1 /*
2  * VMware vSockets Driver
3  *
4  * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published by the Free
8  * Software Foundation version 2 and no later version.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  */
15 
16 #include <linux/types.h>
17 #include <linux/bitops.h>
18 #include <linux/cred.h>
19 #include <linux/init.h>
20 #include <linux/io.h>
21 #include <linux/kernel.h>
22 #include <linux/kmod.h>
23 #include <linux/list.h>
24 #include <linux/miscdevice.h>
25 #include <linux/module.h>
26 #include <linux/mutex.h>
27 #include <linux/net.h>
28 #include <linux/poll.h>
29 #include <linux/skbuff.h>
30 #include <linux/smp.h>
31 #include <linux/socket.h>
32 #include <linux/stddef.h>
33 #include <linux/unistd.h>
34 #include <linux/wait.h>
35 #include <linux/workqueue.h>
36 #include <net/sock.h>
37 #include <net/af_vsock.h>
38 
39 #include "vmci_transport_notify.h"
40 
41 static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg);
42 static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg);
43 static void vmci_transport_peer_detach_cb(u32 sub_id,
44 					  const struct vmci_event_data *ed,
45 					  void *client_data);
46 static void vmci_transport_recv_pkt_work(struct work_struct *work);
47 static void vmci_transport_cleanup(struct work_struct *work);
48 static int vmci_transport_recv_listen(struct sock *sk,
49 				      struct vmci_transport_packet *pkt);
50 static int vmci_transport_recv_connecting_server(
51 					struct sock *sk,
52 					struct sock *pending,
53 					struct vmci_transport_packet *pkt);
54 static int vmci_transport_recv_connecting_client(
55 					struct sock *sk,
56 					struct vmci_transport_packet *pkt);
57 static int vmci_transport_recv_connecting_client_negotiate(
58 					struct sock *sk,
59 					struct vmci_transport_packet *pkt);
60 static int vmci_transport_recv_connecting_client_invalid(
61 					struct sock *sk,
62 					struct vmci_transport_packet *pkt);
63 static int vmci_transport_recv_connected(struct sock *sk,
64 					 struct vmci_transport_packet *pkt);
65 static bool vmci_transport_old_proto_override(bool *old_pkt_proto);
66 static u16 vmci_transport_new_proto_supported_versions(void);
67 static bool vmci_transport_proto_to_notify_struct(struct sock *sk, u16 *proto,
68 						  bool old_pkt_proto);
69 
70 struct vmci_transport_recv_pkt_info {
71 	struct work_struct work;
72 	struct sock *sk;
73 	struct vmci_transport_packet pkt;
74 };
75 
76 static LIST_HEAD(vmci_transport_cleanup_list);
77 static DEFINE_SPINLOCK(vmci_transport_cleanup_lock);
78 static DECLARE_WORK(vmci_transport_cleanup_work, vmci_transport_cleanup);
79 
80 static struct vmci_handle vmci_transport_stream_handle = { VMCI_INVALID_ID,
81 							   VMCI_INVALID_ID };
82 static u32 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
83 
84 static int PROTOCOL_OVERRIDE = -1;
85 
86 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE_MIN   128
87 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE       262144
88 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE_MAX   262144
89 
90 /* The default peer timeout indicates how long we will wait for a peer response
91  * to a control message.
92  */
93 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
94 
95 /* Helper function to convert from a VMCI error code to a VSock error code. */
96 
97 static s32 vmci_transport_error_to_vsock_error(s32 vmci_error)
98 {
99 	switch (vmci_error) {
100 	case VMCI_ERROR_NO_MEM:
101 		return -ENOMEM;
102 	case VMCI_ERROR_DUPLICATE_ENTRY:
103 	case VMCI_ERROR_ALREADY_EXISTS:
104 		return -EADDRINUSE;
105 	case VMCI_ERROR_NO_ACCESS:
106 		return -EPERM;
107 	case VMCI_ERROR_NO_RESOURCES:
108 		return -ENOBUFS;
109 	case VMCI_ERROR_INVALID_RESOURCE:
110 		return -EHOSTUNREACH;
111 	case VMCI_ERROR_INVALID_ARGS:
112 	default:
113 		break;
114 	}
115 	return -EINVAL;
116 }
117 
118 static u32 vmci_transport_peer_rid(u32 peer_cid)
119 {
120 	if (VMADDR_CID_HYPERVISOR == peer_cid)
121 		return VMCI_TRANSPORT_HYPERVISOR_PACKET_RID;
122 
123 	return VMCI_TRANSPORT_PACKET_RID;
124 }
125 
126 static inline void
127 vmci_transport_packet_init(struct vmci_transport_packet *pkt,
128 			   struct sockaddr_vm *src,
129 			   struct sockaddr_vm *dst,
130 			   u8 type,
131 			   u64 size,
132 			   u64 mode,
133 			   struct vmci_transport_waiting_info *wait,
134 			   u16 proto,
135 			   struct vmci_handle handle)
136 {
137 	/* We register the stream control handler as an any cid handle so we
138 	 * must always send from a source address of VMADDR_CID_ANY
139 	 */
140 	pkt->dg.src = vmci_make_handle(VMADDR_CID_ANY,
141 				       VMCI_TRANSPORT_PACKET_RID);
142 	pkt->dg.dst = vmci_make_handle(dst->svm_cid,
143 				       vmci_transport_peer_rid(dst->svm_cid));
144 	pkt->dg.payload_size = sizeof(*pkt) - sizeof(pkt->dg);
145 	pkt->version = VMCI_TRANSPORT_PACKET_VERSION;
146 	pkt->type = type;
147 	pkt->src_port = src->svm_port;
148 	pkt->dst_port = dst->svm_port;
149 	memset(&pkt->proto, 0, sizeof(pkt->proto));
150 	memset(&pkt->_reserved2, 0, sizeof(pkt->_reserved2));
151 
152 	switch (pkt->type) {
153 	case VMCI_TRANSPORT_PACKET_TYPE_INVALID:
154 		pkt->u.size = 0;
155 		break;
156 
157 	case VMCI_TRANSPORT_PACKET_TYPE_REQUEST:
158 	case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE:
159 		pkt->u.size = size;
160 		break;
161 
162 	case VMCI_TRANSPORT_PACKET_TYPE_OFFER:
163 	case VMCI_TRANSPORT_PACKET_TYPE_ATTACH:
164 		pkt->u.handle = handle;
165 		break;
166 
167 	case VMCI_TRANSPORT_PACKET_TYPE_WROTE:
168 	case VMCI_TRANSPORT_PACKET_TYPE_READ:
169 	case VMCI_TRANSPORT_PACKET_TYPE_RST:
170 		pkt->u.size = 0;
171 		break;
172 
173 	case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN:
174 		pkt->u.mode = mode;
175 		break;
176 
177 	case VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ:
178 	case VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE:
179 		memcpy(&pkt->u.wait, wait, sizeof(pkt->u.wait));
180 		break;
181 
182 	case VMCI_TRANSPORT_PACKET_TYPE_REQUEST2:
183 	case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2:
184 		pkt->u.size = size;
185 		pkt->proto = proto;
186 		break;
187 	}
188 }
189 
190 static inline void
191 vmci_transport_packet_get_addresses(struct vmci_transport_packet *pkt,
192 				    struct sockaddr_vm *local,
193 				    struct sockaddr_vm *remote)
194 {
195 	vsock_addr_init(local, pkt->dg.dst.context, pkt->dst_port);
196 	vsock_addr_init(remote, pkt->dg.src.context, pkt->src_port);
197 }
198 
199 static int
200 __vmci_transport_send_control_pkt(struct vmci_transport_packet *pkt,
201 				  struct sockaddr_vm *src,
202 				  struct sockaddr_vm *dst,
203 				  enum vmci_transport_packet_type type,
204 				  u64 size,
205 				  u64 mode,
206 				  struct vmci_transport_waiting_info *wait,
207 				  u16 proto,
208 				  struct vmci_handle handle,
209 				  bool convert_error)
210 {
211 	int err;
212 
213 	vmci_transport_packet_init(pkt, src, dst, type, size, mode, wait,
214 				   proto, handle);
215 	err = vmci_datagram_send(&pkt->dg);
216 	if (convert_error && (err < 0))
217 		return vmci_transport_error_to_vsock_error(err);
218 
219 	return err;
220 }
221 
222 static int
223 vmci_transport_reply_control_pkt_fast(struct vmci_transport_packet *pkt,
224 				      enum vmci_transport_packet_type type,
225 				      u64 size,
226 				      u64 mode,
227 				      struct vmci_transport_waiting_info *wait,
228 				      struct vmci_handle handle)
229 {
230 	struct vmci_transport_packet reply;
231 	struct sockaddr_vm src, dst;
232 
233 	if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST) {
234 		return 0;
235 	} else {
236 		vmci_transport_packet_get_addresses(pkt, &src, &dst);
237 		return __vmci_transport_send_control_pkt(&reply, &src, &dst,
238 							 type,
239 							 size, mode, wait,
240 							 VSOCK_PROTO_INVALID,
241 							 handle, true);
242 	}
243 }
244 
245 static int
246 vmci_transport_send_control_pkt_bh(struct sockaddr_vm *src,
247 				   struct sockaddr_vm *dst,
248 				   enum vmci_transport_packet_type type,
249 				   u64 size,
250 				   u64 mode,
251 				   struct vmci_transport_waiting_info *wait,
252 				   struct vmci_handle handle)
253 {
254 	/* Note that it is safe to use a single packet across all CPUs since
255 	 * two tasklets of the same type are guaranteed to not ever run
256 	 * simultaneously. If that ever changes, or VMCI stops using tasklets,
257 	 * we can use per-cpu packets.
258 	 */
259 	static struct vmci_transport_packet pkt;
260 
261 	return __vmci_transport_send_control_pkt(&pkt, src, dst, type,
262 						 size, mode, wait,
263 						 VSOCK_PROTO_INVALID, handle,
264 						 false);
265 }
266 
267 static int
268 vmci_transport_send_control_pkt(struct sock *sk,
269 				enum vmci_transport_packet_type type,
270 				u64 size,
271 				u64 mode,
272 				struct vmci_transport_waiting_info *wait,
273 				u16 proto,
274 				struct vmci_handle handle)
275 {
276 	struct vmci_transport_packet *pkt;
277 	struct vsock_sock *vsk;
278 	int err;
279 
280 	vsk = vsock_sk(sk);
281 
282 	if (!vsock_addr_bound(&vsk->local_addr))
283 		return -EINVAL;
284 
285 	if (!vsock_addr_bound(&vsk->remote_addr))
286 		return -EINVAL;
287 
288 	pkt = kmalloc(sizeof(*pkt), GFP_KERNEL);
289 	if (!pkt)
290 		return -ENOMEM;
291 
292 	err = __vmci_transport_send_control_pkt(pkt, &vsk->local_addr,
293 						&vsk->remote_addr, type, size,
294 						mode, wait, proto, handle,
295 						true);
296 	kfree(pkt);
297 
298 	return err;
299 }
300 
301 static int vmci_transport_send_reset_bh(struct sockaddr_vm *dst,
302 					struct sockaddr_vm *src,
303 					struct vmci_transport_packet *pkt)
304 {
305 	if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST)
306 		return 0;
307 	return vmci_transport_send_control_pkt_bh(
308 					dst, src,
309 					VMCI_TRANSPORT_PACKET_TYPE_RST, 0,
310 					0, NULL, VMCI_INVALID_HANDLE);
311 }
312 
313 static int vmci_transport_send_reset(struct sock *sk,
314 				     struct vmci_transport_packet *pkt)
315 {
316 	if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST)
317 		return 0;
318 	return vmci_transport_send_control_pkt(sk,
319 					VMCI_TRANSPORT_PACKET_TYPE_RST,
320 					0, 0, NULL, VSOCK_PROTO_INVALID,
321 					VMCI_INVALID_HANDLE);
322 }
323 
324 static int vmci_transport_send_negotiate(struct sock *sk, size_t size)
325 {
326 	return vmci_transport_send_control_pkt(
327 					sk,
328 					VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE,
329 					size, 0, NULL,
330 					VSOCK_PROTO_INVALID,
331 					VMCI_INVALID_HANDLE);
332 }
333 
334 static int vmci_transport_send_negotiate2(struct sock *sk, size_t size,
335 					  u16 version)
336 {
337 	return vmci_transport_send_control_pkt(
338 					sk,
339 					VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2,
340 					size, 0, NULL, version,
341 					VMCI_INVALID_HANDLE);
342 }
343 
344 static int vmci_transport_send_qp_offer(struct sock *sk,
345 					struct vmci_handle handle)
346 {
347 	return vmci_transport_send_control_pkt(
348 					sk, VMCI_TRANSPORT_PACKET_TYPE_OFFER, 0,
349 					0, NULL,
350 					VSOCK_PROTO_INVALID, handle);
351 }
352 
353 static int vmci_transport_send_attach(struct sock *sk,
354 				      struct vmci_handle handle)
355 {
356 	return vmci_transport_send_control_pkt(
357 					sk, VMCI_TRANSPORT_PACKET_TYPE_ATTACH,
358 					0, 0, NULL, VSOCK_PROTO_INVALID,
359 					handle);
360 }
361 
362 static int vmci_transport_reply_reset(struct vmci_transport_packet *pkt)
363 {
364 	return vmci_transport_reply_control_pkt_fast(
365 						pkt,
366 						VMCI_TRANSPORT_PACKET_TYPE_RST,
367 						0, 0, NULL,
368 						VMCI_INVALID_HANDLE);
369 }
370 
371 static int vmci_transport_send_invalid_bh(struct sockaddr_vm *dst,
372 					  struct sockaddr_vm *src)
373 {
374 	return vmci_transport_send_control_pkt_bh(
375 					dst, src,
376 					VMCI_TRANSPORT_PACKET_TYPE_INVALID,
377 					0, 0, NULL, VMCI_INVALID_HANDLE);
378 }
379 
380 int vmci_transport_send_wrote_bh(struct sockaddr_vm *dst,
381 				 struct sockaddr_vm *src)
382 {
383 	return vmci_transport_send_control_pkt_bh(
384 					dst, src,
385 					VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0,
386 					0, NULL, VMCI_INVALID_HANDLE);
387 }
388 
389 int vmci_transport_send_read_bh(struct sockaddr_vm *dst,
390 				struct sockaddr_vm *src)
391 {
392 	return vmci_transport_send_control_pkt_bh(
393 					dst, src,
394 					VMCI_TRANSPORT_PACKET_TYPE_READ, 0,
395 					0, NULL, VMCI_INVALID_HANDLE);
396 }
397 
398 int vmci_transport_send_wrote(struct sock *sk)
399 {
400 	return vmci_transport_send_control_pkt(
401 					sk, VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0,
402 					0, NULL, VSOCK_PROTO_INVALID,
403 					VMCI_INVALID_HANDLE);
404 }
405 
406 int vmci_transport_send_read(struct sock *sk)
407 {
408 	return vmci_transport_send_control_pkt(
409 					sk, VMCI_TRANSPORT_PACKET_TYPE_READ, 0,
410 					0, NULL, VSOCK_PROTO_INVALID,
411 					VMCI_INVALID_HANDLE);
412 }
413 
414 int vmci_transport_send_waiting_write(struct sock *sk,
415 				      struct vmci_transport_waiting_info *wait)
416 {
417 	return vmci_transport_send_control_pkt(
418 				sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE,
419 				0, 0, wait, VSOCK_PROTO_INVALID,
420 				VMCI_INVALID_HANDLE);
421 }
422 
423 int vmci_transport_send_waiting_read(struct sock *sk,
424 				     struct vmci_transport_waiting_info *wait)
425 {
426 	return vmci_transport_send_control_pkt(
427 				sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ,
428 				0, 0, wait, VSOCK_PROTO_INVALID,
429 				VMCI_INVALID_HANDLE);
430 }
431 
432 static int vmci_transport_shutdown(struct vsock_sock *vsk, int mode)
433 {
434 	return vmci_transport_send_control_pkt(
435 					&vsk->sk,
436 					VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN,
437 					0, mode, NULL,
438 					VSOCK_PROTO_INVALID,
439 					VMCI_INVALID_HANDLE);
440 }
441 
442 static int vmci_transport_send_conn_request(struct sock *sk, size_t size)
443 {
444 	return vmci_transport_send_control_pkt(sk,
445 					VMCI_TRANSPORT_PACKET_TYPE_REQUEST,
446 					size, 0, NULL,
447 					VSOCK_PROTO_INVALID,
448 					VMCI_INVALID_HANDLE);
449 }
450 
451 static int vmci_transport_send_conn_request2(struct sock *sk, size_t size,
452 					     u16 version)
453 {
454 	return vmci_transport_send_control_pkt(
455 					sk, VMCI_TRANSPORT_PACKET_TYPE_REQUEST2,
456 					size, 0, NULL, version,
457 					VMCI_INVALID_HANDLE);
458 }
459 
460 static struct sock *vmci_transport_get_pending(
461 					struct sock *listener,
462 					struct vmci_transport_packet *pkt)
463 {
464 	struct vsock_sock *vlistener;
465 	struct vsock_sock *vpending;
466 	struct sock *pending;
467 	struct sockaddr_vm src;
468 
469 	vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port);
470 
471 	vlistener = vsock_sk(listener);
472 
473 	list_for_each_entry(vpending, &vlistener->pending_links,
474 			    pending_links) {
475 		if (vsock_addr_equals_addr(&src, &vpending->remote_addr) &&
476 		    pkt->dst_port == vpending->local_addr.svm_port) {
477 			pending = sk_vsock(vpending);
478 			sock_hold(pending);
479 			goto found;
480 		}
481 	}
482 
483 	pending = NULL;
484 found:
485 	return pending;
486 
487 }
488 
489 static void vmci_transport_release_pending(struct sock *pending)
490 {
491 	sock_put(pending);
492 }
493 
494 /* We allow two kinds of sockets to communicate with a restricted VM: 1)
495  * trusted sockets 2) sockets from applications running as the same user as the
496  * VM (this is only true for the host side and only when using hosted products)
497  */
498 
499 static bool vmci_transport_is_trusted(struct vsock_sock *vsock, u32 peer_cid)
500 {
501 	return vsock->trusted ||
502 	       vmci_is_context_owner(peer_cid, vsock->owner->uid);
503 }
504 
505 /* We allow sending datagrams to and receiving datagrams from a restricted VM
506  * only if it is trusted as described in vmci_transport_is_trusted.
507  */
508 
509 static bool vmci_transport_allow_dgram(struct vsock_sock *vsock, u32 peer_cid)
510 {
511 	if (VMADDR_CID_HYPERVISOR == peer_cid)
512 		return true;
513 
514 	if (vsock->cached_peer != peer_cid) {
515 		vsock->cached_peer = peer_cid;
516 		if (!vmci_transport_is_trusted(vsock, peer_cid) &&
517 		    (vmci_context_get_priv_flags(peer_cid) &
518 		     VMCI_PRIVILEGE_FLAG_RESTRICTED)) {
519 			vsock->cached_peer_allow_dgram = false;
520 		} else {
521 			vsock->cached_peer_allow_dgram = true;
522 		}
523 	}
524 
525 	return vsock->cached_peer_allow_dgram;
526 }
527 
528 static int
529 vmci_transport_queue_pair_alloc(struct vmci_qp **qpair,
530 				struct vmci_handle *handle,
531 				u64 produce_size,
532 				u64 consume_size,
533 				u32 peer, u32 flags, bool trusted)
534 {
535 	int err = 0;
536 
537 	if (trusted) {
538 		/* Try to allocate our queue pair as trusted. This will only
539 		 * work if vsock is running in the host.
540 		 */
541 
542 		err = vmci_qpair_alloc(qpair, handle, produce_size,
543 				       consume_size,
544 				       peer, flags,
545 				       VMCI_PRIVILEGE_FLAG_TRUSTED);
546 		if (err != VMCI_ERROR_NO_ACCESS)
547 			goto out;
548 
549 	}
550 
551 	err = vmci_qpair_alloc(qpair, handle, produce_size, consume_size,
552 			       peer, flags, VMCI_NO_PRIVILEGE_FLAGS);
553 out:
554 	if (err < 0) {
555 		pr_err("Could not attach to queue pair with %d\n",
556 		       err);
557 		err = vmci_transport_error_to_vsock_error(err);
558 	}
559 
560 	return err;
561 }
562 
563 static int
564 vmci_transport_datagram_create_hnd(u32 resource_id,
565 				   u32 flags,
566 				   vmci_datagram_recv_cb recv_cb,
567 				   void *client_data,
568 				   struct vmci_handle *out_handle)
569 {
570 	int err = 0;
571 
572 	/* Try to allocate our datagram handler as trusted. This will only work
573 	 * if vsock is running in the host.
574 	 */
575 
576 	err = vmci_datagram_create_handle_priv(resource_id, flags,
577 					       VMCI_PRIVILEGE_FLAG_TRUSTED,
578 					       recv_cb,
579 					       client_data, out_handle);
580 
581 	if (err == VMCI_ERROR_NO_ACCESS)
582 		err = vmci_datagram_create_handle(resource_id, flags,
583 						  recv_cb, client_data,
584 						  out_handle);
585 
586 	return err;
587 }
588 
589 /* This is invoked as part of a tasklet that's scheduled when the VMCI
590  * interrupt fires.  This is run in bottom-half context and if it ever needs to
591  * sleep it should defer that work to a work queue.
592  */
593 
594 static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg)
595 {
596 	struct sock *sk;
597 	size_t size;
598 	struct sk_buff *skb;
599 	struct vsock_sock *vsk;
600 
601 	sk = (struct sock *)data;
602 
603 	/* This handler is privileged when this module is running on the host.
604 	 * We will get datagrams from all endpoints (even VMs that are in a
605 	 * restricted context). If we get one from a restricted context then
606 	 * the destination socket must be trusted.
607 	 *
608 	 * NOTE: We access the socket struct without holding the lock here.
609 	 * This is ok because the field we are interested is never modified
610 	 * outside of the create and destruct socket functions.
611 	 */
612 	vsk = vsock_sk(sk);
613 	if (!vmci_transport_allow_dgram(vsk, dg->src.context))
614 		return VMCI_ERROR_NO_ACCESS;
615 
616 	size = VMCI_DG_SIZE(dg);
617 
618 	/* Attach the packet to the socket's receive queue as an sk_buff. */
619 	skb = alloc_skb(size, GFP_ATOMIC);
620 	if (!skb)
621 		return VMCI_ERROR_NO_MEM;
622 
623 	/* sk_receive_skb() will do a sock_put(), so hold here. */
624 	sock_hold(sk);
625 	skb_put(skb, size);
626 	memcpy(skb->data, dg, size);
627 	sk_receive_skb(sk, skb, 0);
628 
629 	return VMCI_SUCCESS;
630 }
631 
632 static bool vmci_transport_stream_allow(u32 cid, u32 port)
633 {
634 	static const u32 non_socket_contexts[] = {
635 		VMADDR_CID_RESERVED,
636 	};
637 	int i;
638 
639 	BUILD_BUG_ON(sizeof(cid) != sizeof(*non_socket_contexts));
640 
641 	for (i = 0; i < ARRAY_SIZE(non_socket_contexts); i++) {
642 		if (cid == non_socket_contexts[i])
643 			return false;
644 	}
645 
646 	return true;
647 }
648 
649 /* This is invoked as part of a tasklet that's scheduled when the VMCI
650  * interrupt fires.  This is run in bottom-half context but it defers most of
651  * its work to the packet handling work queue.
652  */
653 
654 static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg)
655 {
656 	struct sock *sk;
657 	struct sockaddr_vm dst;
658 	struct sockaddr_vm src;
659 	struct vmci_transport_packet *pkt;
660 	struct vsock_sock *vsk;
661 	bool bh_process_pkt;
662 	int err;
663 
664 	sk = NULL;
665 	err = VMCI_SUCCESS;
666 	bh_process_pkt = false;
667 
668 	/* Ignore incoming packets from contexts without sockets, or resources
669 	 * that aren't vsock implementations.
670 	 */
671 
672 	if (!vmci_transport_stream_allow(dg->src.context, -1)
673 	    || vmci_transport_peer_rid(dg->src.context) != dg->src.resource)
674 		return VMCI_ERROR_NO_ACCESS;
675 
676 	if (VMCI_DG_SIZE(dg) < sizeof(*pkt))
677 		/* Drop datagrams that do not contain full VSock packets. */
678 		return VMCI_ERROR_INVALID_ARGS;
679 
680 	pkt = (struct vmci_transport_packet *)dg;
681 
682 	/* Find the socket that should handle this packet.  First we look for a
683 	 * connected socket and if there is none we look for a socket bound to
684 	 * the destintation address.
685 	 */
686 	vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port);
687 	vsock_addr_init(&dst, pkt->dg.dst.context, pkt->dst_port);
688 
689 	sk = vsock_find_connected_socket(&src, &dst);
690 	if (!sk) {
691 		sk = vsock_find_bound_socket(&dst);
692 		if (!sk) {
693 			/* We could not find a socket for this specified
694 			 * address.  If this packet is a RST, we just drop it.
695 			 * If it is another packet, we send a RST.  Note that
696 			 * we do not send a RST reply to RSTs so that we do not
697 			 * continually send RSTs between two endpoints.
698 			 *
699 			 * Note that since this is a reply, dst is src and src
700 			 * is dst.
701 			 */
702 			if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0)
703 				pr_err("unable to send reset\n");
704 
705 			err = VMCI_ERROR_NOT_FOUND;
706 			goto out;
707 		}
708 	}
709 
710 	/* If the received packet type is beyond all types known to this
711 	 * implementation, reply with an invalid message.  Hopefully this will
712 	 * help when implementing backwards compatibility in the future.
713 	 */
714 	if (pkt->type >= VMCI_TRANSPORT_PACKET_TYPE_MAX) {
715 		vmci_transport_send_invalid_bh(&dst, &src);
716 		err = VMCI_ERROR_INVALID_ARGS;
717 		goto out;
718 	}
719 
720 	/* This handler is privileged when this module is running on the host.
721 	 * We will get datagram connect requests from all endpoints (even VMs
722 	 * that are in a restricted context). If we get one from a restricted
723 	 * context then the destination socket must be trusted.
724 	 *
725 	 * NOTE: We access the socket struct without holding the lock here.
726 	 * This is ok because the field we are interested is never modified
727 	 * outside of the create and destruct socket functions.
728 	 */
729 	vsk = vsock_sk(sk);
730 	if (!vmci_transport_allow_dgram(vsk, pkt->dg.src.context)) {
731 		err = VMCI_ERROR_NO_ACCESS;
732 		goto out;
733 	}
734 
735 	/* We do most everything in a work queue, but let's fast path the
736 	 * notification of reads and writes to help data transfer performance.
737 	 * We can only do this if there is no process context code executing
738 	 * for this socket since that may change the state.
739 	 */
740 	bh_lock_sock(sk);
741 
742 	if (!sock_owned_by_user(sk)) {
743 		/* The local context ID may be out of date, update it. */
744 		vsk->local_addr.svm_cid = dst.svm_cid;
745 
746 		if (sk->sk_state == SS_CONNECTED)
747 			vmci_trans(vsk)->notify_ops->handle_notify_pkt(
748 					sk, pkt, true, &dst, &src,
749 					&bh_process_pkt);
750 	}
751 
752 	bh_unlock_sock(sk);
753 
754 	if (!bh_process_pkt) {
755 		struct vmci_transport_recv_pkt_info *recv_pkt_info;
756 
757 		recv_pkt_info = kmalloc(sizeof(*recv_pkt_info), GFP_ATOMIC);
758 		if (!recv_pkt_info) {
759 			if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0)
760 				pr_err("unable to send reset\n");
761 
762 			err = VMCI_ERROR_NO_MEM;
763 			goto out;
764 		}
765 
766 		recv_pkt_info->sk = sk;
767 		memcpy(&recv_pkt_info->pkt, pkt, sizeof(recv_pkt_info->pkt));
768 		INIT_WORK(&recv_pkt_info->work, vmci_transport_recv_pkt_work);
769 
770 		schedule_work(&recv_pkt_info->work);
771 		/* Clear sk so that the reference count incremented by one of
772 		 * the Find functions above is not decremented below.  We need
773 		 * that reference count for the packet handler we've scheduled
774 		 * to run.
775 		 */
776 		sk = NULL;
777 	}
778 
779 out:
780 	if (sk)
781 		sock_put(sk);
782 
783 	return err;
784 }
785 
786 static void vmci_transport_handle_detach(struct sock *sk)
787 {
788 	struct vsock_sock *vsk;
789 
790 	vsk = vsock_sk(sk);
791 	if (!vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)) {
792 		sock_set_flag(sk, SOCK_DONE);
793 
794 		/* On a detach the peer will not be sending or receiving
795 		 * anymore.
796 		 */
797 		vsk->peer_shutdown = SHUTDOWN_MASK;
798 
799 		/* We should not be sending anymore since the peer won't be
800 		 * there to receive, but we can still receive if there is data
801 		 * left in our consume queue.
802 		 */
803 		if (vsock_stream_has_data(vsk) <= 0) {
804 			if (sk->sk_state == SS_CONNECTING) {
805 				/* The peer may detach from a queue pair while
806 				 * we are still in the connecting state, i.e.,
807 				 * if the peer VM is killed after attaching to
808 				 * a queue pair, but before we complete the
809 				 * handshake. In that case, we treat the detach
810 				 * event like a reset.
811 				 */
812 
813 				sk->sk_state = SS_UNCONNECTED;
814 				sk->sk_err = ECONNRESET;
815 				sk->sk_error_report(sk);
816 				return;
817 			}
818 			sk->sk_state = SS_UNCONNECTED;
819 		}
820 		sk->sk_state_change(sk);
821 	}
822 }
823 
824 static void vmci_transport_peer_detach_cb(u32 sub_id,
825 					  const struct vmci_event_data *e_data,
826 					  void *client_data)
827 {
828 	struct vmci_transport *trans = client_data;
829 	const struct vmci_event_payload_qp *e_payload;
830 
831 	e_payload = vmci_event_data_const_payload(e_data);
832 
833 	/* XXX This is lame, we should provide a way to lookup sockets by
834 	 * qp_handle.
835 	 */
836 	if (vmci_handle_is_invalid(e_payload->handle) ||
837 	    !vmci_handle_is_equal(trans->qp_handle, e_payload->handle))
838 		return;
839 
840 	/* We don't ask for delayed CBs when we subscribe to this event (we
841 	 * pass 0 as flags to vmci_event_subscribe()).  VMCI makes no
842 	 * guarantees in that case about what context we might be running in,
843 	 * so it could be BH or process, blockable or non-blockable.  So we
844 	 * need to account for all possible contexts here.
845 	 */
846 	spin_lock_bh(&trans->lock);
847 	if (!trans->sk)
848 		goto out;
849 
850 	/* Apart from here, trans->lock is only grabbed as part of sk destruct,
851 	 * where trans->sk isn't locked.
852 	 */
853 	bh_lock_sock(trans->sk);
854 
855 	vmci_transport_handle_detach(trans->sk);
856 
857 	bh_unlock_sock(trans->sk);
858  out:
859 	spin_unlock_bh(&trans->lock);
860 }
861 
862 static void vmci_transport_qp_resumed_cb(u32 sub_id,
863 					 const struct vmci_event_data *e_data,
864 					 void *client_data)
865 {
866 	vsock_for_each_connected_socket(vmci_transport_handle_detach);
867 }
868 
869 static void vmci_transport_recv_pkt_work(struct work_struct *work)
870 {
871 	struct vmci_transport_recv_pkt_info *recv_pkt_info;
872 	struct vmci_transport_packet *pkt;
873 	struct sock *sk;
874 
875 	recv_pkt_info =
876 		container_of(work, struct vmci_transport_recv_pkt_info, work);
877 	sk = recv_pkt_info->sk;
878 	pkt = &recv_pkt_info->pkt;
879 
880 	lock_sock(sk);
881 
882 	/* The local context ID may be out of date. */
883 	vsock_sk(sk)->local_addr.svm_cid = pkt->dg.dst.context;
884 
885 	switch (sk->sk_state) {
886 	case VSOCK_SS_LISTEN:
887 		vmci_transport_recv_listen(sk, pkt);
888 		break;
889 	case SS_CONNECTING:
890 		/* Processing of pending connections for servers goes through
891 		 * the listening socket, so see vmci_transport_recv_listen()
892 		 * for that path.
893 		 */
894 		vmci_transport_recv_connecting_client(sk, pkt);
895 		break;
896 	case SS_CONNECTED:
897 		vmci_transport_recv_connected(sk, pkt);
898 		break;
899 	default:
900 		/* Because this function does not run in the same context as
901 		 * vmci_transport_recv_stream_cb it is possible that the
902 		 * socket has closed. We need to let the other side know or it
903 		 * could be sitting in a connect and hang forever. Send a
904 		 * reset to prevent that.
905 		 */
906 		vmci_transport_send_reset(sk, pkt);
907 		break;
908 	}
909 
910 	release_sock(sk);
911 	kfree(recv_pkt_info);
912 	/* Release reference obtained in the stream callback when we fetched
913 	 * this socket out of the bound or connected list.
914 	 */
915 	sock_put(sk);
916 }
917 
918 static int vmci_transport_recv_listen(struct sock *sk,
919 				      struct vmci_transport_packet *pkt)
920 {
921 	struct sock *pending;
922 	struct vsock_sock *vpending;
923 	int err;
924 	u64 qp_size;
925 	bool old_request = false;
926 	bool old_pkt_proto = false;
927 
928 	err = 0;
929 
930 	/* Because we are in the listen state, we could be receiving a packet
931 	 * for ourself or any previous connection requests that we received.
932 	 * If it's the latter, we try to find a socket in our list of pending
933 	 * connections and, if we do, call the appropriate handler for the
934 	 * state that that socket is in.  Otherwise we try to service the
935 	 * connection request.
936 	 */
937 	pending = vmci_transport_get_pending(sk, pkt);
938 	if (pending) {
939 		lock_sock(pending);
940 
941 		/* The local context ID may be out of date. */
942 		vsock_sk(pending)->local_addr.svm_cid = pkt->dg.dst.context;
943 
944 		switch (pending->sk_state) {
945 		case SS_CONNECTING:
946 			err = vmci_transport_recv_connecting_server(sk,
947 								    pending,
948 								    pkt);
949 			break;
950 		default:
951 			vmci_transport_send_reset(pending, pkt);
952 			err = -EINVAL;
953 		}
954 
955 		if (err < 0)
956 			vsock_remove_pending(sk, pending);
957 
958 		release_sock(pending);
959 		vmci_transport_release_pending(pending);
960 
961 		return err;
962 	}
963 
964 	/* The listen state only accepts connection requests.  Reply with a
965 	 * reset unless we received a reset.
966 	 */
967 
968 	if (!(pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST ||
969 	      pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)) {
970 		vmci_transport_reply_reset(pkt);
971 		return -EINVAL;
972 	}
973 
974 	if (pkt->u.size == 0) {
975 		vmci_transport_reply_reset(pkt);
976 		return -EINVAL;
977 	}
978 
979 	/* If this socket can't accommodate this connection request, we send a
980 	 * reset.  Otherwise we create and initialize a child socket and reply
981 	 * with a connection negotiation.
982 	 */
983 	if (sk->sk_ack_backlog >= sk->sk_max_ack_backlog) {
984 		vmci_transport_reply_reset(pkt);
985 		return -ECONNREFUSED;
986 	}
987 
988 	pending = __vsock_create(sock_net(sk), NULL, sk, GFP_KERNEL,
989 				 sk->sk_type, 0);
990 	if (!pending) {
991 		vmci_transport_send_reset(sk, pkt);
992 		return -ENOMEM;
993 	}
994 
995 	vpending = vsock_sk(pending);
996 
997 	vsock_addr_init(&vpending->local_addr, pkt->dg.dst.context,
998 			pkt->dst_port);
999 	vsock_addr_init(&vpending->remote_addr, pkt->dg.src.context,
1000 			pkt->src_port);
1001 
1002 	/* If the proposed size fits within our min/max, accept it. Otherwise
1003 	 * propose our own size.
1004 	 */
1005 	if (pkt->u.size >= vmci_trans(vpending)->queue_pair_min_size &&
1006 	    pkt->u.size <= vmci_trans(vpending)->queue_pair_max_size) {
1007 		qp_size = pkt->u.size;
1008 	} else {
1009 		qp_size = vmci_trans(vpending)->queue_pair_size;
1010 	}
1011 
1012 	/* Figure out if we are using old or new requests based on the
1013 	 * overrides pkt types sent by our peer.
1014 	 */
1015 	if (vmci_transport_old_proto_override(&old_pkt_proto)) {
1016 		old_request = old_pkt_proto;
1017 	} else {
1018 		if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST)
1019 			old_request = true;
1020 		else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)
1021 			old_request = false;
1022 
1023 	}
1024 
1025 	if (old_request) {
1026 		/* Handle a REQUEST (or override) */
1027 		u16 version = VSOCK_PROTO_INVALID;
1028 		if (vmci_transport_proto_to_notify_struct(
1029 			pending, &version, true))
1030 			err = vmci_transport_send_negotiate(pending, qp_size);
1031 		else
1032 			err = -EINVAL;
1033 
1034 	} else {
1035 		/* Handle a REQUEST2 (or override) */
1036 		int proto_int = pkt->proto;
1037 		int pos;
1038 		u16 active_proto_version = 0;
1039 
1040 		/* The list of possible protocols is the intersection of all
1041 		 * protocols the client supports ... plus all the protocols we
1042 		 * support.
1043 		 */
1044 		proto_int &= vmci_transport_new_proto_supported_versions();
1045 
1046 		/* We choose the highest possible protocol version and use that
1047 		 * one.
1048 		 */
1049 		pos = fls(proto_int);
1050 		if (pos) {
1051 			active_proto_version = (1 << (pos - 1));
1052 			if (vmci_transport_proto_to_notify_struct(
1053 				pending, &active_proto_version, false))
1054 				err = vmci_transport_send_negotiate2(pending,
1055 							qp_size,
1056 							active_proto_version);
1057 			else
1058 				err = -EINVAL;
1059 
1060 		} else {
1061 			err = -EINVAL;
1062 		}
1063 	}
1064 
1065 	if (err < 0) {
1066 		vmci_transport_send_reset(sk, pkt);
1067 		sock_put(pending);
1068 		err = vmci_transport_error_to_vsock_error(err);
1069 		goto out;
1070 	}
1071 
1072 	vsock_add_pending(sk, pending);
1073 	sk->sk_ack_backlog++;
1074 
1075 	pending->sk_state = SS_CONNECTING;
1076 	vmci_trans(vpending)->produce_size =
1077 		vmci_trans(vpending)->consume_size = qp_size;
1078 	vmci_trans(vpending)->queue_pair_size = qp_size;
1079 
1080 	vmci_trans(vpending)->notify_ops->process_request(pending);
1081 
1082 	/* We might never receive another message for this socket and it's not
1083 	 * connected to any process, so we have to ensure it gets cleaned up
1084 	 * ourself.  Our delayed work function will take care of that.  Note
1085 	 * that we do not ever cancel this function since we have few
1086 	 * guarantees about its state when calling cancel_delayed_work().
1087 	 * Instead we hold a reference on the socket for that function and make
1088 	 * it capable of handling cases where it needs to do nothing but
1089 	 * release that reference.
1090 	 */
1091 	vpending->listener = sk;
1092 	sock_hold(sk);
1093 	sock_hold(pending);
1094 	INIT_DELAYED_WORK(&vpending->dwork, vsock_pending_work);
1095 	schedule_delayed_work(&vpending->dwork, HZ);
1096 
1097 out:
1098 	return err;
1099 }
1100 
1101 static int
1102 vmci_transport_recv_connecting_server(struct sock *listener,
1103 				      struct sock *pending,
1104 				      struct vmci_transport_packet *pkt)
1105 {
1106 	struct vsock_sock *vpending;
1107 	struct vmci_handle handle;
1108 	struct vmci_qp *qpair;
1109 	bool is_local;
1110 	u32 flags;
1111 	u32 detach_sub_id;
1112 	int err;
1113 	int skerr;
1114 
1115 	vpending = vsock_sk(pending);
1116 	detach_sub_id = VMCI_INVALID_ID;
1117 
1118 	switch (pkt->type) {
1119 	case VMCI_TRANSPORT_PACKET_TYPE_OFFER:
1120 		if (vmci_handle_is_invalid(pkt->u.handle)) {
1121 			vmci_transport_send_reset(pending, pkt);
1122 			skerr = EPROTO;
1123 			err = -EINVAL;
1124 			goto destroy;
1125 		}
1126 		break;
1127 	default:
1128 		/* Close and cleanup the connection. */
1129 		vmci_transport_send_reset(pending, pkt);
1130 		skerr = EPROTO;
1131 		err = pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST ? 0 : -EINVAL;
1132 		goto destroy;
1133 	}
1134 
1135 	/* In order to complete the connection we need to attach to the offered
1136 	 * queue pair and send an attach notification.  We also subscribe to the
1137 	 * detach event so we know when our peer goes away, and we do that
1138 	 * before attaching so we don't miss an event.  If all this succeeds,
1139 	 * we update our state and wakeup anything waiting in accept() for a
1140 	 * connection.
1141 	 */
1142 
1143 	/* We don't care about attach since we ensure the other side has
1144 	 * attached by specifying the ATTACH_ONLY flag below.
1145 	 */
1146 	err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH,
1147 				   vmci_transport_peer_detach_cb,
1148 				   vmci_trans(vpending), &detach_sub_id);
1149 	if (err < VMCI_SUCCESS) {
1150 		vmci_transport_send_reset(pending, pkt);
1151 		err = vmci_transport_error_to_vsock_error(err);
1152 		skerr = -err;
1153 		goto destroy;
1154 	}
1155 
1156 	vmci_trans(vpending)->detach_sub_id = detach_sub_id;
1157 
1158 	/* Now attach to the queue pair the client created. */
1159 	handle = pkt->u.handle;
1160 
1161 	/* vpending->local_addr always has a context id so we do not need to
1162 	 * worry about VMADDR_CID_ANY in this case.
1163 	 */
1164 	is_local =
1165 	    vpending->remote_addr.svm_cid == vpending->local_addr.svm_cid;
1166 	flags = VMCI_QPFLAG_ATTACH_ONLY;
1167 	flags |= is_local ? VMCI_QPFLAG_LOCAL : 0;
1168 
1169 	err = vmci_transport_queue_pair_alloc(
1170 					&qpair,
1171 					&handle,
1172 					vmci_trans(vpending)->produce_size,
1173 					vmci_trans(vpending)->consume_size,
1174 					pkt->dg.src.context,
1175 					flags,
1176 					vmci_transport_is_trusted(
1177 						vpending,
1178 						vpending->remote_addr.svm_cid));
1179 	if (err < 0) {
1180 		vmci_transport_send_reset(pending, pkt);
1181 		skerr = -err;
1182 		goto destroy;
1183 	}
1184 
1185 	vmci_trans(vpending)->qp_handle = handle;
1186 	vmci_trans(vpending)->qpair = qpair;
1187 
1188 	/* When we send the attach message, we must be ready to handle incoming
1189 	 * control messages on the newly connected socket. So we move the
1190 	 * pending socket to the connected state before sending the attach
1191 	 * message. Otherwise, an incoming packet triggered by the attach being
1192 	 * received by the peer may be processed concurrently with what happens
1193 	 * below after sending the attach message, and that incoming packet
1194 	 * will find the listening socket instead of the (currently) pending
1195 	 * socket. Note that enqueueing the socket increments the reference
1196 	 * count, so even if a reset comes before the connection is accepted,
1197 	 * the socket will be valid until it is removed from the queue.
1198 	 *
1199 	 * If we fail sending the attach below, we remove the socket from the
1200 	 * connected list and move the socket to SS_UNCONNECTED before
1201 	 * releasing the lock, so a pending slow path processing of an incoming
1202 	 * packet will not see the socket in the connected state in that case.
1203 	 */
1204 	pending->sk_state = SS_CONNECTED;
1205 
1206 	vsock_insert_connected(vpending);
1207 
1208 	/* Notify our peer of our attach. */
1209 	err = vmci_transport_send_attach(pending, handle);
1210 	if (err < 0) {
1211 		vsock_remove_connected(vpending);
1212 		pr_err("Could not send attach\n");
1213 		vmci_transport_send_reset(pending, pkt);
1214 		err = vmci_transport_error_to_vsock_error(err);
1215 		skerr = -err;
1216 		goto destroy;
1217 	}
1218 
1219 	/* We have a connection. Move the now connected socket from the
1220 	 * listener's pending list to the accept queue so callers of accept()
1221 	 * can find it.
1222 	 */
1223 	vsock_remove_pending(listener, pending);
1224 	vsock_enqueue_accept(listener, pending);
1225 
1226 	/* Callers of accept() will be be waiting on the listening socket, not
1227 	 * the pending socket.
1228 	 */
1229 	listener->sk_data_ready(listener);
1230 
1231 	return 0;
1232 
1233 destroy:
1234 	pending->sk_err = skerr;
1235 	pending->sk_state = SS_UNCONNECTED;
1236 	/* As long as we drop our reference, all necessary cleanup will handle
1237 	 * when the cleanup function drops its reference and our destruct
1238 	 * implementation is called.  Note that since the listen handler will
1239 	 * remove pending from the pending list upon our failure, the cleanup
1240 	 * function won't drop the additional reference, which is why we do it
1241 	 * here.
1242 	 */
1243 	sock_put(pending);
1244 
1245 	return err;
1246 }
1247 
1248 static int
1249 vmci_transport_recv_connecting_client(struct sock *sk,
1250 				      struct vmci_transport_packet *pkt)
1251 {
1252 	struct vsock_sock *vsk;
1253 	int err;
1254 	int skerr;
1255 
1256 	vsk = vsock_sk(sk);
1257 
1258 	switch (pkt->type) {
1259 	case VMCI_TRANSPORT_PACKET_TYPE_ATTACH:
1260 		if (vmci_handle_is_invalid(pkt->u.handle) ||
1261 		    !vmci_handle_is_equal(pkt->u.handle,
1262 					  vmci_trans(vsk)->qp_handle)) {
1263 			skerr = EPROTO;
1264 			err = -EINVAL;
1265 			goto destroy;
1266 		}
1267 
1268 		/* Signify the socket is connected and wakeup the waiter in
1269 		 * connect(). Also place the socket in the connected table for
1270 		 * accounting (it can already be found since it's in the bound
1271 		 * table).
1272 		 */
1273 		sk->sk_state = SS_CONNECTED;
1274 		sk->sk_socket->state = SS_CONNECTED;
1275 		vsock_insert_connected(vsk);
1276 		sk->sk_state_change(sk);
1277 
1278 		break;
1279 	case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE:
1280 	case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2:
1281 		if (pkt->u.size == 0
1282 		    || pkt->dg.src.context != vsk->remote_addr.svm_cid
1283 		    || pkt->src_port != vsk->remote_addr.svm_port
1284 		    || !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)
1285 		    || vmci_trans(vsk)->qpair
1286 		    || vmci_trans(vsk)->produce_size != 0
1287 		    || vmci_trans(vsk)->consume_size != 0
1288 		    || vmci_trans(vsk)->detach_sub_id != VMCI_INVALID_ID) {
1289 			skerr = EPROTO;
1290 			err = -EINVAL;
1291 
1292 			goto destroy;
1293 		}
1294 
1295 		err = vmci_transport_recv_connecting_client_negotiate(sk, pkt);
1296 		if (err) {
1297 			skerr = -err;
1298 			goto destroy;
1299 		}
1300 
1301 		break;
1302 	case VMCI_TRANSPORT_PACKET_TYPE_INVALID:
1303 		err = vmci_transport_recv_connecting_client_invalid(sk, pkt);
1304 		if (err) {
1305 			skerr = -err;
1306 			goto destroy;
1307 		}
1308 
1309 		break;
1310 	case VMCI_TRANSPORT_PACKET_TYPE_RST:
1311 		/* Older versions of the linux code (WS 6.5 / ESX 4.0) used to
1312 		 * continue processing here after they sent an INVALID packet.
1313 		 * This meant that we got a RST after the INVALID. We ignore a
1314 		 * RST after an INVALID. The common code doesn't send the RST
1315 		 * ... so we can hang if an old version of the common code
1316 		 * fails between getting a REQUEST and sending an OFFER back.
1317 		 * Not much we can do about it... except hope that it doesn't
1318 		 * happen.
1319 		 */
1320 		if (vsk->ignore_connecting_rst) {
1321 			vsk->ignore_connecting_rst = false;
1322 		} else {
1323 			skerr = ECONNRESET;
1324 			err = 0;
1325 			goto destroy;
1326 		}
1327 
1328 		break;
1329 	default:
1330 		/* Close and cleanup the connection. */
1331 		skerr = EPROTO;
1332 		err = -EINVAL;
1333 		goto destroy;
1334 	}
1335 
1336 	return 0;
1337 
1338 destroy:
1339 	vmci_transport_send_reset(sk, pkt);
1340 
1341 	sk->sk_state = SS_UNCONNECTED;
1342 	sk->sk_err = skerr;
1343 	sk->sk_error_report(sk);
1344 	return err;
1345 }
1346 
1347 static int vmci_transport_recv_connecting_client_negotiate(
1348 					struct sock *sk,
1349 					struct vmci_transport_packet *pkt)
1350 {
1351 	int err;
1352 	struct vsock_sock *vsk;
1353 	struct vmci_handle handle;
1354 	struct vmci_qp *qpair;
1355 	u32 detach_sub_id;
1356 	bool is_local;
1357 	u32 flags;
1358 	bool old_proto = true;
1359 	bool old_pkt_proto;
1360 	u16 version;
1361 
1362 	vsk = vsock_sk(sk);
1363 	handle = VMCI_INVALID_HANDLE;
1364 	detach_sub_id = VMCI_INVALID_ID;
1365 
1366 	/* If we have gotten here then we should be past the point where old
1367 	 * linux vsock could have sent the bogus rst.
1368 	 */
1369 	vsk->sent_request = false;
1370 	vsk->ignore_connecting_rst = false;
1371 
1372 	/* Verify that we're OK with the proposed queue pair size */
1373 	if (pkt->u.size < vmci_trans(vsk)->queue_pair_min_size ||
1374 	    pkt->u.size > vmci_trans(vsk)->queue_pair_max_size) {
1375 		err = -EINVAL;
1376 		goto destroy;
1377 	}
1378 
1379 	/* At this point we know the CID the peer is using to talk to us. */
1380 
1381 	if (vsk->local_addr.svm_cid == VMADDR_CID_ANY)
1382 		vsk->local_addr.svm_cid = pkt->dg.dst.context;
1383 
1384 	/* Setup the notify ops to be the highest supported version that both
1385 	 * the server and the client support.
1386 	 */
1387 
1388 	if (vmci_transport_old_proto_override(&old_pkt_proto)) {
1389 		old_proto = old_pkt_proto;
1390 	} else {
1391 		if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE)
1392 			old_proto = true;
1393 		else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2)
1394 			old_proto = false;
1395 
1396 	}
1397 
1398 	if (old_proto)
1399 		version = VSOCK_PROTO_INVALID;
1400 	else
1401 		version = pkt->proto;
1402 
1403 	if (!vmci_transport_proto_to_notify_struct(sk, &version, old_proto)) {
1404 		err = -EINVAL;
1405 		goto destroy;
1406 	}
1407 
1408 	/* Subscribe to detach events first.
1409 	 *
1410 	 * XXX We attach once for each queue pair created for now so it is easy
1411 	 * to find the socket (it's provided), but later we should only
1412 	 * subscribe once and add a way to lookup sockets by queue pair handle.
1413 	 */
1414 	err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH,
1415 				   vmci_transport_peer_detach_cb,
1416 				   vmci_trans(vsk), &detach_sub_id);
1417 	if (err < VMCI_SUCCESS) {
1418 		err = vmci_transport_error_to_vsock_error(err);
1419 		goto destroy;
1420 	}
1421 
1422 	/* Make VMCI select the handle for us. */
1423 	handle = VMCI_INVALID_HANDLE;
1424 	is_local = vsk->remote_addr.svm_cid == vsk->local_addr.svm_cid;
1425 	flags = is_local ? VMCI_QPFLAG_LOCAL : 0;
1426 
1427 	err = vmci_transport_queue_pair_alloc(&qpair,
1428 					      &handle,
1429 					      pkt->u.size,
1430 					      pkt->u.size,
1431 					      vsk->remote_addr.svm_cid,
1432 					      flags,
1433 					      vmci_transport_is_trusted(
1434 						  vsk,
1435 						  vsk->
1436 						  remote_addr.svm_cid));
1437 	if (err < 0)
1438 		goto destroy;
1439 
1440 	err = vmci_transport_send_qp_offer(sk, handle);
1441 	if (err < 0) {
1442 		err = vmci_transport_error_to_vsock_error(err);
1443 		goto destroy;
1444 	}
1445 
1446 	vmci_trans(vsk)->qp_handle = handle;
1447 	vmci_trans(vsk)->qpair = qpair;
1448 
1449 	vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size =
1450 		pkt->u.size;
1451 
1452 	vmci_trans(vsk)->detach_sub_id = detach_sub_id;
1453 
1454 	vmci_trans(vsk)->notify_ops->process_negotiate(sk);
1455 
1456 	return 0;
1457 
1458 destroy:
1459 	if (detach_sub_id != VMCI_INVALID_ID)
1460 		vmci_event_unsubscribe(detach_sub_id);
1461 
1462 	if (!vmci_handle_is_invalid(handle))
1463 		vmci_qpair_detach(&qpair);
1464 
1465 	return err;
1466 }
1467 
1468 static int
1469 vmci_transport_recv_connecting_client_invalid(struct sock *sk,
1470 					      struct vmci_transport_packet *pkt)
1471 {
1472 	int err = 0;
1473 	struct vsock_sock *vsk = vsock_sk(sk);
1474 
1475 	if (vsk->sent_request) {
1476 		vsk->sent_request = false;
1477 		vsk->ignore_connecting_rst = true;
1478 
1479 		err = vmci_transport_send_conn_request(
1480 			sk, vmci_trans(vsk)->queue_pair_size);
1481 		if (err < 0)
1482 			err = vmci_transport_error_to_vsock_error(err);
1483 		else
1484 			err = 0;
1485 
1486 	}
1487 
1488 	return err;
1489 }
1490 
1491 static int vmci_transport_recv_connected(struct sock *sk,
1492 					 struct vmci_transport_packet *pkt)
1493 {
1494 	struct vsock_sock *vsk;
1495 	bool pkt_processed = false;
1496 
1497 	/* In cases where we are closing the connection, it's sufficient to
1498 	 * mark the state change (and maybe error) and wake up any waiting
1499 	 * threads. Since this is a connected socket, it's owned by a user
1500 	 * process and will be cleaned up when the failure is passed back on
1501 	 * the current or next system call.  Our system call implementations
1502 	 * must therefore check for error and state changes on entry and when
1503 	 * being awoken.
1504 	 */
1505 	switch (pkt->type) {
1506 	case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN:
1507 		if (pkt->u.mode) {
1508 			vsk = vsock_sk(sk);
1509 
1510 			vsk->peer_shutdown |= pkt->u.mode;
1511 			sk->sk_state_change(sk);
1512 		}
1513 		break;
1514 
1515 	case VMCI_TRANSPORT_PACKET_TYPE_RST:
1516 		vsk = vsock_sk(sk);
1517 		/* It is possible that we sent our peer a message (e.g a
1518 		 * WAITING_READ) right before we got notified that the peer had
1519 		 * detached. If that happens then we can get a RST pkt back
1520 		 * from our peer even though there is data available for us to
1521 		 * read. In that case, don't shutdown the socket completely but
1522 		 * instead allow the local client to finish reading data off
1523 		 * the queuepair. Always treat a RST pkt in connected mode like
1524 		 * a clean shutdown.
1525 		 */
1526 		sock_set_flag(sk, SOCK_DONE);
1527 		vsk->peer_shutdown = SHUTDOWN_MASK;
1528 		if (vsock_stream_has_data(vsk) <= 0)
1529 			sk->sk_state = SS_DISCONNECTING;
1530 
1531 		sk->sk_state_change(sk);
1532 		break;
1533 
1534 	default:
1535 		vsk = vsock_sk(sk);
1536 		vmci_trans(vsk)->notify_ops->handle_notify_pkt(
1537 				sk, pkt, false, NULL, NULL,
1538 				&pkt_processed);
1539 		if (!pkt_processed)
1540 			return -EINVAL;
1541 
1542 		break;
1543 	}
1544 
1545 	return 0;
1546 }
1547 
1548 static int vmci_transport_socket_init(struct vsock_sock *vsk,
1549 				      struct vsock_sock *psk)
1550 {
1551 	vsk->trans = kmalloc(sizeof(struct vmci_transport), GFP_KERNEL);
1552 	if (!vsk->trans)
1553 		return -ENOMEM;
1554 
1555 	vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE;
1556 	vmci_trans(vsk)->qp_handle = VMCI_INVALID_HANDLE;
1557 	vmci_trans(vsk)->qpair = NULL;
1558 	vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size = 0;
1559 	vmci_trans(vsk)->detach_sub_id = VMCI_INVALID_ID;
1560 	vmci_trans(vsk)->notify_ops = NULL;
1561 	INIT_LIST_HEAD(&vmci_trans(vsk)->elem);
1562 	vmci_trans(vsk)->sk = &vsk->sk;
1563 	spin_lock_init(&vmci_trans(vsk)->lock);
1564 	if (psk) {
1565 		vmci_trans(vsk)->queue_pair_size =
1566 			vmci_trans(psk)->queue_pair_size;
1567 		vmci_trans(vsk)->queue_pair_min_size =
1568 			vmci_trans(psk)->queue_pair_min_size;
1569 		vmci_trans(vsk)->queue_pair_max_size =
1570 			vmci_trans(psk)->queue_pair_max_size;
1571 	} else {
1572 		vmci_trans(vsk)->queue_pair_size =
1573 			VMCI_TRANSPORT_DEFAULT_QP_SIZE;
1574 		vmci_trans(vsk)->queue_pair_min_size =
1575 			 VMCI_TRANSPORT_DEFAULT_QP_SIZE_MIN;
1576 		vmci_trans(vsk)->queue_pair_max_size =
1577 			VMCI_TRANSPORT_DEFAULT_QP_SIZE_MAX;
1578 	}
1579 
1580 	return 0;
1581 }
1582 
1583 static void vmci_transport_free_resources(struct list_head *transport_list)
1584 {
1585 	while (!list_empty(transport_list)) {
1586 		struct vmci_transport *transport =
1587 		    list_first_entry(transport_list, struct vmci_transport,
1588 				     elem);
1589 		list_del(&transport->elem);
1590 
1591 		if (transport->detach_sub_id != VMCI_INVALID_ID) {
1592 			vmci_event_unsubscribe(transport->detach_sub_id);
1593 			transport->detach_sub_id = VMCI_INVALID_ID;
1594 		}
1595 
1596 		if (!vmci_handle_is_invalid(transport->qp_handle)) {
1597 			vmci_qpair_detach(&transport->qpair);
1598 			transport->qp_handle = VMCI_INVALID_HANDLE;
1599 			transport->produce_size = 0;
1600 			transport->consume_size = 0;
1601 		}
1602 
1603 		kfree(transport);
1604 	}
1605 }
1606 
1607 static void vmci_transport_cleanup(struct work_struct *work)
1608 {
1609 	LIST_HEAD(pending);
1610 
1611 	spin_lock_bh(&vmci_transport_cleanup_lock);
1612 	list_replace_init(&vmci_transport_cleanup_list, &pending);
1613 	spin_unlock_bh(&vmci_transport_cleanup_lock);
1614 	vmci_transport_free_resources(&pending);
1615 }
1616 
1617 static void vmci_transport_destruct(struct vsock_sock *vsk)
1618 {
1619 	/* Ensure that the detach callback doesn't use the sk/vsk
1620 	 * we are about to destruct.
1621 	 */
1622 	spin_lock_bh(&vmci_trans(vsk)->lock);
1623 	vmci_trans(vsk)->sk = NULL;
1624 	spin_unlock_bh(&vmci_trans(vsk)->lock);
1625 
1626 	if (vmci_trans(vsk)->notify_ops)
1627 		vmci_trans(vsk)->notify_ops->socket_destruct(vsk);
1628 
1629 	spin_lock_bh(&vmci_transport_cleanup_lock);
1630 	list_add(&vmci_trans(vsk)->elem, &vmci_transport_cleanup_list);
1631 	spin_unlock_bh(&vmci_transport_cleanup_lock);
1632 	schedule_work(&vmci_transport_cleanup_work);
1633 
1634 	vsk->trans = NULL;
1635 }
1636 
1637 static void vmci_transport_release(struct vsock_sock *vsk)
1638 {
1639 	vsock_remove_sock(vsk);
1640 
1641 	if (!vmci_handle_is_invalid(vmci_trans(vsk)->dg_handle)) {
1642 		vmci_datagram_destroy_handle(vmci_trans(vsk)->dg_handle);
1643 		vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE;
1644 	}
1645 }
1646 
1647 static int vmci_transport_dgram_bind(struct vsock_sock *vsk,
1648 				     struct sockaddr_vm *addr)
1649 {
1650 	u32 port;
1651 	u32 flags;
1652 	int err;
1653 
1654 	/* VMCI will select a resource ID for us if we provide
1655 	 * VMCI_INVALID_ID.
1656 	 */
1657 	port = addr->svm_port == VMADDR_PORT_ANY ?
1658 			VMCI_INVALID_ID : addr->svm_port;
1659 
1660 	if (port <= LAST_RESERVED_PORT && !capable(CAP_NET_BIND_SERVICE))
1661 		return -EACCES;
1662 
1663 	flags = addr->svm_cid == VMADDR_CID_ANY ?
1664 				VMCI_FLAG_ANYCID_DG_HND : 0;
1665 
1666 	err = vmci_transport_datagram_create_hnd(port, flags,
1667 						 vmci_transport_recv_dgram_cb,
1668 						 &vsk->sk,
1669 						 &vmci_trans(vsk)->dg_handle);
1670 	if (err < VMCI_SUCCESS)
1671 		return vmci_transport_error_to_vsock_error(err);
1672 	vsock_addr_init(&vsk->local_addr, addr->svm_cid,
1673 			vmci_trans(vsk)->dg_handle.resource);
1674 
1675 	return 0;
1676 }
1677 
1678 static int vmci_transport_dgram_enqueue(
1679 	struct vsock_sock *vsk,
1680 	struct sockaddr_vm *remote_addr,
1681 	struct msghdr *msg,
1682 	size_t len)
1683 {
1684 	int err;
1685 	struct vmci_datagram *dg;
1686 
1687 	if (len > VMCI_MAX_DG_PAYLOAD_SIZE)
1688 		return -EMSGSIZE;
1689 
1690 	if (!vmci_transport_allow_dgram(vsk, remote_addr->svm_cid))
1691 		return -EPERM;
1692 
1693 	/* Allocate a buffer for the user's message and our packet header. */
1694 	dg = kmalloc(len + sizeof(*dg), GFP_KERNEL);
1695 	if (!dg)
1696 		return -ENOMEM;
1697 
1698 	memcpy_from_msg(VMCI_DG_PAYLOAD(dg), msg, len);
1699 
1700 	dg->dst = vmci_make_handle(remote_addr->svm_cid,
1701 				   remote_addr->svm_port);
1702 	dg->src = vmci_make_handle(vsk->local_addr.svm_cid,
1703 				   vsk->local_addr.svm_port);
1704 	dg->payload_size = len;
1705 
1706 	err = vmci_datagram_send(dg);
1707 	kfree(dg);
1708 	if (err < 0)
1709 		return vmci_transport_error_to_vsock_error(err);
1710 
1711 	return err - sizeof(*dg);
1712 }
1713 
1714 static int vmci_transport_dgram_dequeue(struct vsock_sock *vsk,
1715 					struct msghdr *msg, size_t len,
1716 					int flags)
1717 {
1718 	int err;
1719 	int noblock;
1720 	struct vmci_datagram *dg;
1721 	size_t payload_len;
1722 	struct sk_buff *skb;
1723 
1724 	noblock = flags & MSG_DONTWAIT;
1725 
1726 	if (flags & MSG_OOB || flags & MSG_ERRQUEUE)
1727 		return -EOPNOTSUPP;
1728 
1729 	/* Retrieve the head sk_buff from the socket's receive queue. */
1730 	err = 0;
1731 	skb = skb_recv_datagram(&vsk->sk, flags, noblock, &err);
1732 	if (!skb)
1733 		return err;
1734 
1735 	dg = (struct vmci_datagram *)skb->data;
1736 	if (!dg)
1737 		/* err is 0, meaning we read zero bytes. */
1738 		goto out;
1739 
1740 	payload_len = dg->payload_size;
1741 	/* Ensure the sk_buff matches the payload size claimed in the packet. */
1742 	if (payload_len != skb->len - sizeof(*dg)) {
1743 		err = -EINVAL;
1744 		goto out;
1745 	}
1746 
1747 	if (payload_len > len) {
1748 		payload_len = len;
1749 		msg->msg_flags |= MSG_TRUNC;
1750 	}
1751 
1752 	/* Place the datagram payload in the user's iovec. */
1753 	err = skb_copy_datagram_msg(skb, sizeof(*dg), msg, payload_len);
1754 	if (err)
1755 		goto out;
1756 
1757 	if (msg->msg_name) {
1758 		/* Provide the address of the sender. */
1759 		DECLARE_SOCKADDR(struct sockaddr_vm *, vm_addr, msg->msg_name);
1760 		vsock_addr_init(vm_addr, dg->src.context, dg->src.resource);
1761 		msg->msg_namelen = sizeof(*vm_addr);
1762 	}
1763 	err = payload_len;
1764 
1765 out:
1766 	skb_free_datagram(&vsk->sk, skb);
1767 	return err;
1768 }
1769 
1770 static bool vmci_transport_dgram_allow(u32 cid, u32 port)
1771 {
1772 	if (cid == VMADDR_CID_HYPERVISOR) {
1773 		/* Registrations of PBRPC Servers do not modify VMX/Hypervisor
1774 		 * state and are allowed.
1775 		 */
1776 		return port == VMCI_UNITY_PBRPC_REGISTER;
1777 	}
1778 
1779 	return true;
1780 }
1781 
1782 static int vmci_transport_connect(struct vsock_sock *vsk)
1783 {
1784 	int err;
1785 	bool old_pkt_proto = false;
1786 	struct sock *sk = &vsk->sk;
1787 
1788 	if (vmci_transport_old_proto_override(&old_pkt_proto) &&
1789 		old_pkt_proto) {
1790 		err = vmci_transport_send_conn_request(
1791 			sk, vmci_trans(vsk)->queue_pair_size);
1792 		if (err < 0) {
1793 			sk->sk_state = SS_UNCONNECTED;
1794 			return err;
1795 		}
1796 	} else {
1797 		int supported_proto_versions =
1798 			vmci_transport_new_proto_supported_versions();
1799 		err = vmci_transport_send_conn_request2(
1800 				sk, vmci_trans(vsk)->queue_pair_size,
1801 				supported_proto_versions);
1802 		if (err < 0) {
1803 			sk->sk_state = SS_UNCONNECTED;
1804 			return err;
1805 		}
1806 
1807 		vsk->sent_request = true;
1808 	}
1809 
1810 	return err;
1811 }
1812 
1813 static ssize_t vmci_transport_stream_dequeue(
1814 	struct vsock_sock *vsk,
1815 	struct msghdr *msg,
1816 	size_t len,
1817 	int flags)
1818 {
1819 	if (flags & MSG_PEEK)
1820 		return vmci_qpair_peekv(vmci_trans(vsk)->qpair, msg, len, 0);
1821 	else
1822 		return vmci_qpair_dequev(vmci_trans(vsk)->qpair, msg, len, 0);
1823 }
1824 
1825 static ssize_t vmci_transport_stream_enqueue(
1826 	struct vsock_sock *vsk,
1827 	struct msghdr *msg,
1828 	size_t len)
1829 {
1830 	return vmci_qpair_enquev(vmci_trans(vsk)->qpair, msg, len, 0);
1831 }
1832 
1833 static s64 vmci_transport_stream_has_data(struct vsock_sock *vsk)
1834 {
1835 	return vmci_qpair_consume_buf_ready(vmci_trans(vsk)->qpair);
1836 }
1837 
1838 static s64 vmci_transport_stream_has_space(struct vsock_sock *vsk)
1839 {
1840 	return vmci_qpair_produce_free_space(vmci_trans(vsk)->qpair);
1841 }
1842 
1843 static u64 vmci_transport_stream_rcvhiwat(struct vsock_sock *vsk)
1844 {
1845 	return vmci_trans(vsk)->consume_size;
1846 }
1847 
1848 static bool vmci_transport_stream_is_active(struct vsock_sock *vsk)
1849 {
1850 	return !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle);
1851 }
1852 
1853 static u64 vmci_transport_get_buffer_size(struct vsock_sock *vsk)
1854 {
1855 	return vmci_trans(vsk)->queue_pair_size;
1856 }
1857 
1858 static u64 vmci_transport_get_min_buffer_size(struct vsock_sock *vsk)
1859 {
1860 	return vmci_trans(vsk)->queue_pair_min_size;
1861 }
1862 
1863 static u64 vmci_transport_get_max_buffer_size(struct vsock_sock *vsk)
1864 {
1865 	return vmci_trans(vsk)->queue_pair_max_size;
1866 }
1867 
1868 static void vmci_transport_set_buffer_size(struct vsock_sock *vsk, u64 val)
1869 {
1870 	if (val < vmci_trans(vsk)->queue_pair_min_size)
1871 		vmci_trans(vsk)->queue_pair_min_size = val;
1872 	if (val > vmci_trans(vsk)->queue_pair_max_size)
1873 		vmci_trans(vsk)->queue_pair_max_size = val;
1874 	vmci_trans(vsk)->queue_pair_size = val;
1875 }
1876 
1877 static void vmci_transport_set_min_buffer_size(struct vsock_sock *vsk,
1878 					       u64 val)
1879 {
1880 	if (val > vmci_trans(vsk)->queue_pair_size)
1881 		vmci_trans(vsk)->queue_pair_size = val;
1882 	vmci_trans(vsk)->queue_pair_min_size = val;
1883 }
1884 
1885 static void vmci_transport_set_max_buffer_size(struct vsock_sock *vsk,
1886 					       u64 val)
1887 {
1888 	if (val < vmci_trans(vsk)->queue_pair_size)
1889 		vmci_trans(vsk)->queue_pair_size = val;
1890 	vmci_trans(vsk)->queue_pair_max_size = val;
1891 }
1892 
1893 static int vmci_transport_notify_poll_in(
1894 	struct vsock_sock *vsk,
1895 	size_t target,
1896 	bool *data_ready_now)
1897 {
1898 	return vmci_trans(vsk)->notify_ops->poll_in(
1899 			&vsk->sk, target, data_ready_now);
1900 }
1901 
1902 static int vmci_transport_notify_poll_out(
1903 	struct vsock_sock *vsk,
1904 	size_t target,
1905 	bool *space_available_now)
1906 {
1907 	return vmci_trans(vsk)->notify_ops->poll_out(
1908 			&vsk->sk, target, space_available_now);
1909 }
1910 
1911 static int vmci_transport_notify_recv_init(
1912 	struct vsock_sock *vsk,
1913 	size_t target,
1914 	struct vsock_transport_recv_notify_data *data)
1915 {
1916 	return vmci_trans(vsk)->notify_ops->recv_init(
1917 			&vsk->sk, target,
1918 			(struct vmci_transport_recv_notify_data *)data);
1919 }
1920 
1921 static int vmci_transport_notify_recv_pre_block(
1922 	struct vsock_sock *vsk,
1923 	size_t target,
1924 	struct vsock_transport_recv_notify_data *data)
1925 {
1926 	return vmci_trans(vsk)->notify_ops->recv_pre_block(
1927 			&vsk->sk, target,
1928 			(struct vmci_transport_recv_notify_data *)data);
1929 }
1930 
1931 static int vmci_transport_notify_recv_pre_dequeue(
1932 	struct vsock_sock *vsk,
1933 	size_t target,
1934 	struct vsock_transport_recv_notify_data *data)
1935 {
1936 	return vmci_trans(vsk)->notify_ops->recv_pre_dequeue(
1937 			&vsk->sk, target,
1938 			(struct vmci_transport_recv_notify_data *)data);
1939 }
1940 
1941 static int vmci_transport_notify_recv_post_dequeue(
1942 	struct vsock_sock *vsk,
1943 	size_t target,
1944 	ssize_t copied,
1945 	bool data_read,
1946 	struct vsock_transport_recv_notify_data *data)
1947 {
1948 	return vmci_trans(vsk)->notify_ops->recv_post_dequeue(
1949 			&vsk->sk, target, copied, data_read,
1950 			(struct vmci_transport_recv_notify_data *)data);
1951 }
1952 
1953 static int vmci_transport_notify_send_init(
1954 	struct vsock_sock *vsk,
1955 	struct vsock_transport_send_notify_data *data)
1956 {
1957 	return vmci_trans(vsk)->notify_ops->send_init(
1958 			&vsk->sk,
1959 			(struct vmci_transport_send_notify_data *)data);
1960 }
1961 
1962 static int vmci_transport_notify_send_pre_block(
1963 	struct vsock_sock *vsk,
1964 	struct vsock_transport_send_notify_data *data)
1965 {
1966 	return vmci_trans(vsk)->notify_ops->send_pre_block(
1967 			&vsk->sk,
1968 			(struct vmci_transport_send_notify_data *)data);
1969 }
1970 
1971 static int vmci_transport_notify_send_pre_enqueue(
1972 	struct vsock_sock *vsk,
1973 	struct vsock_transport_send_notify_data *data)
1974 {
1975 	return vmci_trans(vsk)->notify_ops->send_pre_enqueue(
1976 			&vsk->sk,
1977 			(struct vmci_transport_send_notify_data *)data);
1978 }
1979 
1980 static int vmci_transport_notify_send_post_enqueue(
1981 	struct vsock_sock *vsk,
1982 	ssize_t written,
1983 	struct vsock_transport_send_notify_data *data)
1984 {
1985 	return vmci_trans(vsk)->notify_ops->send_post_enqueue(
1986 			&vsk->sk, written,
1987 			(struct vmci_transport_send_notify_data *)data);
1988 }
1989 
1990 static bool vmci_transport_old_proto_override(bool *old_pkt_proto)
1991 {
1992 	if (PROTOCOL_OVERRIDE != -1) {
1993 		if (PROTOCOL_OVERRIDE == 0)
1994 			*old_pkt_proto = true;
1995 		else
1996 			*old_pkt_proto = false;
1997 
1998 		pr_info("Proto override in use\n");
1999 		return true;
2000 	}
2001 
2002 	return false;
2003 }
2004 
2005 static bool vmci_transport_proto_to_notify_struct(struct sock *sk,
2006 						  u16 *proto,
2007 						  bool old_pkt_proto)
2008 {
2009 	struct vsock_sock *vsk = vsock_sk(sk);
2010 
2011 	if (old_pkt_proto) {
2012 		if (*proto != VSOCK_PROTO_INVALID) {
2013 			pr_err("Can't set both an old and new protocol\n");
2014 			return false;
2015 		}
2016 		vmci_trans(vsk)->notify_ops = &vmci_transport_notify_pkt_ops;
2017 		goto exit;
2018 	}
2019 
2020 	switch (*proto) {
2021 	case VSOCK_PROTO_PKT_ON_NOTIFY:
2022 		vmci_trans(vsk)->notify_ops =
2023 			&vmci_transport_notify_pkt_q_state_ops;
2024 		break;
2025 	default:
2026 		pr_err("Unknown notify protocol version\n");
2027 		return false;
2028 	}
2029 
2030 exit:
2031 	vmci_trans(vsk)->notify_ops->socket_init(sk);
2032 	return true;
2033 }
2034 
2035 static u16 vmci_transport_new_proto_supported_versions(void)
2036 {
2037 	if (PROTOCOL_OVERRIDE != -1)
2038 		return PROTOCOL_OVERRIDE;
2039 
2040 	return VSOCK_PROTO_ALL_SUPPORTED;
2041 }
2042 
2043 static u32 vmci_transport_get_local_cid(void)
2044 {
2045 	return vmci_get_context_id();
2046 }
2047 
2048 static const struct vsock_transport vmci_transport = {
2049 	.init = vmci_transport_socket_init,
2050 	.destruct = vmci_transport_destruct,
2051 	.release = vmci_transport_release,
2052 	.connect = vmci_transport_connect,
2053 	.dgram_bind = vmci_transport_dgram_bind,
2054 	.dgram_dequeue = vmci_transport_dgram_dequeue,
2055 	.dgram_enqueue = vmci_transport_dgram_enqueue,
2056 	.dgram_allow = vmci_transport_dgram_allow,
2057 	.stream_dequeue = vmci_transport_stream_dequeue,
2058 	.stream_enqueue = vmci_transport_stream_enqueue,
2059 	.stream_has_data = vmci_transport_stream_has_data,
2060 	.stream_has_space = vmci_transport_stream_has_space,
2061 	.stream_rcvhiwat = vmci_transport_stream_rcvhiwat,
2062 	.stream_is_active = vmci_transport_stream_is_active,
2063 	.stream_allow = vmci_transport_stream_allow,
2064 	.notify_poll_in = vmci_transport_notify_poll_in,
2065 	.notify_poll_out = vmci_transport_notify_poll_out,
2066 	.notify_recv_init = vmci_transport_notify_recv_init,
2067 	.notify_recv_pre_block = vmci_transport_notify_recv_pre_block,
2068 	.notify_recv_pre_dequeue = vmci_transport_notify_recv_pre_dequeue,
2069 	.notify_recv_post_dequeue = vmci_transport_notify_recv_post_dequeue,
2070 	.notify_send_init = vmci_transport_notify_send_init,
2071 	.notify_send_pre_block = vmci_transport_notify_send_pre_block,
2072 	.notify_send_pre_enqueue = vmci_transport_notify_send_pre_enqueue,
2073 	.notify_send_post_enqueue = vmci_transport_notify_send_post_enqueue,
2074 	.shutdown = vmci_transport_shutdown,
2075 	.set_buffer_size = vmci_transport_set_buffer_size,
2076 	.set_min_buffer_size = vmci_transport_set_min_buffer_size,
2077 	.set_max_buffer_size = vmci_transport_set_max_buffer_size,
2078 	.get_buffer_size = vmci_transport_get_buffer_size,
2079 	.get_min_buffer_size = vmci_transport_get_min_buffer_size,
2080 	.get_max_buffer_size = vmci_transport_get_max_buffer_size,
2081 	.get_local_cid = vmci_transport_get_local_cid,
2082 };
2083 
2084 static int __init vmci_transport_init(void)
2085 {
2086 	int err;
2087 
2088 	/* Create the datagram handle that we will use to send and receive all
2089 	 * VSocket control messages for this context.
2090 	 */
2091 	err = vmci_transport_datagram_create_hnd(VMCI_TRANSPORT_PACKET_RID,
2092 						 VMCI_FLAG_ANYCID_DG_HND,
2093 						 vmci_transport_recv_stream_cb,
2094 						 NULL,
2095 						 &vmci_transport_stream_handle);
2096 	if (err < VMCI_SUCCESS) {
2097 		pr_err("Unable to create datagram handle. (%d)\n", err);
2098 		return vmci_transport_error_to_vsock_error(err);
2099 	}
2100 
2101 	err = vmci_event_subscribe(VMCI_EVENT_QP_RESUMED,
2102 				   vmci_transport_qp_resumed_cb,
2103 				   NULL, &vmci_transport_qp_resumed_sub_id);
2104 	if (err < VMCI_SUCCESS) {
2105 		pr_err("Unable to subscribe to resumed event. (%d)\n", err);
2106 		err = vmci_transport_error_to_vsock_error(err);
2107 		vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
2108 		goto err_destroy_stream_handle;
2109 	}
2110 
2111 	err = vsock_core_init(&vmci_transport);
2112 	if (err < 0)
2113 		goto err_unsubscribe;
2114 
2115 	return 0;
2116 
2117 err_unsubscribe:
2118 	vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id);
2119 err_destroy_stream_handle:
2120 	vmci_datagram_destroy_handle(vmci_transport_stream_handle);
2121 	return err;
2122 }
2123 module_init(vmci_transport_init);
2124 
2125 static void __exit vmci_transport_exit(void)
2126 {
2127 	cancel_work_sync(&vmci_transport_cleanup_work);
2128 	vmci_transport_free_resources(&vmci_transport_cleanup_list);
2129 
2130 	if (!vmci_handle_is_invalid(vmci_transport_stream_handle)) {
2131 		if (vmci_datagram_destroy_handle(
2132 			vmci_transport_stream_handle) != VMCI_SUCCESS)
2133 			pr_err("Couldn't destroy datagram handle\n");
2134 		vmci_transport_stream_handle = VMCI_INVALID_HANDLE;
2135 	}
2136 
2137 	if (vmci_transport_qp_resumed_sub_id != VMCI_INVALID_ID) {
2138 		vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id);
2139 		vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
2140 	}
2141 
2142 	vsock_core_exit();
2143 }
2144 module_exit(vmci_transport_exit);
2145 
2146 MODULE_AUTHOR("VMware, Inc.");
2147 MODULE_DESCRIPTION("VMCI transport for Virtual Sockets");
2148 MODULE_VERSION("1.0.4.0-k");
2149 MODULE_LICENSE("GPL v2");
2150 MODULE_ALIAS("vmware_vsock");
2151 MODULE_ALIAS_NETPROTO(PF_VSOCK);
2152