORT_PACKET_TYPE_INVALID:
1328 		err = vmci_transport_recv_connecting_client_invalid(sk, pkt);
1329 		if (err) {
1330 			skerr = -err;
1331 			goto destroy;
1332 		}
1333 
1334 		break;
1335 	case VMCI_TRANSPORT_PACKET_TYPE_RST:
1336 		/* Older versions of the linux code (WS 6.5 / ESX 4.0) used to
1337 		 * continue processing here after they sent an INVALID packet.
1338 		 * This meant that we got a RST after the INVALID. We ignore a
1339 		 * RST after an INVALID. The common code doesn't send the RST
1340 		 * ... so we can hang if an old version of the common code
1341 		 * fails between getting a REQUEST and sending an OFFER back.
1342 		 * Not much we can do about it... except hope that it doesn't
1343 		 * happen.
1344 		 */
1345 		if (vsk->ignore_connecting_rst) {
1346 			vsk->ignore_connecting_rst = false;
1347 		} else {
1348 			skerr = ECONNRESET;
1349 			err = 0;
1350 			goto destroy;
1351 		}
1352 
1353 		break;
1354 	default:
1355 		/* Close and cleanup the connection. */
1356 		skerr = EPROTO;
1357 		err = -EINVAL;
1358 		goto destroy;
1359 	}
1360 
1361 	return 0;
1362 
1363 destroy:
1364 	vmci_transport_send_reset(sk, pkt);
1365 
1366 	sk->sk_state = TCP_CLOSE;
1367 	sk->sk_err = skerr;
1368 	sk->sk_error_report(sk);
1369 	return err;
1370 }
1371 
1372 static int vmci_transport_recv_connecting_client_negotiate(
1373 					struct sock *sk,
1374 					struct vmci_transport_packet *pkt)
1375 {
1376 	int err;
1377 	struct vsock_sock *vsk;
1378 	struct vmci_handle handle;
1379 	struct vmci_qp *qpair;
1380 	u32 detach_sub_id;
1381 	bool is_local;
1382 	u32 flags;
1383 	bool old_proto = true;
1384 	bool old_pkt_proto;
1385 	u16 version;
1386 
1387 	vsk = vsock_sk(sk);
1388 	handle = VMCI_INVALID_HANDLE;
1389 	detach_sub_id = VMCI_INVALID_ID;
1390 
1391 	/* If we have gotten here then we should be past the point where old
1392 	 * linux vsock could have sent the bogus rst.
1393 	 */
1394 	vsk->sent_request = false;
1395 	vsk->ignore_connecting_rst = false;
1396 
1397 	/* Verify that we're OK with the proposed queue pair size */
1398 	if (pkt->u.size < vsk->buffer_min_size ||
1399 	    pkt->u.size > vsk->buffer_max_size) {
1400 		err = -EINVAL;
1401 		goto destroy;
1402 	}
1403 
1404 	/* At this point we know the CID the peer is using to talk to us. */
1405 
1406 	if (vsk->local_addr.svm_cid == VMADDR_CID_ANY)
1407 		vsk->local_addr.svm_cid = pkt->dg.dst.context;
1408 
1409 	/* Setup the notify ops to be the highest supported version that both
1410 	 * the server and the client support.
1411 	 */
1412 
1413 	if (vmci_transport_old_proto_override(&old_pkt_proto)) {
1414 		old_proto = old_pkt_proto;
1415 	} else {
1416 		if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE)
1417 			old_proto = true;
1418 		else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2)
1419 			old_proto = false;
1420 
1421 	}
1422 
1423 	if (old_proto)
1424 		version = VSOCK_PROTO_INVALID;
1425 	else
1426 		version = pkt->proto;
1427 
1428 	if (!vmci_transport_proto_to_notify_struct(sk, &version, old_proto)) {
1429 		err = -EINVAL;
1430 		goto destroy;
1431 	}
1432 
1433 	/* Subscribe to detach events first.
1434 	 *
1435 	 * XXX We attach once for each queue pair created for now so it is easy
1436 	 * to find the socket (it's provided), but later we should only
1437 	 * subscribe once and add a way to lookup sockets by queue pair handle.
1438 	 */
1439 	err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH,
1440 				   vmci_transport_peer_detach_cb,
1441 				   vmci_trans(vsk), &detach_sub_id);
1442 	if (err < VMCI_SUCCESS) {
1443 		err = vmci_transport_error_to_vsock_error(err);
1444 		goto destroy;
1445 	}
1446 
1447 	/* Make VMCI select the handle for us. */
1448 	handle = VMCI_INVALID_HANDLE;
1449 	is_local = vsk->remote_addr.svm_cid == vsk->local_addr.svm_cid;
1450 	flags = is_local ? VMCI_QPFLAG_LOCAL : 0;
1451 
1452 	err = vmci_transport_queue_pair_alloc(&qpair,
1453 					      &handle,
1454 					      pkt->u.size,
1455 					      pkt->u.size,
1456 					      vsk->remote_addr.svm_cid,
1457 					      flags,
1458 					      vmci_transport_is_trusted(
1459 						  vsk,
1460 						  vsk->
1461 						  remote_addr.svm_cid));
1462 	if (err < 0)
1463 		goto destroy;
1464 
1465 	err = vmci_transport_send_qp_offer(sk, handle);
1466 	if (err < 0) {
1467 		err = vmci_transport_error_to_vsock_error(err);
1468 		goto destroy;
1469 	}
1470 
1471 	vmci_trans(vsk)->qp_handle = handle;
1472 	vmci_trans(vsk)->qpair = qpair;
1473 
1474 	vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size =
1475 		pkt->u.size;
1476 
1477 	vmci_trans(vsk)->detach_sub_id = detach_sub_id;
1478 
1479 	vmci_trans(vsk)->notify_ops->process_negotiate(sk);
1480 
1481 	return 0;
1482 
1483 destroy:
1484 	if (detach_sub_id != VMCI_INVALID_ID)
1485 		vmci_event_unsubscribe(detach_sub_id);
1486 
1487 	if (!vmci_handle_is_invalid(handle))
1488 		vmci_qpair_detach(&qpair);
1489 
1490 	return err;
1491 }
1492 
1493 static int
1494 vmci_transport_recv_connecting_client_invalid(struct sock *sk,
1495 					      struct vmci_transport_packet *pkt)
1496 {
1497 	int err = 0;
1498 	struct vsock_sock *vsk = vsock_sk(sk);
1499 
1500 	if (vsk->sent_request) {
1501 		vsk->sent_request = false;
1502 		vsk->ignore_connecting_rst = true;
1503 
1504 		err = vmci_transport_send_conn_request(sk, vsk->buffer_size);
1505 		if (err < 0)
1506 			err = vmci_transport_error_to_vsock_error(err);
1507 		else
1508 			err = 0;
1509 
1510 	}
1511 
1512 	return err;
1513 }
1514 
1515 static int vmci_transport_recv_connected(struct sock *sk,
1516 					 struct vmci_transport_packet *pkt)
1517 {
1518 	struct vsock_sock *vsk;
1519 	bool pkt_processed = false;
1520 
1521 	/* In cases where we are closing the connection, it's sufficient to
1522 	 * mark the state change (and maybe error) and wake up any waiting
1523 	 * threads. Since this is a connected socket, it's owned by a user
1524 	 * process and will be cleaned up when the failure is passed back on
1525 	 * the current or next system call.  Our system call implementations
1526 	 * must therefore check for error and state changes on entry and when
1527 	 * being awoken.
1528 	 */
1529 	switch (pkt->type) {
1530 	case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN:
1531 		if (pkt->u.mode) {
1532 			vsk = vsock_sk(sk);
1533 
1534 			vsk->peer_shutdown |= pkt->u.mode;
1535 			sk->sk_state_change(sk);
1536 		}
1537 		break;
1538 
1539 	case VMCI_TRANSPORT_PACKET_TYPE_RST:
1540 		vsk = vsock_sk(sk);
1541 		/* It is possible that we sent our peer a message (e.g a
1542 		 * WAITING_READ) right before we got notified that the peer had
1543 		 * detached. If that happens then we can get a RST pkt back
1544 		 * from our peer even though there is data available for us to
1545 		 * read. In that case, don't shutdown the socket completely but
1546 		 * instead allow the local client to finish reading data off
1547 		 * the queuepair. Always treat a RST pkt in connected mode like
1548 		 * a clean shutdown.
1549 		 */
1550 		sock_set_flag(sk, SOCK_DONE);
1551 		vsk->peer_shutdown = SHUTDOWN_MASK;
1552 		if (vsock_stream_has_data(vsk) <= 0)
1553 			sk->sk_state = TCP_CLOSING;
1554 
1555 		sk->sk_state_change(sk);
1556 		break;
1557 
1558 	default:
1559 		vsk = vsock_sk(sk);
1560 		vmci_trans(vsk)->notify_ops->handle_notify_pkt(
1561 				sk, pkt, false, NULL, NULL,
1562 				&pkt_processed);
1563 		if (!pkt_processed)
1564 			return -EINVAL;
1565 
1566 		break;
1567 	}
1568 
1569 	return 0;
1570 }
1571 
1572 static int vmci_transport_socket_init(struct vsock_sock *vsk,
1573 				      struct vsock_sock *psk)
1574 {
1575 	vsk->trans = kmalloc(sizeof(struct vmci_transport), GFP_KERNEL);
1576 	if (!vsk->trans)
1577 		return -ENOMEM;
1578 
1579 	vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE;
1580 	vmci_trans(vsk)->qp_handle = VMCI_INVALID_HANDLE;
1581 	vmci_trans(vsk)->qpair = NULL;
1582 	vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size = 0;
1583 	vmci_trans(vsk)->detach_sub_id = VMCI_INVALID_ID;
1584 	vmci_trans(vsk)->notify_ops = NULL;
1585 	INIT_LIST_HEAD(&vmci_trans(vsk)->elem);
1586 	vmci_trans(vsk)->sk = &vsk->sk;
1587 	spin_lock_init(&vmci_trans(vsk)->lock);
1588 
1589 	return 0;
1590 }
1591 
1592 static void vmci_transport_free_resources(struct list_head *transport_list)
1593 {
1594 	while (!list_empty(transport_list)) {
1595 		struct vmci_transport *transport =
1596 		    list_first_entry(transport_list, struct vmci_transport,
1597 				     elem);
1598 		list_del(&transport->elem);
1599 
1600 		if (transport->detach_sub_id != VMCI_INVALID_ID) {
1601 			vmci_event_unsubscribe(transport->detach_sub_id);
1602 			transport->detach_sub_id = VMCI_INVALID_ID;
1603 		}
1604 
1605 		if (!vmci_handle_is_invalid(transport->qp_handle)) {
1606 			vmci_qpair_detach(&transport->qpair);
1607 			transport->qp_handle = VMCI_INVALID_HANDLE;
1608 			transport->produce_size = 0;
1609 			transport->consume_size = 0;
1610 		}
1611 
1612 		kfree(transport);
1613 	}
1614 }
1615 
1616 static void vmci_transport_cleanup(struct work_struct *work)
1617 {
1618 	LIST_HEAD(pending);
1619 
1620 	spin_lock_bh(&vmci_transport_cleanup_lock);
1621 	list_replace_init(&vmci_transport_cleanup_list, &pending);
1622 	spin_unlock_bh(&vmci_transport_cleanup_lock);
1623 	vmci_transport_free_resources(&pending);
1624 }
1625 
1626 static void vmci_transport_destruct(struct vsock_sock *vsk)
1627 {
1628 	/* transport can be NULL if we hit a failure at init() time */
1629 	if (!vmci_trans(vsk))
1630 		return;
1631 
1632 	/* Ensure that the detach callback doesn't use the sk/vsk
1633 	 * we are about to destruct.
1634 	 */
1635 	spin_lock_bh(&vmci_trans(vsk)->lock);
1636 	vmci_trans(vsk)->sk = NULL;
1637 	spin_unlock_bh(&vmci_trans(vsk)->lock);
1638 
1639 	if (vmci_trans(vsk)->notify_ops)
1640 		vmci_trans(vsk)->notify_ops->socket_destruct(vsk);
1641 
1642 	spin_lock_bh(&vmci_transport_cleanup_lock);
1643 	list_add(&vmci_trans(vsk)->elem, &vmci_transport_cleanup_list);
1644 	spin_unlock_bh(&vmci_transport_cleanup_lock);
1645 	schedule_work(&vmci_transport_cleanup_work);
1646 
1647 	vsk->trans = NULL;
1648 }
1649 
1650 static void vmci_transport_release(struct vsock_sock *vsk)
1651 {
1652 	vsock_remove_sock(vsk);
1653 
1654 	if (!vmci_handle_is_invalid(vmci_trans(vsk)->dg_handle)) {
1655 		vmci_datagram_destroy_handle(vmci_trans(vsk)->dg_handle);
1656 		vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE;
1657 	}
1658 }
1659 
1660 static int vmci_transport_dgram_bind(struct vsock_sock *vsk,
1661 				     struct sockaddr_vm *addr)
1662 {
1663 	u32 port;
1664 	u32 flags;
1665 	int err;
1666 
1667 	/* VMCI will select a resource ID for us if we provide
1668 	 * VMCI_INVALID_ID.
1669 	 */
1670 	port = addr->svm_port == VMADDR_PORT_ANY ?
1671 			VMCI_INVALID_ID : addr->svm_port;
1672 
1673 	if (port <= LAST_RESERVED_PORT && !capable(CAP_NET_BIND_SERVICE))
1674 		return -EACCES;
1675 
1676 	flags = addr->svm_cid == VMADDR_CID_ANY ?
1677 				VMCI_FLAG_ANYCID_DG_HND : 0;
1678 
1679 	err = vmci_transport_datagram_create_hnd(port, flags,
1680 						 vmci_transport_recv_dgram_cb,
1681 						 &vsk->sk,
1682 						 &vmci_trans(vsk)->dg_handle);
1683 	if (err < VMCI_SUCCESS)
1684 		return vmci_transport_error_to_vsock_error(err);
1685 	vsock_addr_init(&vsk->local_addr, addr->svm_cid,
1686 			vmci_trans(vsk)->dg_handle.resource);
1687 
1688 	return 0;
1689 }
1690 
1691 static int vmci_transport_dgram_enqueue(
1692 	struct vsock_sock *vsk,
1693 	struct sockaddr_vm *remote_addr,
1694 	struct msghdr *msg,
1695 	size_t len)
1696 {
1697 	int err;
1698 	struct vmci_datagram *dg;
1699 
1700 	if (len > VMCI_MAX_DG_PAYLOAD_SIZE)
1701 		return -EMSGSIZE;
1702 
1703 	if (!vmci_transport_allow_dgram(vsk, remote_addr->svm_cid))
1704 		return -EPERM;
1705 
1706 	/* Allocate a buffer for the user's message and our packet header. */
1707 	dg = kmalloc(len + sizeof(*dg), GFP_KERNEL);
1708 	if (!dg)
1709 		return -ENOMEM;
1710 
1711 	memcpy_from_msg(VMCI_DG_PAYLOAD(dg), msg, len);
1712 
1713 	dg->dst = vmci_make_handle(remote_addr->svm_cid,
1714 				   remote_addr->svm_port);
1715 	dg->src = vmci_make_handle(vsk->local_addr.svm_cid,
1716 				   vsk->local_addr.svm_port);
1717 	dg->payload_size = len;
1718 
1719 	err = vmci_datagram_send(dg);
1720 	kfree(dg);
1721 	if (err < 0)
1722 		return vmci_transport_error_to_vsock_error(err);
1723 
1724 	return err - sizeof(*dg);
1725 }
1726 
1727 static int vmci_transport_dgram_dequeue(struct vsock_sock *vsk,
1728 					struct msghdr *msg, size_t len,
1729 					int flags)
1730 {
1731 	int err;
1732 	int noblock;
1733 	struct vmci_datagram *dg;
1734 	size_t payload_len;
1735 	struct sk_buff *skb;
1736 
1737 	noblock = flags & MSG_DONTWAIT;
1738 
1739 	if (flags & MSG_OOB || flags & MSG_ERRQUEUE)
1740 		return -EOPNOTSUPP;
1741 
1742 	/* Retrieve the head sk_buff from the socket's receive queue. */
1743 	err = 0;
1744 	skb = skb_recv_datagram(&vsk->sk, flags, noblock, &err);
1745 	if (!skb)
1746 		return err;
1747 
1748 	dg = (struct vmci_datagram *)skb->data;
1749 	if (!dg)
1750 		/* err is 0, meaning we read zero bytes. */
1751 		goto out;
1752 
1753 	payload_len = dg->payload_size;
1754 	/* Ensure the sk_buff matches the payload size claimed in the packet. */
1755 	if (payload_len != skb->len - sizeof(*dg)) {
1756 		err = -EINVAL;
1757 		goto out;
1758 	}
1759 
1760 	if (payload_len > len) {
1761 		payload_len = len;
1762 		msg->msg_flags |= MSG_TRUNC;
1763 	}
1764 
1765 	/* Place the datagram payload in the user's iovec. */
1766 	err = skb_copy_datagram_msg(skb, sizeof(*dg), msg, payload_len);
1767 	if (err)
1768 		goto out;
1769 
1770 	if (msg->msg_name) {
1771 		/* Provide the address of the sender. */
1772 		DECLARE_SOCKADDR(struct sockaddr_vm *, vm_addr, msg->msg_name);
1773 		vsock_addr_init(vm_addr, dg->src.context, dg->src.resource);
1774 		msg->msg_namelen = sizeof(*vm_addr);
1775 	}
1776 	err = payload_len;
1777 
1778 out:
1779 	skb_free_datagram(&vsk->sk, skb);
1780 	return err;
1781 }
1782 
1783 static bool vmci_transport_dgram_allow(u32 cid, u32 port)
1784 {
1785 	if (cid == VMADDR_CID_HYPERVISOR) {
1786 		/* Registrations of PBRPC Servers do not modify VMX/Hypervisor
1787 		 * state and are allowed.
1788 		 */
1789 		return port == VMCI_UNITY_PBRPC_REGISTER;
1790 	}
1791 
1792 	return true;
1793 }
1794 
1795 static int vmci_transport_connect(struct vsock_sock *vsk)
1796 {
1797 	int err;
1798 	bool old_pkt_proto = false;
1799 	struct sock *sk = &vsk->sk;
1800 
1801 	if (vmci_transport_old_proto_override(&old_pkt_proto) &&
1802 		old_pkt_proto) {
1803 		err = vmci_transport_send_conn_request(sk, vsk->buffer_size);
1804 		if (err < 0) {
1805 			sk->sk_state = TCP_CLOSE;
1806 			return err;
1807 		}
1808 	} else {
1809 		int supported_proto_versions =
1810 			vmci_transport_new_proto_supported_versions();
1811 		err = vmci_transport_send_conn_request2(sk, vsk->buffer_size,
1812 				supported_proto_versions);
1813 		if (err < 0) {
1814 			sk->sk_state = TCP_CLOSE;
1815 			return err;
1816 		}
1817 
1818 		vsk->sent_request = true;
1819 	}
1820 
1821 	return err;
1822 }
1823 
1824 static ssize_t vmci_transport_stream_dequeue(
1825 	struct vsock_sock *vsk,
1826 	struct msghdr *msg,
1827 	size_t len,
1828 	int flags)
1829 {
1830 	if (flags & MSG_PEEK)
1831 		return vmci_qpair_peekv(vmci_trans(vsk)->qpair, msg, len, 0);
1832 	else
1833 		return vmci_qpair_dequev(vmci_trans(vsk)->qpair, msg, len, 0);
1834 }
1835 
1836 static ssize_t vmci_transport_stream_enqueue(
1837 	struct vsock_sock *vsk,
1838 	struct msghdr *msg,
1839 	size_t len)
1840 {
1841 	return vmci_qpair_enquev(vmci_trans(vsk)->qpair, msg, len, 0);
1842 }
1843 
1844 static s64 vmci_transport_stream_has_data(struct vsock_sock *vsk)
1845 {
1846 	return vmci_qpair_consume_buf_ready(vmci_trans(vsk)->qpair);
1847 }
1848 
1849 static s64 vmci_transport_stream_has_space(struct vsock_sock *vsk)
1850 {
1851 	return vmci_qpair_produce_free_space(vmci_trans(vsk)->qpair);
1852 }
1853 
1854 static u64 vmci_transport_stream_rcvhiwat(struct vsock_sock *vsk)
1855 {
1856 	return vmci_trans(vsk)->consume_size;
1857 }
1858 
1859 static bool vmci_transport_stream_is_active(struct vsock_sock *vsk)
1860 {
1861 	return !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle);
1862 }
1863 
1864 static int vmci_transport_notify_poll_in(
1865 	struct vsock_sock *vsk,
1866 	size_t target,
1867 	bool *data_ready_now)
1868 {
1869 	return vmci_trans(vsk)->notify_ops->poll_in(
1870 			&vsk->sk, target, data_ready_now);
1871 }
1872 
1873 static int vmci_transport_notify_poll_out(
1874 	struct vsock_sock *vsk,
1875 	size_t target,
1876 	bool *space_available_now)
1877 {
1878 	return vmci_trans(vsk)->notify_ops->poll_out(
1879 			&vsk->sk, target, space_available_now);
1880 }
1881 
1882 static int vmci_transport_notify_recv_init(
1883 	struct vsock_sock *vsk,
1884 	size_t target,
1885 	struct vsock_transport_recv_notify_data *data)
1886 {
1887 	return vmci_trans(vsk)->notify_ops->recv_init(
1888 			&vsk->sk, target,
1889 			(struct vmci_transport_recv_notify_data *)data);
1890 }
1891 
1892 static int vmci_transport_notify_recv_pre_block(
1893 	struct vsock_sock *vsk,
1894 	size_t target,
1895 	struct vsock_transport_recv_notify_data *data)
1896 {
1897 	return vmci_trans(vsk)->notify_ops->recv_pre_block(
1898 			&vsk->sk, target,
1899 			(struct vmci_transport_recv_notify_data *)data);
1900 }
1901 
1902 static int vmci_transport_notify_recv_pre_dequeue(
1903 	struct vsock_sock *vsk,
1904 	size_t target,
1905 	struct vsock_transport_recv_notify_data *data)
1906 {
1907 	return vmci_trans(vsk)->notify_ops->recv_pre_dequeue(
1908 			&vsk->sk, target,
1909 			(struct vmci_transport_recv_notify_data *)data);
1910 }
1911 
1912 static int vmci_transport_notify_recv_post_dequeue(
1913 	struct vsock_sock *vsk,
1914 	size_t target,
1915 	ssize_t copied,
1916 	bool data_read,
1917 	struct vsock_transport_recv_notify_data *data)
1918 {
1919 	return vmci_trans(vsk)->notify_ops->recv_post_dequeue(
1920 			&vsk->sk, target, copied, data_read,
1921 			(struct vmci_transport_recv_notify_data *)data);
1922 }
1923 
1924 static int vmci_transport_notify_send_init(
1925 	struct vsock_sock *vsk,
1926 	struct vsock_transport_send_notify_data *data)
1927 {
1928 	return vmci_trans(vsk)->notify_ops->send_init(
1929 			&vsk->sk,
1930 			(struct vmci_transport_send_notify_data *)data);
1931 }
1932 
1933 static int vmci_transport_notify_send_pre_block(
1934 	struct vsock_sock *vsk,
1935 	struct vsock_transport_send_notify_data *data)
1936 {
1937 	return vmci_trans(vsk)->notify_ops->send_pre_block(
1938 			&vsk->sk,
1939 			(struct vmci_transport_send_notify_data *)data);
1940 }
1941 
1942 static int vmci_transport_notify_send_pre_enqueue(
1943 	struct vsock_sock *vsk,
1944 	struct vsock_transport_send_notify_data *data)
1945 {
1946 	return vmci_trans(vsk)->notify_ops->send_pre_enqueue(
1947 			&vsk->sk,
1948 			(struct vmci_transport_send_notify_data *)data);
1949 }
1950 
1951 static int vmci_transport_notify_send_post_enqueue(
1952 	struct vsock_sock *vsk,
1953 	ssize_t written,
1954 	struct vsock_transport_send_notify_data *data)
1955 {
1956 	return vmci_trans(vsk)->notify_ops->send_post_enqueue(
1957 			&vsk->sk, written,
1958 			(struct vmci_transport_send_notify_data *)data);
1959 }
1960 
1961 static bool vmci_transport_old_proto_override(bool *old_pkt_proto)
1962 {
1963 	if (PROTOCOL_OVERRIDE != -1) {
1964 		if (PROTOCOL_OVERRIDE == 0)
1965 			*old_pkt_proto = true;
1966 		else
1967 			*old_pkt_proto = false;
1968 
1969 		pr_info("Proto override in use\n");
1970 		return true;
1971 	}
1972 
1973 	return false;
1974 }
1975 
1976 static bool vmci_transport_proto_to_notify_struct(struct sock *sk,
1977 						  u16 *proto,
1978 						  bool old_pkt_proto)
1979 {
1980 	struct vsock_sock *vsk = vsock_sk(sk);
1981 
1982 	if (old_pkt_proto) {
1983 		if (*proto != VSOCK_PROTO_INVALID) {
1984 			pr_err("Can't set both an old and new protocol\n");
1985 			return false;
1986 		}
1987 		vmci_trans(vsk)->notify_ops = &vmci_transport_notify_pkt_ops;
1988 		goto exit;
1989 	}
1990 
1991 	switch (*proto) {
1992 	case VSOCK_PROTO_PKT_ON_NOTIFY:
1993 		vmci_trans(vsk)->notify_ops =
1994 			&vmci_transport_notify_pkt_q_state_ops;
1995 		break;
1996 	default:
1997 		pr_err("Unknown notify protocol version\n");
1998 		return false;
1999 	}
2000 
2001 exit:
2002 	vmci_trans(vsk)->notify_ops->socket_init(sk);
2003 	return true;
2004 }
2005 
2006 static u16 vmci_transport_new_proto_supported_versions(void)
2007 {
2008 	if (PROTOCOL_OVERRIDE != -1)
2009 		return PROTOCOL_OVERRIDE;
2010 
2011 	return VSOCK_PROTO_ALL_SUPPORTED;
2012 }
2013 
2014 static u32 vmci_transport_get_local_cid(void)
2015 {
2016 	return vmci_get_context_id();
2017 }
2018 
2019 static struct vsock_transport vmci_transport = {
2020 	.module = THIS_MODULE,
2021 	.init = vmci_transport_socket_init,
2022 	.destruct = vmci_transport_destruct,
2023 	.release = vmci_transport_release,
2024 	.connect = vmci_transport_connect,
2025 	.dgram_bind = vmci_transport_dgram_bind,
2026 	.dgram_dequeue = vmci_transport_dgram_dequeue,
2027 	.dgram_enqueue = vmci_transport_dgram_enqueue,
2028 	.dgram_allow = vmci_transport_dgram_allow,
2029 	.stream_dequeue = vmci_transport_stream_dequeue,
2030 	.stream_enqueue = vmci_transport_stream_enqueue,
2031 	.stream_has_data = vmci_transport_stream_has_data,
2032 	.stream_has_space = vmci_transport_stream_has_space,
2033 	.stream_rcvhiwat = vmci_transport_stream_rcvhiwat,
2034 	.stream_is_active = vmci_transport_stream_is_active,
2035 	.stream_allow = vmci_transport_stream_allow,
2036 	.notify_poll_in = vmci_transport_notify_poll_in,
2037 	.notify_poll_out = vmci_transport_notify_poll_out,
2038 	.notify_recv_init = vmci_transport_notify_recv_init,
2039 	.notify_recv_pre_block = vmci_transport_notify_recv_pre_block,
2040 	.notify_recv_pre_dequeue = vmci_transport_notify_recv_pre_dequeue,
2041 	.notify_recv_post_dequeue = vmci_transport_notify_recv_post_dequeue,
2042 	.notify_send_init = vmci_transport_notify_send_init,
2043 	.notify_send_pre_block = vmci_transport_notify_send_pre_block,
2044 	.notify_send_pre_enqueue = vmci_transport_notify_send_pre_enqueue,
2045 	.notify_send_post_enqueue = vmci_transport_notify_send_post_enqueue,
2046 	.shutdown = vmci_transport_shutdown,
2047 	.get_local_cid = vmci_transport_get_local_cid,
2048 };
2049 
2050 static bool vmci_check_transport(struct vsock_sock *vsk)
2051 {
2052 	return vsk->transport == &vmci_transport;
2053 }
2054 
2055 static void vmci_vsock_transport_cb(bool is_host)
2056 {
2057 	int features;
2058 
2059 	if (is_host)
2060 		features = VSOCK_TRANSPORT_F_H2G;
2061 	else
2062 		features = VSOCK_TRANSPORT_F_G2H;
2063 
2064 	vsock_core_register(&vmci_transport, features);
2065 }
2066 
2067 static int __init vmci_transport_init(void)
2068 {
2069 	int err;
2070 
2071 	/* Create the datagram handle that we will use to send and receive all
2072 	 * VSocket control messages for this context.
2073 	 */
2074 	err = vmci_transport_datagram_create_hnd(VMCI_TRANSPORT_PACKET_RID,
2075 						 VMCI_FLAG_ANYCID_DG_HND,
2076 						 vmci_transport_recv_stream_cb,
2077 						 NULL,
2078 						 &vmci_transport_stream_handle);
2079 	if (err < VMCI_SUCCESS) {
2080 		pr_err("Unable to create datagram handle. (%d)\n", err);
2081 		return vmci_transport_error_to_vsock_error(err);
2082 	}
2083 	err = vmci_event_subscribe(VMCI_EVENT_QP_RESUMED,
2084 				   vmci_transport_qp_resumed_cb,
2085 				   NULL, &vmci_transport_qp_resumed_sub_id);
2086 	if (err < VMCI_SUCCESS) {
2087 		pr_err("Unable to subscribe to resumed event. (%d)\n", err);
2088 		err = vmci_transport_error_to_vsock_error(err);
2089 		vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
2090 		goto err_destroy_stream_handle;
2091 	}
2092 
2093 	/* Register only with dgram feature, other features (H2G, G2H) will be
2094 	 * registered when the first host or guest becomes active.
2095 	 */
2096 	err = vsock_core_register(&vmci_transport, VSOCK_TRANSPORT_F_DGRAM);
2097 	if (err < 0)
2098 		goto err_unsubscribe;
2099 
2100 	err = vmci_register_vsock_callback(vmci_vsock_transport_cb);
2101 	if (err < 0)
2102 		goto err_unregister;
2103 
2104 	return 0;
2105 
2106 err_unregister:
2107 	vsock_core_unregister(&vmci_transport);
2108 err_unsubscribe:
2109 	vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id);
2110 err_destroy_stream_handle:
2111 	vmci_datagram_destroy_handle(vmci_transport_stream_handle);
2112 	return err;
2113 }
2114 module_init(vmci_transport_init);
2115 
2116 static void __exit vmci_transport_exit(void)
2117 {
2118 	cancel_work_sync(&vmci_transport_cleanup_work);
2119 	vmci_transport_free_resources(&vmci_transport_cleanup_list);
2120 
2121 	if (!vmci_handle_is_invalid(vmci_transport_stream_handle)) {
2122 		if (vmci_datagram_destroy_handle(
2123 			vmci_transport_stream_handle) != VMCI_SUCCESS)
2124 			pr_err("Couldn't destroy datagram handle\n");
2125 		vmci_transport_stream_handle = VMCI_INVALID_HANDLE;
2126 	}
2127 
2128 	if (vmci_transport_qp_resumed_sub_id != VMCI_INVALID_ID) {
2129 		vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id);
2130 		vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
2131 	}
2132 
2133 	vmci_register_vsock_callback(NULL);
2134 	vsock_core_unregister(&vmci_transport);
2135 }
2136 module_exit(vmci_transport_exit);
2137 
2138 MODULE_AUTHOR("VMware, Inc.");
2139 MODULE_DESCRIPTION("VMCI transport for Virtual Sockets");
2140 MODULE_VERSION("1.0.5.0-k");
2141 MODULE_LICENSE("GPL v2");
2142 MODULE_ALIAS("vmware_vsock");
2143 MODULE_ALIAS_NETPROTO(PF_VSOCK);
2144