1 /* 2 * VMware vSockets Driver 3 * 4 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License as published by the Free 8 * Software Foundation version 2 and no later version. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 */ 15 16 #include <linux/types.h> 17 #include <linux/bitops.h> 18 #include <linux/cred.h> 19 #include <linux/init.h> 20 #include <linux/io.h> 21 #include <linux/kernel.h> 22 #include <linux/kmod.h> 23 #include <linux/list.h> 24 #include <linux/miscdevice.h> 25 #include <linux/module.h> 26 #include <linux/mutex.h> 27 #include <linux/net.h> 28 #include <linux/poll.h> 29 #include <linux/skbuff.h> 30 #include <linux/smp.h> 31 #include <linux/socket.h> 32 #include <linux/stddef.h> 33 #include <linux/unistd.h> 34 #include <linux/wait.h> 35 #include <linux/workqueue.h> 36 #include <net/sock.h> 37 #include <net/af_vsock.h> 38 39 #include "vmci_transport_notify.h" 40 41 static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg); 42 static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg); 43 static void vmci_transport_peer_detach_cb(u32 sub_id, 44 const struct vmci_event_data *ed, 45 void *client_data); 46 static void vmci_transport_recv_pkt_work(struct work_struct *work); 47 static void vmci_transport_cleanup(struct work_struct *work); 48 static int vmci_transport_recv_listen(struct sock *sk, 49 struct vmci_transport_packet *pkt); 50 static int vmci_transport_recv_connecting_server( 51 struct sock *sk, 52 struct sock *pending, 53 struct vmci_transport_packet *pkt); 54 static int vmci_transport_recv_connecting_client( 55 struct sock *sk, 56 struct vmci_transport_packet *pkt); 57 static int vmci_transport_recv_connecting_client_negotiate( 58 struct sock *sk, 59 struct vmci_transport_packet *pkt); 60 static int vmci_transport_recv_connecting_client_invalid( 61 struct sock *sk, 62 struct vmci_transport_packet *pkt); 63 static int vmci_transport_recv_connected(struct sock *sk, 64 struct vmci_transport_packet *pkt); 65 static bool vmci_transport_old_proto_override(bool *old_pkt_proto); 66 static u16 vmci_transport_new_proto_supported_versions(void); 67 static bool vmci_transport_proto_to_notify_struct(struct sock *sk, u16 *proto, 68 bool old_pkt_proto); 69 70 struct vmci_transport_recv_pkt_info { 71 struct work_struct work; 72 struct sock *sk; 73 struct vmci_transport_packet pkt; 74 }; 75 76 static LIST_HEAD(vmci_transport_cleanup_list); 77 static DEFINE_SPINLOCK(vmci_transport_cleanup_lock); 78 static DECLARE_WORK(vmci_transport_cleanup_work, vmci_transport_cleanup); 79 80 static struct vmci_handle vmci_transport_stream_handle = { VMCI_INVALID_ID, 81 VMCI_INVALID_ID }; 82 static u32 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID; 83 84 static int PROTOCOL_OVERRIDE = -1; 85 86 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE_MIN 128 87 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE 262144 88 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE_MAX 262144 89 90 /* The default peer timeout indicates how long we will wait for a peer response 91 * to a control message. 92 */ 93 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ) 94 95 /* Helper function to convert from a VMCI error code to a VSock error code. */ 96 97 static s32 vmci_transport_error_to_vsock_error(s32 vmci_error) 98 { 99 switch (vmci_error) { 100 case VMCI_ERROR_NO_MEM: 101 return -ENOMEM; 102 case VMCI_ERROR_DUPLICATE_ENTRY: 103 case VMCI_ERROR_ALREADY_EXISTS: 104 return -EADDRINUSE; 105 case VMCI_ERROR_NO_ACCESS: 106 return -EPERM; 107 case VMCI_ERROR_NO_RESOURCES: 108 return -ENOBUFS; 109 case VMCI_ERROR_INVALID_RESOURCE: 110 return -EHOSTUNREACH; 111 case VMCI_ERROR_INVALID_ARGS: 112 default: 113 break; 114 } 115 return -EINVAL; 116 } 117 118 static u32 vmci_transport_peer_rid(u32 peer_cid) 119 { 120 if (VMADDR_CID_HYPERVISOR == peer_cid) 121 return VMCI_TRANSPORT_HYPERVISOR_PACKET_RID; 122 123 return VMCI_TRANSPORT_PACKET_RID; 124 } 125 126 static inline void 127 vmci_transport_packet_init(struct vmci_transport_packet *pkt, 128 struct sockaddr_vm *src, 129 struct sockaddr_vm *dst, 130 u8 type, 131 u64 size, 132 u64 mode, 133 struct vmci_transport_waiting_info *wait, 134 u16 proto, 135 struct vmci_handle handle) 136 { 137 /* We register the stream control handler as an any cid handle so we 138 * must always send from a source address of VMADDR_CID_ANY 139 */ 140 pkt->dg.src = vmci_make_handle(VMADDR_CID_ANY, 141 VMCI_TRANSPORT_PACKET_RID); 142 pkt->dg.dst = vmci_make_handle(dst->svm_cid, 143 vmci_transport_peer_rid(dst->svm_cid)); 144 pkt->dg.payload_size = sizeof(*pkt) - sizeof(pkt->dg); 145 pkt->version = VMCI_TRANSPORT_PACKET_VERSION; 146 pkt->type = type; 147 pkt->src_port = src->svm_port; 148 pkt->dst_port = dst->svm_port; 149 memset(&pkt->proto, 0, sizeof(pkt->proto)); 150 memset(&pkt->_reserved2, 0, sizeof(pkt->_reserved2)); 151 152 switch (pkt->type) { 153 case VMCI_TRANSPORT_PACKET_TYPE_INVALID: 154 pkt->u.size = 0; 155 break; 156 157 case VMCI_TRANSPORT_PACKET_TYPE_REQUEST: 158 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE: 159 pkt->u.size = size; 160 break; 161 162 case VMCI_TRANSPORT_PACKET_TYPE_OFFER: 163 case VMCI_TRANSPORT_PACKET_TYPE_ATTACH: 164 pkt->u.handle = handle; 165 break; 166 167 case VMCI_TRANSPORT_PACKET_TYPE_WROTE: 168 case VMCI_TRANSPORT_PACKET_TYPE_READ: 169 case VMCI_TRANSPORT_PACKET_TYPE_RST: 170 pkt->u.size = 0; 171 break; 172 173 case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN: 174 pkt->u.mode = mode; 175 break; 176 177 case VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ: 178 case VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE: 179 memcpy(&pkt->u.wait, wait, sizeof(pkt->u.wait)); 180 break; 181 182 case VMCI_TRANSPORT_PACKET_TYPE_REQUEST2: 183 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2: 184 pkt->u.size = size; 185 pkt->proto = proto; 186 break; 187 } 188 } 189 190 static inline void 191 vmci_transport_packet_get_addresses(struct vmci_transport_packet *pkt, 192 struct sockaddr_vm *local, 193 struct sockaddr_vm *remote) 194 { 195 vsock_addr_init(local, pkt->dg.dst.context, pkt->dst_port); 196 vsock_addr_init(remote, pkt->dg.src.context, pkt->src_port); 197 } 198 199 static int 200 __vmci_transport_send_control_pkt(struct vmci_transport_packet *pkt, 201 struct sockaddr_vm *src, 202 struct sockaddr_vm *dst, 203 enum vmci_transport_packet_type type, 204 u64 size, 205 u64 mode, 206 struct vmci_transport_waiting_info *wait, 207 u16 proto, 208 struct vmci_handle handle, 209 bool convert_error) 210 { 211 int err; 212 213 vmci_transport_packet_init(pkt, src, dst, type, size, mode, wait, 214 proto, handle); 215 err = vmci_datagram_send(&pkt->dg); 216 if (convert_error && (err < 0)) 217 return vmci_transport_error_to_vsock_error(err); 218 219 return err; 220 } 221 222 static int 223 vmci_transport_reply_control_pkt_fast(struct vmci_transport_packet *pkt, 224 enum vmci_transport_packet_type type, 225 u64 size, 226 u64 mode, 227 struct vmci_transport_waiting_info *wait, 228 struct vmci_handle handle) 229 { 230 struct vmci_transport_packet reply; 231 struct sockaddr_vm src, dst; 232 233 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST) { 234 return 0; 235 } else { 236 vmci_transport_packet_get_addresses(pkt, &src, &dst); 237 return __vmci_transport_send_control_pkt(&reply, &src, &dst, 238 type, 239 size, mode, wait, 240 VSOCK_PROTO_INVALID, 241 handle, true); 242 } 243 } 244 245 static int 246 vmci_transport_send_control_pkt_bh(struct sockaddr_vm *src, 247 struct sockaddr_vm *dst, 248 enum vmci_transport_packet_type type, 249 u64 size, 250 u64 mode, 251 struct vmci_transport_waiting_info *wait, 252 struct vmci_handle handle) 253 { 254 /* Note that it is safe to use a single packet across all CPUs since 255 * two tasklets of the same type are guaranteed to not ever run 256 * simultaneously. If that ever changes, or VMCI stops using tasklets, 257 * we can use per-cpu packets. 258 */ 259 static struct vmci_transport_packet pkt; 260 261 return __vmci_transport_send_control_pkt(&pkt, src, dst, type, 262 size, mode, wait, 263 VSOCK_PROTO_INVALID, handle, 264 false); 265 } 266 267 static int 268 vmci_transport_send_control_pkt(struct sock *sk, 269 enum vmci_transport_packet_type type, 270 u64 size, 271 u64 mode, 272 struct vmci_transport_waiting_info *wait, 273 u16 proto, 274 struct vmci_handle handle) 275 { 276 struct vmci_transport_packet *pkt; 277 struct vsock_sock *vsk; 278 int err; 279 280 vsk = vsock_sk(sk); 281 282 if (!vsock_addr_bound(&vsk->local_addr)) 283 return -EINVAL; 284 285 if (!vsock_addr_bound(&vsk->remote_addr)) 286 return -EINVAL; 287 288 pkt = kmalloc(sizeof(*pkt), GFP_KERNEL); 289 if (!pkt) 290 return -ENOMEM; 291 292 err = __vmci_transport_send_control_pkt(pkt, &vsk->local_addr, 293 &vsk->remote_addr, type, size, 294 mode, wait, proto, handle, 295 true); 296 kfree(pkt); 297 298 return err; 299 } 300 301 static int vmci_transport_send_reset_bh(struct sockaddr_vm *dst, 302 struct sockaddr_vm *src, 303 struct vmci_transport_packet *pkt) 304 { 305 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST) 306 return 0; 307 return vmci_transport_send_control_pkt_bh( 308 dst, src, 309 VMCI_TRANSPORT_PACKET_TYPE_RST, 0, 310 0, NULL, VMCI_INVALID_HANDLE); 311 } 312 313 static int vmci_transport_send_reset(struct sock *sk, 314 struct vmci_transport_packet *pkt) 315 { 316 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST) 317 return 0; 318 return vmci_transport_send_control_pkt(sk, 319 VMCI_TRANSPORT_PACKET_TYPE_RST, 320 0, 0, NULL, VSOCK_PROTO_INVALID, 321 VMCI_INVALID_HANDLE); 322 } 323 324 static int vmci_transport_send_negotiate(struct sock *sk, size_t size) 325 { 326 return vmci_transport_send_control_pkt( 327 sk, 328 VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE, 329 size, 0, NULL, 330 VSOCK_PROTO_INVALID, 331 VMCI_INVALID_HANDLE); 332 } 333 334 static int vmci_transport_send_negotiate2(struct sock *sk, size_t size, 335 u16 version) 336 { 337 return vmci_transport_send_control_pkt( 338 sk, 339 VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2, 340 size, 0, NULL, version, 341 VMCI_INVALID_HANDLE); 342 } 343 344 static int vmci_transport_send_qp_offer(struct sock *sk, 345 struct vmci_handle handle) 346 { 347 return vmci_transport_send_control_pkt( 348 sk, VMCI_TRANSPORT_PACKET_TYPE_OFFER, 0, 349 0, NULL, 350 VSOCK_PROTO_INVALID, handle); 351 } 352 353 static int vmci_transport_send_attach(struct sock *sk, 354 struct vmci_handle handle) 355 { 356 return vmci_transport_send_control_pkt( 357 sk, VMCI_TRANSPORT_PACKET_TYPE_ATTACH, 358 0, 0, NULL, VSOCK_PROTO_INVALID, 359 handle); 360 } 361 362 static int vmci_transport_reply_reset(struct vmci_transport_packet *pkt) 363 { 364 return vmci_transport_reply_control_pkt_fast( 365 pkt, 366 VMCI_TRANSPORT_PACKET_TYPE_RST, 367 0, 0, NULL, 368 VMCI_INVALID_HANDLE); 369 } 370 371 static int vmci_transport_send_invalid_bh(struct sockaddr_vm *dst, 372 struct sockaddr_vm *src) 373 { 374 return vmci_transport_send_control_pkt_bh( 375 dst, src, 376 VMCI_TRANSPORT_PACKET_TYPE_INVALID, 377 0, 0, NULL, VMCI_INVALID_HANDLE); 378 } 379 380 int vmci_transport_send_wrote_bh(struct sockaddr_vm *dst, 381 struct sockaddr_vm *src) 382 { 383 return vmci_transport_send_control_pkt_bh( 384 dst, src, 385 VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0, 386 0, NULL, VMCI_INVALID_HANDLE); 387 } 388 389 int vmci_transport_send_read_bh(struct sockaddr_vm *dst, 390 struct sockaddr_vm *src) 391 { 392 return vmci_transport_send_control_pkt_bh( 393 dst, src, 394 VMCI_TRANSPORT_PACKET_TYPE_READ, 0, 395 0, NULL, VMCI_INVALID_HANDLE); 396 } 397 398 int vmci_transport_send_wrote(struct sock *sk) 399 { 400 return vmci_transport_send_control_pkt( 401 sk, VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0, 402 0, NULL, VSOCK_PROTO_INVALID, 403 VMCI_INVALID_HANDLE); 404 } 405 406 int vmci_transport_send_read(struct sock *sk) 407 { 408 return vmci_transport_send_control_pkt( 409 sk, VMCI_TRANSPORT_PACKET_TYPE_READ, 0, 410 0, NULL, VSOCK_PROTO_INVALID, 411 VMCI_INVALID_HANDLE); 412 } 413 414 int vmci_transport_send_waiting_write(struct sock *sk, 415 struct vmci_transport_waiting_info *wait) 416 { 417 return vmci_transport_send_control_pkt( 418 sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE, 419 0, 0, wait, VSOCK_PROTO_INVALID, 420 VMCI_INVALID_HANDLE); 421 } 422 423 int vmci_transport_send_waiting_read(struct sock *sk, 424 struct vmci_transport_waiting_info *wait) 425 { 426 return vmci_transport_send_control_pkt( 427 sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ, 428 0, 0, wait, VSOCK_PROTO_INVALID, 429 VMCI_INVALID_HANDLE); 430 } 431 432 static int vmci_transport_shutdown(struct vsock_sock *vsk, int mode) 433 { 434 return vmci_transport_send_control_pkt( 435 &vsk->sk, 436 VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN, 437 0, mode, NULL, 438 VSOCK_PROTO_INVALID, 439 VMCI_INVALID_HANDLE); 440 } 441 442 static int vmci_transport_send_conn_request(struct sock *sk, size_t size) 443 { 444 return vmci_transport_send_control_pkt(sk, 445 VMCI_TRANSPORT_PACKET_TYPE_REQUEST, 446 size, 0, NULL, 447 VSOCK_PROTO_INVALID, 448 VMCI_INVALID_HANDLE); 449 } 450 451 static int vmci_transport_send_conn_request2(struct sock *sk, size_t size, 452 u16 version) 453 { 454 return vmci_transport_send_control_pkt( 455 sk, VMCI_TRANSPORT_PACKET_TYPE_REQUEST2, 456 size, 0, NULL, version, 457 VMCI_INVALID_HANDLE); 458 } 459 460 static struct sock *vmci_transport_get_pending( 461 struct sock *listener, 462 struct vmci_transport_packet *pkt) 463 { 464 struct vsock_sock *vlistener; 465 struct vsock_sock *vpending; 466 struct sock *pending; 467 struct sockaddr_vm src; 468 469 vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port); 470 471 vlistener = vsock_sk(listener); 472 473 list_for_each_entry(vpending, &vlistener->pending_links, 474 pending_links) { 475 if (vsock_addr_equals_addr(&src, &vpending->remote_addr) && 476 pkt->dst_port == vpending->local_addr.svm_port) { 477 pending = sk_vsock(vpending); 478 sock_hold(pending); 479 goto found; 480 } 481 } 482 483 pending = NULL; 484 found: 485 return pending; 486 487 } 488 489 static void vmci_transport_release_pending(struct sock *pending) 490 { 491 sock_put(pending); 492 } 493 494 /* We allow two kinds of sockets to communicate with a restricted VM: 1) 495 * trusted sockets 2) sockets from applications running as the same user as the 496 * VM (this is only true for the host side and only when using hosted products) 497 */ 498 499 static bool vmci_transport_is_trusted(struct vsock_sock *vsock, u32 peer_cid) 500 { 501 return vsock->trusted || 502 vmci_is_context_owner(peer_cid, vsock->owner->uid); 503 } 504 505 /* We allow sending datagrams to and receiving datagrams from a restricted VM 506 * only if it is trusted as described in vmci_transport_is_trusted. 507 */ 508 509 static bool vmci_transport_allow_dgram(struct vsock_sock *vsock, u32 peer_cid) 510 { 511 if (VMADDR_CID_HYPERVISOR == peer_cid) 512 return true; 513 514 if (vsock->cached_peer != peer_cid) { 515 vsock->cached_peer = peer_cid; 516 if (!vmci_transport_is_trusted(vsock, peer_cid) && 517 (vmci_context_get_priv_flags(peer_cid) & 518 VMCI_PRIVILEGE_FLAG_RESTRICTED)) { 519 vsock->cached_peer_allow_dgram = false; 520 } else { 521 vsock->cached_peer_allow_dgram = true; 522 } 523 } 524 525 return vsock->cached_peer_allow_dgram; 526 } 527 528 static int 529 vmci_transport_queue_pair_alloc(struct vmci_qp **qpair, 530 struct vmci_handle *handle, 531 u64 produce_size, 532 u64 consume_size, 533 u32 peer, u32 flags, bool trusted) 534 { 535 int err = 0; 536 537 if (trusted) { 538 /* Try to allocate our queue pair as trusted. This will only 539 * work if vsock is running in the host. 540 */ 541 542 err = vmci_qpair_alloc(qpair, handle, produce_size, 543 consume_size, 544 peer, flags, 545 VMCI_PRIVILEGE_FLAG_TRUSTED); 546 if (err != VMCI_ERROR_NO_ACCESS) 547 goto out; 548 549 } 550 551 err = vmci_qpair_alloc(qpair, handle, produce_size, consume_size, 552 peer, flags, VMCI_NO_PRIVILEGE_FLAGS); 553 out: 554 if (err < 0) { 555 pr_err("Could not attach to queue pair with %d\n", 556 err); 557 err = vmci_transport_error_to_vsock_error(err); 558 } 559 560 return err; 561 } 562 563 static int 564 vmci_transport_datagram_create_hnd(u32 resource_id, 565 u32 flags, 566 vmci_datagram_recv_cb recv_cb, 567 void *client_data, 568 struct vmci_handle *out_handle) 569 { 570 int err = 0; 571 572 /* Try to allocate our datagram handler as trusted. This will only work 573 * if vsock is running in the host. 574 */ 575 576 err = vmci_datagram_create_handle_priv(resource_id, flags, 577 VMCI_PRIVILEGE_FLAG_TRUSTED, 578 recv_cb, 579 client_data, out_handle); 580 581 if (err == VMCI_ERROR_NO_ACCESS) 582 err = vmci_datagram_create_handle(resource_id, flags, 583 recv_cb, client_data, 584 out_handle); 585 586 return err; 587 } 588 589 /* This is invoked as part of a tasklet that's scheduled when the VMCI 590 * interrupt fires. This is run in bottom-half context and if it ever needs to 591 * sleep it should defer that work to a work queue. 592 */ 593 594 static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg) 595 { 596 struct sock *sk; 597 size_t size; 598 struct sk_buff *skb; 599 struct vsock_sock *vsk; 600 601 sk = (struct sock *)data; 602 603 /* This handler is privileged when this module is running on the host. 604 * We will get datagrams from all endpoints (even VMs that are in a 605 * restricted context). If we get one from a restricted context then 606 * the destination socket must be trusted. 607 * 608 * NOTE: We access the socket struct without holding the lock here. 609 * This is ok because the field we are interested is never modified 610 * outside of the create and destruct socket functions. 611 */ 612 vsk = vsock_sk(sk); 613 if (!vmci_transport_allow_dgram(vsk, dg->src.context)) 614 return VMCI_ERROR_NO_ACCESS; 615 616 size = VMCI_DG_SIZE(dg); 617 618 /* Attach the packet to the socket's receive queue as an sk_buff. */ 619 skb = alloc_skb(size, GFP_ATOMIC); 620 if (!skb) 621 return VMCI_ERROR_NO_MEM; 622 623 /* sk_receive_skb() will do a sock_put(), so hold here. */ 624 sock_hold(sk); 625 skb_put(skb, size); 626 memcpy(skb->data, dg, size); 627 sk_receive_skb(sk, skb, 0); 628 629 return VMCI_SUCCESS; 630 } 631 632 static bool vmci_transport_stream_allow(u32 cid, u32 port) 633 { 634 static const u32 non_socket_contexts[] = { 635 VMADDR_CID_RESERVED, 636 }; 637 int i; 638 639 BUILD_BUG_ON(sizeof(cid) != sizeof(*non_socket_contexts)); 640 641 for (i = 0; i < ARRAY_SIZE(non_socket_contexts); i++) { 642 if (cid == non_socket_contexts[i]) 643 return false; 644 } 645 646 return true; 647 } 648 649 /* This is invoked as part of a tasklet that's scheduled when the VMCI 650 * interrupt fires. This is run in bottom-half context but it defers most of 651 * its work to the packet handling work queue. 652 */ 653 654 static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg) 655 { 656 struct sock *sk; 657 struct sockaddr_vm dst; 658 struct sockaddr_vm src; 659 struct vmci_transport_packet *pkt; 660 struct vsock_sock *vsk; 661 bool bh_process_pkt; 662 int err; 663 664 sk = NULL; 665 err = VMCI_SUCCESS; 666 bh_process_pkt = false; 667 668 /* Ignore incoming packets from contexts without sockets, or resources 669 * that aren't vsock implementations. 670 */ 671 672 if (!vmci_transport_stream_allow(dg->src.context, -1) 673 || vmci_transport_peer_rid(dg->src.context) != dg->src.resource) 674 return VMCI_ERROR_NO_ACCESS; 675 676 if (VMCI_DG_SIZE(dg) < sizeof(*pkt)) 677 /* Drop datagrams that do not contain full VSock packets. */ 678 return VMCI_ERROR_INVALID_ARGS; 679 680 pkt = (struct vmci_transport_packet *)dg; 681 682 /* Find the socket that should handle this packet. First we look for a 683 * connected socket and if there is none we look for a socket bound to 684 * the destintation address. 685 */ 686 vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port); 687 vsock_addr_init(&dst, pkt->dg.dst.context, pkt->dst_port); 688 689 sk = vsock_find_connected_socket(&src, &dst); 690 if (!sk) { 691 sk = vsock_find_bound_socket(&dst); 692 if (!sk) { 693 /* We could not find a socket for this specified 694 * address. If this packet is a RST, we just drop it. 695 * If it is another packet, we send a RST. Note that 696 * we do not send a RST reply to RSTs so that we do not 697 * continually send RSTs between two endpoints. 698 * 699 * Note that since this is a reply, dst is src and src 700 * is dst. 701 */ 702 if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0) 703 pr_err("unable to send reset\n"); 704 705 err = VMCI_ERROR_NOT_FOUND; 706 goto out; 707 } 708 } 709 710 /* If the received packet type is beyond all types known to this 711 * implementation, reply with an invalid message. Hopefully this will 712 * help when implementing backwards compatibility in the future. 713 */ 714 if (pkt->type >= VMCI_TRANSPORT_PACKET_TYPE_MAX) { 715 vmci_transport_send_invalid_bh(&dst, &src); 716 err = VMCI_ERROR_INVALID_ARGS; 717 goto out; 718 } 719 720 /* This handler is privileged when this module is running on the host. 721 * We will get datagram connect requests from all endpoints (even VMs 722 * that are in a restricted context). If we get one from a restricted 723 * context then the destination socket must be trusted. 724 * 725 * NOTE: We access the socket struct without holding the lock here. 726 * This is ok because the field we are interested is never modified 727 * outside of the create and destruct socket functions. 728 */ 729 vsk = vsock_sk(sk); 730 if (!vmci_transport_allow_dgram(vsk, pkt->dg.src.context)) { 731 err = VMCI_ERROR_NO_ACCESS; 732 goto out; 733 } 734 735 /* We do most everything in a work queue, but let's fast path the 736 * notification of reads and writes to help data transfer performance. 737 * We can only do this if there is no process context code executing 738 * for this socket since that may change the state. 739 */ 740 bh_lock_sock(sk); 741 742 if (!sock_owned_by_user(sk)) { 743 /* The local context ID may be out of date, update it. */ 744 vsk->local_addr.svm_cid = dst.svm_cid; 745 746 if (sk->sk_state == SS_CONNECTED) 747 vmci_trans(vsk)->notify_ops->handle_notify_pkt( 748 sk, pkt, true, &dst, &src, 749 &bh_process_pkt); 750 } 751 752 bh_unlock_sock(sk); 753 754 if (!bh_process_pkt) { 755 struct vmci_transport_recv_pkt_info *recv_pkt_info; 756 757 recv_pkt_info = kmalloc(sizeof(*recv_pkt_info), GFP_ATOMIC); 758 if (!recv_pkt_info) { 759 if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0) 760 pr_err("unable to send reset\n"); 761 762 err = VMCI_ERROR_NO_MEM; 763 goto out; 764 } 765 766 recv_pkt_info->sk = sk; 767 memcpy(&recv_pkt_info->pkt, pkt, sizeof(recv_pkt_info->pkt)); 768 INIT_WORK(&recv_pkt_info->work, vmci_transport_recv_pkt_work); 769 770 schedule_work(&recv_pkt_info->work); 771 /* Clear sk so that the reference count incremented by one of 772 * the Find functions above is not decremented below. We need 773 * that reference count for the packet handler we've scheduled 774 * to run. 775 */ 776 sk = NULL; 777 } 778 779 out: 780 if (sk) 781 sock_put(sk); 782 783 return err; 784 } 785 786 static void vmci_transport_handle_detach(struct sock *sk) 787 { 788 struct vsock_sock *vsk; 789 790 vsk = vsock_sk(sk); 791 if (!vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)) { 792 sock_set_flag(sk, SOCK_DONE); 793 794 /* On a detach the peer will not be sending or receiving 795 * anymore. 796 */ 797 vsk->peer_shutdown = SHUTDOWN_MASK; 798 799 /* We should not be sending anymore since the peer won't be 800 * there to receive, but we can still receive if there is data 801 * left in our consume queue. 802 */ 803 if (vsock_stream_has_data(vsk) <= 0) { 804 if (sk->sk_state == SS_CONNECTING) { 805 /* The peer may detach from a queue pair while 806 * we are still in the connecting state, i.e., 807 * if the peer VM is killed after attaching to 808 * a queue pair, but before we complete the 809 * handshake. In that case, we treat the detach 810 * event like a reset. 811 */ 812 813 sk->sk_state = SS_UNCONNECTED; 814 sk->sk_err = ECONNRESET; 815 sk->sk_error_report(sk); 816 return; 817 } 818 sk->sk_state = SS_UNCONNECTED; 819 } 820 sk->sk_state_change(sk); 821 } 822 } 823 824 static void vmci_transport_peer_detach_cb(u32 sub_id, 825 const struct vmci_event_data *e_data, 826 void *client_data) 827 { 828 struct vmci_transport *trans = client_data; 829 const struct vmci_event_payload_qp *e_payload; 830 831 e_payload = vmci_event_data_const_payload(e_data); 832 833 /* XXX This is lame, we should provide a way to lookup sockets by 834 * qp_handle. 835 */ 836 if (vmci_handle_is_invalid(e_payload->handle) || 837 !vmci_handle_is_equal(trans->qp_handle, e_payload->handle)) 838 return; 839 840 /* We don't ask for delayed CBs when we subscribe to this event (we 841 * pass 0 as flags to vmci_event_subscribe()). VMCI makes no 842 * guarantees in that case about what context we might be running in, 843 * so it could be BH or process, blockable or non-blockable. So we 844 * need to account for all possible contexts here. 845 */ 846 spin_lock_bh(&trans->lock); 847 if (!trans->sk) 848 goto out; 849 850 /* Apart from here, trans->lock is only grabbed as part of sk destruct, 851 * where trans->sk isn't locked. 852 */ 853 bh_lock_sock(trans->sk); 854 855 vmci_transport_handle_detach(trans->sk); 856 857 bh_unlock_sock(trans->sk); 858 out: 859 spin_unlock_bh(&trans->lock); 860 } 861 862 static void vmci_transport_qp_resumed_cb(u32 sub_id, 863 const struct vmci_event_data *e_data, 864 void *client_data) 865 { 866 vsock_for_each_connected_socket(vmci_transport_handle_detach); 867 } 868 869 static void vmci_transport_recv_pkt_work(struct work_struct *work) 870 { 871 struct vmci_transport_recv_pkt_info *recv_pkt_info; 872 struct vmci_transport_packet *pkt; 873 struct sock *sk; 874 875 recv_pkt_info = 876 container_of(work, struct vmci_transport_recv_pkt_info, work); 877 sk = recv_pkt_info->sk; 878 pkt = &recv_pkt_info->pkt; 879 880 lock_sock(sk); 881 882 /* The local context ID may be out of date. */ 883 vsock_sk(sk)->local_addr.svm_cid = pkt->dg.dst.context; 884 885 switch (sk->sk_state) { 886 case VSOCK_SS_LISTEN: 887 vmci_transport_recv_listen(sk, pkt); 888 break; 889 case SS_CONNECTING: 890 /* Processing of pending connections for servers goes through 891 * the listening socket, so see vmci_transport_recv_listen() 892 * for that path. 893 */ 894 vmci_transport_recv_connecting_client(sk, pkt); 895 break; 896 case SS_CONNECTED: 897 vmci_transport_recv_connected(sk, pkt); 898 break; 899 default: 900 /* Because this function does not run in the same context as 901 * vmci_transport_recv_stream_cb it is possible that the 902 * socket has closed. We need to let the other side know or it 903 * could be sitting in a connect and hang forever. Send a 904 * reset to prevent that. 905 */ 906 vmci_transport_send_reset(sk, pkt); 907 break; 908 } 909 910 release_sock(sk); 911 kfree(recv_pkt_info); 912 /* Release reference obtained in the stream callback when we fetched 913 * this socket out of the bound or connected list. 914 */ 915 sock_put(sk); 916 } 917 918 static int vmci_transport_recv_listen(struct sock *sk, 919 struct vmci_transport_packet *pkt) 920 { 921 struct sock *pending; 922 struct vsock_sock *vpending; 923 int err; 924 u64 qp_size; 925 bool old_request = false; 926 bool old_pkt_proto = false; 927 928 err = 0; 929 930 /* Because we are in the listen state, we could be receiving a packet 931 * for ourself or any previous connection requests that we received. 932 * If it's the latter, we try to find a socket in our list of pending 933 * connections and, if we do, call the appropriate handler for the 934 * state that that socket is in. Otherwise we try to service the 935 * connection request. 936 */ 937 pending = vmci_transport_get_pending(sk, pkt); 938 if (pending) { 939 lock_sock(pending); 940 941 /* The local context ID may be out of date. */ 942 vsock_sk(pending)->local_addr.svm_cid = pkt->dg.dst.context; 943 944 switch (pending->sk_state) { 945 case SS_CONNECTING: 946 err = vmci_transport_recv_connecting_server(sk, 947 pending, 948 pkt); 949 break; 950 default: 951 vmci_transport_send_reset(pending, pkt); 952 err = -EINVAL; 953 } 954 955 if (err < 0) 956 vsock_remove_pending(sk, pending); 957 958 release_sock(pending); 959 vmci_transport_release_pending(pending); 960 961 return err; 962 } 963 964 /* The listen state only accepts connection requests. Reply with a 965 * reset unless we received a reset. 966 */ 967 968 if (!(pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST || 969 pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)) { 970 vmci_transport_reply_reset(pkt); 971 return -EINVAL; 972 } 973 974 if (pkt->u.size == 0) { 975 vmci_transport_reply_reset(pkt); 976 return -EINVAL; 977 } 978 979 /* If this socket can't accommodate this connection request, we send a 980 * reset. Otherwise we create and initialize a child socket and reply 981 * with a connection negotiation. 982 */ 983 if (sk->sk_ack_backlog >= sk->sk_max_ack_backlog) { 984 vmci_transport_reply_reset(pkt); 985 return -ECONNREFUSED; 986 } 987 988 pending = __vsock_create(sock_net(sk), NULL, sk, GFP_KERNEL, 989 sk->sk_type, 0); 990 if (!pending) { 991 vmci_transport_send_reset(sk, pkt); 992 return -ENOMEM; 993 } 994 995 vpending = vsock_sk(pending); 996 997 vsock_addr_init(&vpending->local_addr, pkt->dg.dst.context, 998 pkt->dst_port); 999 vsock_addr_init(&vpending->remote_addr, pkt->dg.src.context, 1000 pkt->src_port); 1001 1002 /* If the proposed size fits within our min/max, accept it. Otherwise 1003 * propose our own size. 1004 */ 1005 if (pkt->u.size >= vmci_trans(vpending)->queue_pair_min_size && 1006 pkt->u.size <= vmci_trans(vpending)->queue_pair_max_size) { 1007 qp_size = pkt->u.size; 1008 } else { 1009 qp_size = vmci_trans(vpending)->queue_pair_size; 1010 } 1011 1012 /* Figure out if we are using old or new requests based on the 1013 * overrides pkt types sent by our peer. 1014 */ 1015 if (vmci_transport_old_proto_override(&old_pkt_proto)) { 1016 old_request = old_pkt_proto; 1017 } else { 1018 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST) 1019 old_request = true; 1020 else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2) 1021 old_request = false; 1022 1023 } 1024 1025 if (old_request) { 1026 /* Handle a REQUEST (or override) */ 1027 u16 version = VSOCK_PROTO_INVALID; 1028 if (vmci_transport_proto_to_notify_struct( 1029 pending, &version, true)) 1030 err = vmci_transport_send_negotiate(pending, qp_size); 1031 else 1032 err = -EINVAL; 1033 1034 } else { 1035 /* Handle a REQUEST2 (or override) */ 1036 int proto_int = pkt->proto; 1037 int pos; 1038 u16 active_proto_version = 0; 1039 1040 /* The list of possible protocols is the intersection of all 1041 * protocols the client supports ... plus all the protocols we 1042 * support. 1043 */ 1044 proto_int &= vmci_transport_new_proto_supported_versions(); 1045 1046 /* We choose the highest possible protocol version and use that 1047 * one. 1048 */ 1049 pos = fls(proto_int); 1050 if (pos) { 1051 active_proto_version = (1 << (pos - 1)); 1052 if (vmci_transport_proto_to_notify_struct( 1053 pending, &active_proto_version, false)) 1054 err = vmci_transport_send_negotiate2(pending, 1055 qp_size, 1056 active_proto_version); 1057 else 1058 err = -EINVAL; 1059 1060 } else { 1061 err = -EINVAL; 1062 } 1063 } 1064 1065 if (err < 0) { 1066 vmci_transport_send_reset(sk, pkt); 1067 sock_put(pending); 1068 err = vmci_transport_error_to_vsock_error(err); 1069 goto out; 1070 } 1071 1072 vsock_add_pending(sk, pending); 1073 sk->sk_ack_backlog++; 1074 1075 pending->sk_state = SS_CONNECTING; 1076 vmci_trans(vpending)->produce_size = 1077 vmci_trans(vpending)->consume_size = qp_size; 1078 vmci_trans(vpending)->queue_pair_size = qp_size; 1079 1080 vmci_trans(vpending)->notify_ops->process_request(pending); 1081 1082 /* We might never receive another message for this socket and it's not 1083 * connected to any process, so we have to ensure it gets cleaned up 1084 * ourself. Our delayed work function will take care of that. Note 1085 * that we do not ever cancel this function since we have few 1086 * guarantees about its state when calling cancel_delayed_work(). 1087 * Instead we hold a reference on the socket for that function and make 1088 * it capable of handling cases where it needs to do nothing but 1089 * release that reference. 1090 */ 1091 vpending->listener = sk; 1092 sock_hold(sk); 1093 sock_hold(pending); 1094 INIT_DELAYED_WORK(&vpending->dwork, vsock_pending_work); 1095 schedule_delayed_work(&vpending->dwork, HZ); 1096 1097 out: 1098 return err; 1099 } 1100 1101 static int 1102 vmci_transport_recv_connecting_server(struct sock *listener, 1103 struct sock *pending, 1104 struct vmci_transport_packet *pkt) 1105 { 1106 struct vsock_sock *vpending; 1107 struct vmci_handle handle; 1108 struct vmci_qp *qpair; 1109 bool is_local; 1110 u32 flags; 1111 u32 detach_sub_id; 1112 int err; 1113 int skerr; 1114 1115 vpending = vsock_sk(pending); 1116 detach_sub_id = VMCI_INVALID_ID; 1117 1118 switch (pkt->type) { 1119 case VMCI_TRANSPORT_PACKET_TYPE_OFFER: 1120 if (vmci_handle_is_invalid(pkt->u.handle)) { 1121 vmci_transport_send_reset(pending, pkt); 1122 skerr = EPROTO; 1123 err = -EINVAL; 1124 goto destroy; 1125 } 1126 break; 1127 default: 1128 /* Close and cleanup the connection. */ 1129 vmci_transport_send_reset(pending, pkt); 1130 skerr = EPROTO; 1131 err = pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST ? 0 : -EINVAL; 1132 goto destroy; 1133 } 1134 1135 /* In order to complete the connection we need to attach to the offered 1136 * queue pair and send an attach notification. We also subscribe to the 1137 * detach event so we know when our peer goes away, and we do that 1138 * before attaching so we don't miss an event. If all this succeeds, 1139 * we update our state and wakeup anything waiting in accept() for a 1140 * connection. 1141 */ 1142 1143 /* We don't care about attach since we ensure the other side has 1144 * attached by specifying the ATTACH_ONLY flag below. 1145 */ 1146 err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH, 1147 vmci_transport_peer_detach_cb, 1148 vmci_trans(vpending), &detach_sub_id); 1149 if (err < VMCI_SUCCESS) { 1150 vmci_transport_send_reset(pending, pkt); 1151 err = vmci_transport_error_to_vsock_error(err); 1152 skerr = -err; 1153 goto destroy; 1154 } 1155 1156 vmci_trans(vpending)->detach_sub_id = detach_sub_id; 1157 1158 /* Now attach to the queue pair the client created. */ 1159 handle = pkt->u.handle; 1160 1161 /* vpending->local_addr always has a context id so we do not need to 1162 * worry about VMADDR_CID_ANY in this case. 1163 */ 1164 is_local = 1165 vpending->remote_addr.svm_cid == vpending->local_addr.svm_cid; 1166 flags = VMCI_QPFLAG_ATTACH_ONLY; 1167 flags |= is_local ? VMCI_QPFLAG_LOCAL : 0; 1168 1169 err = vmci_transport_queue_pair_alloc( 1170 &qpair, 1171 &handle, 1172 vmci_trans(vpending)->produce_size, 1173 vmci_trans(vpending)->consume_size, 1174 pkt->dg.src.context, 1175 flags, 1176 vmci_transport_is_trusted( 1177 vpending, 1178 vpending->remote_addr.svm_cid)); 1179 if (err < 0) { 1180 vmci_transport_send_reset(pending, pkt); 1181 skerr = -err; 1182 goto destroy; 1183 } 1184 1185 vmci_trans(vpending)->qp_handle = handle; 1186 vmci_trans(vpending)->qpair = qpair; 1187 1188 /* When we send the attach message, we must be ready to handle incoming 1189 * control messages on the newly connected socket. So we move the 1190 * pending socket to the connected state before sending the attach 1191 * message. Otherwise, an incoming packet triggered by the attach being 1192 * received by the peer may be processed concurrently with what happens 1193 * below after sending the attach message, and that incoming packet 1194 * will find the listening socket instead of the (currently) pending 1195 * socket. Note that enqueueing the socket increments the reference 1196 * count, so even if a reset comes before the connection is accepted, 1197 * the socket will be valid until it is removed from the queue. 1198 * 1199 * If we fail sending the attach below, we remove the socket from the 1200 * connected list and move the socket to SS_UNCONNECTED before 1201 * releasing the lock, so a pending slow path processing of an incoming 1202 * packet will not see the socket in the connected state in that case. 1203 */ 1204 pending->sk_state = SS_CONNECTED; 1205 1206 vsock_insert_connected(vpending); 1207 1208 /* Notify our peer of our attach. */ 1209 err = vmci_transport_send_attach(pending, handle); 1210 if (err < 0) { 1211 vsock_remove_connected(vpending); 1212 pr_err("Could not send attach\n"); 1213 vmci_transport_send_reset(pending, pkt); 1214 err = vmci_transport_error_to_vsock_error(err); 1215 skerr = -err; 1216 goto destroy; 1217 } 1218 1219 /* We have a connection. Move the now connected socket from the 1220 * listener's pending list to the accept queue so callers of accept() 1221 * can find it. 1222 */ 1223 vsock_remove_pending(listener, pending); 1224 vsock_enqueue_accept(listener, pending); 1225 1226 /* Callers of accept() will be be waiting on the listening socket, not 1227 * the pending socket. 1228 */ 1229 listener->sk_data_ready(listener); 1230 1231 return 0; 1232 1233 destroy: 1234 pending->sk_err = skerr; 1235 pending->sk_state = SS_UNCONNECTED; 1236 /* As long as we drop our reference, all necessary cleanup will handle 1237 * when the cleanup function drops its reference and our destruct 1238 * implementation is called. Note that since the listen handler will 1239 * remove pending from the pending list upon our failure, the cleanup 1240 * function won't drop the additional reference, which is why we do it 1241 * here. 1242 */ 1243 sock_put(pending); 1244 1245 return err; 1246 } 1247 1248 static int 1249 vmci_transport_recv_connecting_client(struct sock *sk, 1250 struct vmci_transport_packet *pkt) 1251 { 1252 struct vsock_sock *vsk; 1253 int err; 1254 int skerr; 1255 1256 vsk = vsock_sk(sk); 1257 1258 switch (pkt->type) { 1259 case VMCI_TRANSPORT_PACKET_TYPE_ATTACH: 1260 if (vmci_handle_is_invalid(pkt->u.handle) || 1261 !vmci_handle_is_equal(pkt->u.handle, 1262 vmci_trans(vsk)->qp_handle)) { 1263 skerr = EPROTO; 1264 err = -EINVAL; 1265 goto destroy; 1266 } 1267 1268 /* Signify the socket is connected and wakeup the waiter in 1269 * connect(). Also place the socket in the connected table for 1270 * accounting (it can already be found since it's in the bound 1271 * table). 1272 */ 1273 sk->sk_state = SS_CONNECTED; 1274 sk->sk_socket->state = SS_CONNECTED; 1275 vsock_insert_connected(vsk); 1276 sk->sk_state_change(sk); 1277 1278 break; 1279 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE: 1280 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2: 1281 if (pkt->u.size == 0 1282 || pkt->dg.src.context != vsk->remote_addr.svm_cid 1283 || pkt->src_port != vsk->remote_addr.svm_port 1284 || !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle) 1285 || vmci_trans(vsk)->qpair 1286 || vmci_trans(vsk)->produce_size != 0 1287 || vmci_trans(vsk)->consume_size != 0 1288 || vmci_trans(vsk)->detach_sub_id != VMCI_INVALID_ID) { 1289 skerr = EPROTO; 1290 err = -EINVAL; 1291 1292 goto destroy; 1293 } 1294 1295 err = vmci_transport_recv_connecting_client_negotiate(sk, pkt); 1296 if (err) { 1297 skerr = -err; 1298 goto destroy; 1299 } 1300 1301 break; 1302 case VMCI_TRANSPORT_PACKET_TYPE_INVALID: 1303 err = vmci_transport_recv_connecting_client_invalid(sk, pkt); 1304 if (err) { 1305 skerr = -err; 1306 goto destroy; 1307 } 1308 1309 break; 1310 case VMCI_TRANSPORT_PACKET_TYPE_RST: 1311 /* Older versions of the linux code (WS 6.5 / ESX 4.0) used to 1312 * continue processing here after they sent an INVALID packet. 1313 * This meant that we got a RST after the INVALID. We ignore a 1314 * RST after an INVALID. The common code doesn't send the RST 1315 * ... so we can hang if an old version of the common code 1316 * fails between getting a REQUEST and sending an OFFER back. 1317 * Not much we can do about it... except hope that it doesn't 1318 * happen. 1319 */ 1320 if (vsk->ignore_connecting_rst) { 1321 vsk->ignore_connecting_rst = false; 1322 } else { 1323 skerr = ECONNRESET; 1324 err = 0; 1325 goto destroy; 1326 } 1327 1328 break; 1329 default: 1330 /* Close and cleanup the connection. */ 1331 skerr = EPROTO; 1332 err = -EINVAL; 1333 goto destroy; 1334 } 1335 1336 return 0; 1337 1338 destroy: 1339 vmci_transport_send_reset(sk, pkt); 1340 1341 sk->sk_state = SS_UNCONNECTED; 1342 sk->sk_err = skerr; 1343 sk->sk_error_report(sk); 1344 return err; 1345 } 1346 1347 static int vmci_transport_recv_connecting_client_negotiate( 1348 struct sock *sk, 1349 struct vmci_transport_packet *pkt) 1350 { 1351 int err; 1352 struct vsock_sock *vsk; 1353 struct vmci_handle handle; 1354 struct vmci_qp *qpair; 1355 u32 detach_sub_id; 1356 bool is_local; 1357 u32 flags; 1358 bool old_proto = true; 1359 bool old_pkt_proto; 1360 u16 version; 1361 1362 vsk = vsock_sk(sk); 1363 handle = VMCI_INVALID_HANDLE; 1364 detach_sub_id = VMCI_INVALID_ID; 1365 1366 /* If we have gotten here then we should be past the point where old 1367 * linux vsock could have sent the bogus rst. 1368 */ 1369 vsk->sent_request = false; 1370 vsk->ignore_connecting_rst = false; 1371 1372 /* Verify that we're OK with the proposed queue pair size */ 1373 if (pkt->u.size < vmci_trans(vsk)->queue_pair_min_size || 1374 pkt->u.size > vmci_trans(vsk)->queue_pair_max_size) { 1375 err = -EINVAL; 1376 goto destroy; 1377 } 1378 1379 /* At this point we know the CID the peer is using to talk to us. */ 1380 1381 if (vsk->local_addr.svm_cid == VMADDR_CID_ANY) 1382 vsk->local_addr.svm_cid = pkt->dg.dst.context; 1383 1384 /* Setup the notify ops to be the highest supported version that both 1385 * the server and the client support. 1386 */ 1387 1388 if (vmci_transport_old_proto_override(&old_pkt_proto)) { 1389 old_proto = old_pkt_proto; 1390 } else { 1391 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE) 1392 old_proto = true; 1393 else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2) 1394 old_proto = false; 1395 1396 } 1397 1398 if (old_proto) 1399 version = VSOCK_PROTO_INVALID; 1400 else 1401 version = pkt->proto; 1402 1403 if (!vmci_transport_proto_to_notify_struct(sk, &version, old_proto)) { 1404 err = -EINVAL; 1405 goto destroy; 1406 } 1407 1408 /* Subscribe to detach events first. 1409 * 1410 * XXX We attach once for each queue pair created for now so it is easy 1411 * to find the socket (it's provided), but later we should only 1412 * subscribe once and add a way to lookup sockets by queue pair handle. 1413 */ 1414 err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH, 1415 vmci_transport_peer_detach_cb, 1416 vmci_trans(vsk), &detach_sub_id); 1417 if (err < VMCI_SUCCESS) { 1418 err = vmci_transport_error_to_vsock_error(err); 1419 goto destroy; 1420 } 1421 1422 /* Make VMCI select the handle for us. */ 1423 handle = VMCI_INVALID_HANDLE; 1424 is_local = vsk->remote_addr.svm_cid == vsk->local_addr.svm_cid; 1425 flags = is_local ? VMCI_QPFLAG_LOCAL : 0; 1426 1427 err = vmci_transport_queue_pair_alloc(&qpair, 1428 &handle, 1429 pkt->u.size, 1430 pkt->u.size, 1431 vsk->remote_addr.svm_cid, 1432 flags, 1433 vmci_transport_is_trusted( 1434 vsk, 1435 vsk-> 1436 remote_addr.svm_cid)); 1437 if (err < 0) 1438 goto destroy; 1439 1440 err = vmci_transport_send_qp_offer(sk, handle); 1441 if (err < 0) { 1442 err = vmci_transport_error_to_vsock_error(err); 1443 goto destroy; 1444 } 1445 1446 vmci_trans(vsk)->qp_handle = handle; 1447 vmci_trans(vsk)->qpair = qpair; 1448 1449 vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size = 1450 pkt->u.size; 1451 1452 vmci_trans(vsk)->detach_sub_id = detach_sub_id; 1453 1454 vmci_trans(vsk)->notify_ops->process_negotiate(sk); 1455 1456 return 0; 1457 1458 destroy: 1459 if (detach_sub_id != VMCI_INVALID_ID) 1460 vmci_event_unsubscribe(detach_sub_id); 1461 1462 if (!vmci_handle_is_invalid(handle)) 1463 vmci_qpair_detach(&qpair); 1464 1465 return err; 1466 } 1467 1468 static int 1469 vmci_transport_recv_connecting_client_invalid(struct sock *sk, 1470 struct vmci_transport_packet *pkt) 1471 { 1472 int err = 0; 1473 struct vsock_sock *vsk = vsock_sk(sk); 1474 1475 if (vsk->sent_request) { 1476 vsk->sent_request = false; 1477 vsk->ignore_connecting_rst = true; 1478 1479 err = vmci_transport_send_conn_request( 1480 sk, vmci_trans(vsk)->queue_pair_size); 1481 if (err < 0) 1482 err = vmci_transport_error_to_vsock_error(err); 1483 else 1484 err = 0; 1485 1486 } 1487 1488 return err; 1489 } 1490 1491 static int vmci_transport_recv_connected(struct sock *sk, 1492 struct vmci_transport_packet *pkt) 1493 { 1494 struct vsock_sock *vsk; 1495 bool pkt_processed = false; 1496 1497 /* In cases where we are closing the connection, it's sufficient to 1498 * mark the state change (and maybe error) and wake up any waiting 1499 * threads. Since this is a connected socket, it's owned by a user 1500 * process and will be cleaned up when the failure is passed back on 1501 * the current or next system call. Our system call implementations 1502 * must therefore check for error and state changes on entry and when 1503 * being awoken. 1504 */ 1505 switch (pkt->type) { 1506 case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN: 1507 if (pkt->u.mode) { 1508 vsk = vsock_sk(sk); 1509 1510 vsk->peer_shutdown |= pkt->u.mode; 1511 sk->sk_state_change(sk); 1512 } 1513 break; 1514 1515 case VMCI_TRANSPORT_PACKET_TYPE_RST: 1516 vsk = vsock_sk(sk); 1517 /* It is possible that we sent our peer a message (e.g a 1518 * WAITING_READ) right before we got notified that the peer had 1519 * detached. If that happens then we can get a RST pkt back 1520 * from our peer even though there is data available for us to 1521 * read. In that case, don't shutdown the socket completely but 1522 * instead allow the local client to finish reading data off 1523 * the queuepair. Always treat a RST pkt in connected mode like 1524 * a clean shutdown. 1525 */ 1526 sock_set_flag(sk, SOCK_DONE); 1527 vsk->peer_shutdown = SHUTDOWN_MASK; 1528 if (vsock_stream_has_data(vsk) <= 0) 1529 sk->sk_state = SS_DISCONNECTING; 1530 1531 sk->sk_state_change(sk); 1532 break; 1533 1534 default: 1535 vsk = vsock_sk(sk); 1536 vmci_trans(vsk)->notify_ops->handle_notify_pkt( 1537 sk, pkt, false, NULL, NULL, 1538 &pkt_processed); 1539 if (!pkt_processed) 1540 return -EINVAL; 1541 1542 break; 1543 } 1544 1545 return 0; 1546 } 1547 1548 static int vmci_transport_socket_init(struct vsock_sock *vsk, 1549 struct vsock_sock *psk) 1550 { 1551 vsk->trans = kmalloc(sizeof(struct vmci_transport), GFP_KERNEL); 1552 if (!vsk->trans) 1553 return -ENOMEM; 1554 1555 vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE; 1556 vmci_trans(vsk)->qp_handle = VMCI_INVALID_HANDLE; 1557 vmci_trans(vsk)->qpair = NULL; 1558 vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size = 0; 1559 vmci_trans(vsk)->detach_sub_id = VMCI_INVALID_ID; 1560 vmci_trans(vsk)->notify_ops = NULL; 1561 INIT_LIST_HEAD(&vmci_trans(vsk)->elem); 1562 vmci_trans(vsk)->sk = &vsk->sk; 1563 spin_lock_init(&vmci_trans(vsk)->lock); 1564 if (psk) { 1565 vmci_trans(vsk)->queue_pair_size = 1566 vmci_trans(psk)->queue_pair_size; 1567 vmci_trans(vsk)->queue_pair_min_size = 1568 vmci_trans(psk)->queue_pair_min_size; 1569 vmci_trans(vsk)->queue_pair_max_size = 1570 vmci_trans(psk)->queue_pair_max_size; 1571 } else { 1572 vmci_trans(vsk)->queue_pair_size = 1573 VMCI_TRANSPORT_DEFAULT_QP_SIZE; 1574 vmci_trans(vsk)->queue_pair_min_size = 1575 VMCI_TRANSPORT_DEFAULT_QP_SIZE_MIN; 1576 vmci_trans(vsk)->queue_pair_max_size = 1577 VMCI_TRANSPORT_DEFAULT_QP_SIZE_MAX; 1578 } 1579 1580 return 0; 1581 } 1582 1583 static void vmci_transport_free_resources(struct list_head *transport_list) 1584 { 1585 while (!list_empty(transport_list)) { 1586 struct vmci_transport *transport = 1587 list_first_entry(transport_list, struct vmci_transport, 1588 elem); 1589 list_del(&transport->elem); 1590 1591 if (transport->detach_sub_id != VMCI_INVALID_ID) { 1592 vmci_event_unsubscribe(transport->detach_sub_id); 1593 transport->detach_sub_id = VMCI_INVALID_ID; 1594 } 1595 1596 if (!vmci_handle_is_invalid(transport->qp_handle)) { 1597 vmci_qpair_detach(&transport->qpair); 1598 transport->qp_handle = VMCI_INVALID_HANDLE; 1599 transport->produce_size = 0; 1600 transport->consume_size = 0; 1601 } 1602 1603 kfree(transport); 1604 } 1605 } 1606 1607 static void vmci_transport_cleanup(struct work_struct *work) 1608 { 1609 LIST_HEAD(pending); 1610 1611 spin_lock_bh(&vmci_transport_cleanup_lock); 1612 list_replace_init(&vmci_transport_cleanup_list, &pending); 1613 spin_unlock_bh(&vmci_transport_cleanup_lock); 1614 vmci_transport_free_resources(&pending); 1615 } 1616 1617 static void vmci_transport_destruct(struct vsock_sock *vsk) 1618 { 1619 /* Ensure that the detach callback doesn't use the sk/vsk 1620 * we are about to destruct. 1621 */ 1622 spin_lock_bh(&vmci_trans(vsk)->lock); 1623 vmci_trans(vsk)->sk = NULL; 1624 spin_unlock_bh(&vmci_trans(vsk)->lock); 1625 1626 if (vmci_trans(vsk)->notify_ops) 1627 vmci_trans(vsk)->notify_ops->socket_destruct(vsk); 1628 1629 spin_lock_bh(&vmci_transport_cleanup_lock); 1630 list_add(&vmci_trans(vsk)->elem, &vmci_transport_cleanup_list); 1631 spin_unlock_bh(&vmci_transport_cleanup_lock); 1632 schedule_work(&vmci_transport_cleanup_work); 1633 1634 vsk->trans = NULL; 1635 } 1636 1637 static void vmci_transport_release(struct vsock_sock *vsk) 1638 { 1639 vsock_remove_sock(vsk); 1640 1641 if (!vmci_handle_is_invalid(vmci_trans(vsk)->dg_handle)) { 1642 vmci_datagram_destroy_handle(vmci_trans(vsk)->dg_handle); 1643 vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE; 1644 } 1645 } 1646 1647 static int vmci_transport_dgram_bind(struct vsock_sock *vsk, 1648 struct sockaddr_vm *addr) 1649 { 1650 u32 port; 1651 u32 flags; 1652 int err; 1653 1654 /* VMCI will select a resource ID for us if we provide 1655 * VMCI_INVALID_ID. 1656 */ 1657 port = addr->svm_port == VMADDR_PORT_ANY ? 1658 VMCI_INVALID_ID : addr->svm_port; 1659 1660 if (port <= LAST_RESERVED_PORT && !capable(CAP_NET_BIND_SERVICE)) 1661 return -EACCES; 1662 1663 flags = addr->svm_cid == VMADDR_CID_ANY ? 1664 VMCI_FLAG_ANYCID_DG_HND : 0; 1665 1666 err = vmci_transport_datagram_create_hnd(port, flags, 1667 vmci_transport_recv_dgram_cb, 1668 &vsk->sk, 1669 &vmci_trans(vsk)->dg_handle); 1670 if (err < VMCI_SUCCESS) 1671 return vmci_transport_error_to_vsock_error(err); 1672 vsock_addr_init(&vsk->local_addr, addr->svm_cid, 1673 vmci_trans(vsk)->dg_handle.resource); 1674 1675 return 0; 1676 } 1677 1678 static int vmci_transport_dgram_enqueue( 1679 struct vsock_sock *vsk, 1680 struct sockaddr_vm *remote_addr, 1681 struct msghdr *msg, 1682 size_t len) 1683 { 1684 int err; 1685 struct vmci_datagram *dg; 1686 1687 if (len > VMCI_MAX_DG_PAYLOAD_SIZE) 1688 return -EMSGSIZE; 1689 1690 if (!vmci_transport_allow_dgram(vsk, remote_addr->svm_cid)) 1691 return -EPERM; 1692 1693 /* Allocate a buffer for the user's message and our packet header. */ 1694 dg = kmalloc(len + sizeof(*dg), GFP_KERNEL); 1695 if (!dg) 1696 return -ENOMEM; 1697 1698 memcpy_from_msg(VMCI_DG_PAYLOAD(dg), msg, len); 1699 1700 dg->dst = vmci_make_handle(remote_addr->svm_cid, 1701 remote_addr->svm_port); 1702 dg->src = vmci_make_handle(vsk->local_addr.svm_cid, 1703 vsk->local_addr.svm_port); 1704 dg->payload_size = len; 1705 1706 err = vmci_datagram_send(dg); 1707 kfree(dg); 1708 if (err < 0) 1709 return vmci_transport_error_to_vsock_error(err); 1710 1711 return err - sizeof(*dg); 1712 } 1713 1714 static int vmci_transport_dgram_dequeue(struct vsock_sock *vsk, 1715 struct msghdr *msg, size_t len, 1716 int flags) 1717 { 1718 int err; 1719 int noblock; 1720 struct vmci_datagram *dg; 1721 size_t payload_len; 1722 struct sk_buff *skb; 1723 1724 noblock = flags & MSG_DONTWAIT; 1725 1726 if (flags & MSG_OOB || flags & MSG_ERRQUEUE) 1727 return -EOPNOTSUPP; 1728 1729 /* Retrieve the head sk_buff from the socket's receive queue. */ 1730 err = 0; 1731 skb = skb_recv_datagram(&vsk->sk, flags, noblock, &err); 1732 if (!skb) 1733 return err; 1734 1735 dg = (struct vmci_datagram *)skb->data; 1736 if (!dg) 1737 /* err is 0, meaning we read zero bytes. */ 1738 goto out; 1739 1740 payload_len = dg->payload_size; 1741 /* Ensure the sk_buff matches the payload size claimed in the packet. */ 1742 if (payload_len != skb->len - sizeof(*dg)) { 1743 err = -EINVAL; 1744 goto out; 1745 } 1746 1747 if (payload_len > len) { 1748 payload_len = len; 1749 msg->msg_flags |= MSG_TRUNC; 1750 } 1751 1752 /* Place the datagram payload in the user's iovec. */ 1753 err = skb_copy_datagram_msg(skb, sizeof(*dg), msg, payload_len); 1754 if (err) 1755 goto out; 1756 1757 if (msg->msg_name) { 1758 /* Provide the address of the sender. */ 1759 DECLARE_SOCKADDR(struct sockaddr_vm *, vm_addr, msg->msg_name); 1760 vsock_addr_init(vm_addr, dg->src.context, dg->src.resource); 1761 msg->msg_namelen = sizeof(*vm_addr); 1762 } 1763 err = payload_len; 1764 1765 out: 1766 skb_free_datagram(&vsk->sk, skb); 1767 return err; 1768 } 1769 1770 static bool vmci_transport_dgram_allow(u32 cid, u32 port) 1771 { 1772 if (cid == VMADDR_CID_HYPERVISOR) { 1773 /* Registrations of PBRPC Servers do not modify VMX/Hypervisor 1774 * state and are allowed. 1775 */ 1776 return port == VMCI_UNITY_PBRPC_REGISTER; 1777 } 1778 1779 return true; 1780 } 1781 1782 static int vmci_transport_connect(struct vsock_sock *vsk) 1783 { 1784 int err; 1785 bool old_pkt_proto = false; 1786 struct sock *sk = &vsk->sk; 1787 1788 if (vmci_transport_old_proto_override(&old_pkt_proto) && 1789 old_pkt_proto) { 1790 err = vmci_transport_send_conn_request( 1791 sk, vmci_trans(vsk)->queue_pair_size); 1792 if (err < 0) { 1793 sk->sk_state = SS_UNCONNECTED; 1794 return err; 1795 } 1796 } else { 1797 int supported_proto_versions = 1798 vmci_transport_new_proto_supported_versions(); 1799 err = vmci_transport_send_conn_request2( 1800 sk, vmci_trans(vsk)->queue_pair_size, 1801 supported_proto_versions); 1802 if (err < 0) { 1803 sk->sk_state = SS_UNCONNECTED; 1804 return err; 1805 } 1806 1807 vsk->sent_request = true; 1808 } 1809 1810 return err; 1811 } 1812 1813 static ssize_t vmci_transport_stream_dequeue( 1814 struct vsock_sock *vsk, 1815 struct msghdr *msg, 1816 size_t len, 1817 int flags) 1818 { 1819 if (flags & MSG_PEEK) 1820 return vmci_qpair_peekv(vmci_trans(vsk)->qpair, msg, len, 0); 1821 else 1822 return vmci_qpair_dequev(vmci_trans(vsk)->qpair, msg, len, 0); 1823 } 1824 1825 static ssize_t vmci_transport_stream_enqueue( 1826 struct vsock_sock *vsk, 1827 struct msghdr *msg, 1828 size_t len) 1829 { 1830 return vmci_qpair_enquev(vmci_trans(vsk)->qpair, msg, len, 0); 1831 } 1832 1833 static s64 vmci_transport_stream_has_data(struct vsock_sock *vsk) 1834 { 1835 return vmci_qpair_consume_buf_ready(vmci_trans(vsk)->qpair); 1836 } 1837 1838 static s64 vmci_transport_stream_has_space(struct vsock_sock *vsk) 1839 { 1840 return vmci_qpair_produce_free_space(vmci_trans(vsk)->qpair); 1841 } 1842 1843 static u64 vmci_transport_stream_rcvhiwat(struct vsock_sock *vsk) 1844 { 1845 return vmci_trans(vsk)->consume_size; 1846 } 1847 1848 static bool vmci_transport_stream_is_active(struct vsock_sock *vsk) 1849 { 1850 return !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle); 1851 } 1852 1853 static u64 vmci_transport_get_buffer_size(struct vsock_sock *vsk) 1854 { 1855 return vmci_trans(vsk)->queue_pair_size; 1856 } 1857 1858 static u64 vmci_transport_get_min_buffer_size(struct vsock_sock *vsk) 1859 { 1860 return vmci_trans(vsk)->queue_pair_min_size; 1861 } 1862 1863 static u64 vmci_transport_get_max_buffer_size(struct vsock_sock *vsk) 1864 { 1865 return vmci_trans(vsk)->queue_pair_max_size; 1866 } 1867 1868 static void vmci_transport_set_buffer_size(struct vsock_sock *vsk, u64 val) 1869 { 1870 if (val < vmci_trans(vsk)->queue_pair_min_size) 1871 vmci_trans(vsk)->queue_pair_min_size = val; 1872 if (val > vmci_trans(vsk)->queue_pair_max_size) 1873 vmci_trans(vsk)->queue_pair_max_size = val; 1874 vmci_trans(vsk)->queue_pair_size = val; 1875 } 1876 1877 static void vmci_transport_set_min_buffer_size(struct vsock_sock *vsk, 1878 u64 val) 1879 { 1880 if (val > vmci_trans(vsk)->queue_pair_size) 1881 vmci_trans(vsk)->queue_pair_size = val; 1882 vmci_trans(vsk)->queue_pair_min_size = val; 1883 } 1884 1885 static void vmci_transport_set_max_buffer_size(struct vsock_sock *vsk, 1886 u64 val) 1887 { 1888 if (val < vmci_trans(vsk)->queue_pair_size) 1889 vmci_trans(vsk)->queue_pair_size = val; 1890 vmci_trans(vsk)->queue_pair_max_size = val; 1891 } 1892 1893 static int vmci_transport_notify_poll_in( 1894 struct vsock_sock *vsk, 1895 size_t target, 1896 bool *data_ready_now) 1897 { 1898 return vmci_trans(vsk)->notify_ops->poll_in( 1899 &vsk->sk, target, data_ready_now); 1900 } 1901 1902 static int vmci_transport_notify_poll_out( 1903 struct vsock_sock *vsk, 1904 size_t target, 1905 bool *space_available_now) 1906 { 1907 return vmci_trans(vsk)->notify_ops->poll_out( 1908 &vsk->sk, target, space_available_now); 1909 } 1910 1911 static int vmci_transport_notify_recv_init( 1912 struct vsock_sock *vsk, 1913 size_t target, 1914 struct vsock_transport_recv_notify_data *data) 1915 { 1916 return vmci_trans(vsk)->notify_ops->recv_init( 1917 &vsk->sk, target, 1918 (struct vmci_transport_recv_notify_data *)data); 1919 } 1920 1921 static int vmci_transport_notify_recv_pre_block( 1922 struct vsock_sock *vsk, 1923 size_t target, 1924 struct vsock_transport_recv_notify_data *data) 1925 { 1926 return vmci_trans(vsk)->notify_ops->recv_pre_block( 1927 &vsk->sk, target, 1928 (struct vmci_transport_recv_notify_data *)data); 1929 } 1930 1931 static int vmci_transport_notify_recv_pre_dequeue( 1932 struct vsock_sock *vsk, 1933 size_t target, 1934 struct vsock_transport_recv_notify_data *data) 1935 { 1936 return vmci_trans(vsk)->notify_ops->recv_pre_dequeue( 1937 &vsk->sk, target, 1938 (struct vmci_transport_recv_notify_data *)data); 1939 } 1940 1941 static int vmci_transport_notify_recv_post_dequeue( 1942 struct vsock_sock *vsk, 1943 size_t target, 1944 ssize_t copied, 1945 bool data_read, 1946 struct vsock_transport_recv_notify_data *data) 1947 { 1948 return vmci_trans(vsk)->notify_ops->recv_post_dequeue( 1949 &vsk->sk, target, copied, data_read, 1950 (struct vmci_transport_recv_notify_data *)data); 1951 } 1952 1953 static int vmci_transport_notify_send_init( 1954 struct vsock_sock *vsk, 1955 struct vsock_transport_send_notify_data *data) 1956 { 1957 return vmci_trans(vsk)->notify_ops->send_init( 1958 &vsk->sk, 1959 (struct vmci_transport_send_notify_data *)data); 1960 } 1961 1962 static int vmci_transport_notify_send_pre_block( 1963 struct vsock_sock *vsk, 1964 struct vsock_transport_send_notify_data *data) 1965 { 1966 return vmci_trans(vsk)->notify_ops->send_pre_block( 1967 &vsk->sk, 1968 (struct vmci_transport_send_notify_data *)data); 1969 } 1970 1971 static int vmci_transport_notify_send_pre_enqueue( 1972 struct vsock_sock *vsk, 1973 struct vsock_transport_send_notify_data *data) 1974 { 1975 return vmci_trans(vsk)->notify_ops->send_pre_enqueue( 1976 &vsk->sk, 1977 (struct vmci_transport_send_notify_data *)data); 1978 } 1979 1980 static int vmci_transport_notify_send_post_enqueue( 1981 struct vsock_sock *vsk, 1982 ssize_t written, 1983 struct vsock_transport_send_notify_data *data) 1984 { 1985 return vmci_trans(vsk)->notify_ops->send_post_enqueue( 1986 &vsk->sk, written, 1987 (struct vmci_transport_send_notify_data *)data); 1988 } 1989 1990 static bool vmci_transport_old_proto_override(bool *old_pkt_proto) 1991 { 1992 if (PROTOCOL_OVERRIDE != -1) { 1993 if (PROTOCOL_OVERRIDE == 0) 1994 *old_pkt_proto = true; 1995 else 1996 *old_pkt_proto = false; 1997 1998 pr_info("Proto override in use\n"); 1999 return true; 2000 } 2001 2002 return false; 2003 } 2004 2005 static bool vmci_transport_proto_to_notify_struct(struct sock *sk, 2006 u16 *proto, 2007 bool old_pkt_proto) 2008 { 2009 struct vsock_sock *vsk = vsock_sk(sk); 2010 2011 if (old_pkt_proto) { 2012 if (*proto != VSOCK_PROTO_INVALID) { 2013 pr_err("Can't set both an old and new protocol\n"); 2014 return false; 2015 } 2016 vmci_trans(vsk)->notify_ops = &vmci_transport_notify_pkt_ops; 2017 goto exit; 2018 } 2019 2020 switch (*proto) { 2021 case VSOCK_PROTO_PKT_ON_NOTIFY: 2022 vmci_trans(vsk)->notify_ops = 2023 &vmci_transport_notify_pkt_q_state_ops; 2024 break; 2025 default: 2026 pr_err("Unknown notify protocol version\n"); 2027 return false; 2028 } 2029 2030 exit: 2031 vmci_trans(vsk)->notify_ops->socket_init(sk); 2032 return true; 2033 } 2034 2035 static u16 vmci_transport_new_proto_supported_versions(void) 2036 { 2037 if (PROTOCOL_OVERRIDE != -1) 2038 return PROTOCOL_OVERRIDE; 2039 2040 return VSOCK_PROTO_ALL_SUPPORTED; 2041 } 2042 2043 static u32 vmci_transport_get_local_cid(void) 2044 { 2045 return vmci_get_context_id(); 2046 } 2047 2048 static const struct vsock_transport vmci_transport = { 2049 .init = vmci_transport_socket_init, 2050 .destruct = vmci_transport_destruct, 2051 .release = vmci_transport_release, 2052 .connect = vmci_transport_connect, 2053 .dgram_bind = vmci_transport_dgram_bind, 2054 .dgram_dequeue = vmci_transport_dgram_dequeue, 2055 .dgram_enqueue = vmci_transport_dgram_enqueue, 2056 .dgram_allow = vmci_transport_dgram_allow, 2057 .stream_dequeue = vmci_transport_stream_dequeue, 2058 .stream_enqueue = vmci_transport_stream_enqueue, 2059 .stream_has_data = vmci_transport_stream_has_data, 2060 .stream_has_space = vmci_transport_stream_has_space, 2061 .stream_rcvhiwat = vmci_transport_stream_rcvhiwat, 2062 .stream_is_active = vmci_transport_stream_is_active, 2063 .stream_allow = vmci_transport_stream_allow, 2064 .notify_poll_in = vmci_transport_notify_poll_in, 2065 .notify_poll_out = vmci_transport_notify_poll_out, 2066 .notify_recv_init = vmci_transport_notify_recv_init, 2067 .notify_recv_pre_block = vmci_transport_notify_recv_pre_block, 2068 .notify_recv_pre_dequeue = vmci_transport_notify_recv_pre_dequeue, 2069 .notify_recv_post_dequeue = vmci_transport_notify_recv_post_dequeue, 2070 .notify_send_init = vmci_transport_notify_send_init, 2071 .notify_send_pre_block = vmci_transport_notify_send_pre_block, 2072 .notify_send_pre_enqueue = vmci_transport_notify_send_pre_enqueue, 2073 .notify_send_post_enqueue = vmci_transport_notify_send_post_enqueue, 2074 .shutdown = vmci_transport_shutdown, 2075 .set_buffer_size = vmci_transport_set_buffer_size, 2076 .set_min_buffer_size = vmci_transport_set_min_buffer_size, 2077 .set_max_buffer_size = vmci_transport_set_max_buffer_size, 2078 .get_buffer_size = vmci_transport_get_buffer_size, 2079 .get_min_buffer_size = vmci_transport_get_min_buffer_size, 2080 .get_max_buffer_size = vmci_transport_get_max_buffer_size, 2081 .get_local_cid = vmci_transport_get_local_cid, 2082 }; 2083 2084 static int __init vmci_transport_init(void) 2085 { 2086 int err; 2087 2088 /* Create the datagram handle that we will use to send and receive all 2089 * VSocket control messages for this context. 2090 */ 2091 err = vmci_transport_datagram_create_hnd(VMCI_TRANSPORT_PACKET_RID, 2092 VMCI_FLAG_ANYCID_DG_HND, 2093 vmci_transport_recv_stream_cb, 2094 NULL, 2095 &vmci_transport_stream_handle); 2096 if (err < VMCI_SUCCESS) { 2097 pr_err("Unable to create datagram handle. (%d)\n", err); 2098 return vmci_transport_error_to_vsock_error(err); 2099 } 2100 2101 err = vmci_event_subscribe(VMCI_EVENT_QP_RESUMED, 2102 vmci_transport_qp_resumed_cb, 2103 NULL, &vmci_transport_qp_resumed_sub_id); 2104 if (err < VMCI_SUCCESS) { 2105 pr_err("Unable to subscribe to resumed event. (%d)\n", err); 2106 err = vmci_transport_error_to_vsock_error(err); 2107 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID; 2108 goto err_destroy_stream_handle; 2109 } 2110 2111 err = vsock_core_init(&vmci_transport); 2112 if (err < 0) 2113 goto err_unsubscribe; 2114 2115 return 0; 2116 2117 err_unsubscribe: 2118 vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id); 2119 err_destroy_stream_handle: 2120 vmci_datagram_destroy_handle(vmci_transport_stream_handle); 2121 return err; 2122 } 2123 module_init(vmci_transport_init); 2124 2125 static void __exit vmci_transport_exit(void) 2126 { 2127 cancel_work_sync(&vmci_transport_cleanup_work); 2128 vmci_transport_free_resources(&vmci_transport_cleanup_list); 2129 2130 if (!vmci_handle_is_invalid(vmci_transport_stream_handle)) { 2131 if (vmci_datagram_destroy_handle( 2132 vmci_transport_stream_handle) != VMCI_SUCCESS) 2133 pr_err("Couldn't destroy datagram handle\n"); 2134 vmci_transport_stream_handle = VMCI_INVALID_HANDLE; 2135 } 2136 2137 if (vmci_transport_qp_resumed_sub_id != VMCI_INVALID_ID) { 2138 vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id); 2139 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID; 2140 } 2141 2142 vsock_core_exit(); 2143 } 2144 module_exit(vmci_transport_exit); 2145 2146 MODULE_AUTHOR("VMware, Inc."); 2147 MODULE_DESCRIPTION("VMCI transport for Virtual Sockets"); 2148 MODULE_VERSION("1.0.4.0-k"); 2149 MODULE_LICENSE("GPL v2"); 2150 MODULE_ALIAS("vmware_vsock"); 2151 MODULE_ALIAS_NETPROTO(PF_VSOCK); 2152