1 /* 2 * VMware vSockets Driver 3 * 4 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License as published by the Free 8 * Software Foundation version 2 and no later version. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 */ 15 16 #include <linux/types.h> 17 #include <linux/bitops.h> 18 #include <linux/cred.h> 19 #include <linux/init.h> 20 #include <linux/io.h> 21 #include <linux/kernel.h> 22 #include <linux/kmod.h> 23 #include <linux/list.h> 24 #include <linux/miscdevice.h> 25 #include <linux/module.h> 26 #include <linux/mutex.h> 27 #include <linux/net.h> 28 #include <linux/poll.h> 29 #include <linux/skbuff.h> 30 #include <linux/smp.h> 31 #include <linux/socket.h> 32 #include <linux/stddef.h> 33 #include <linux/unistd.h> 34 #include <linux/wait.h> 35 #include <linux/workqueue.h> 36 #include <net/sock.h> 37 38 #include "af_vsock.h" 39 #include "vmci_transport_notify.h" 40 41 static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg); 42 static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg); 43 static void vmci_transport_peer_attach_cb(u32 sub_id, 44 const struct vmci_event_data *ed, 45 void *client_data); 46 static void vmci_transport_peer_detach_cb(u32 sub_id, 47 const struct vmci_event_data *ed, 48 void *client_data); 49 static void vmci_transport_recv_pkt_work(struct work_struct *work); 50 static int vmci_transport_recv_listen(struct sock *sk, 51 struct vmci_transport_packet *pkt); 52 static int vmci_transport_recv_connecting_server( 53 struct sock *sk, 54 struct sock *pending, 55 struct vmci_transport_packet *pkt); 56 static int vmci_transport_recv_connecting_client( 57 struct sock *sk, 58 struct vmci_transport_packet *pkt); 59 static int vmci_transport_recv_connecting_client_negotiate( 60 struct sock *sk, 61 struct vmci_transport_packet *pkt); 62 static int vmci_transport_recv_connecting_client_invalid( 63 struct sock *sk, 64 struct vmci_transport_packet *pkt); 65 static int vmci_transport_recv_connected(struct sock *sk, 66 struct vmci_transport_packet *pkt); 67 static bool vmci_transport_old_proto_override(bool *old_pkt_proto); 68 static u16 vmci_transport_new_proto_supported_versions(void); 69 static bool vmci_transport_proto_to_notify_struct(struct sock *sk, u16 *proto, 70 bool old_pkt_proto); 71 72 struct vmci_transport_recv_pkt_info { 73 struct work_struct work; 74 struct sock *sk; 75 struct vmci_transport_packet pkt; 76 }; 77 78 static struct vmci_handle vmci_transport_stream_handle = { VMCI_INVALID_ID, 79 VMCI_INVALID_ID }; 80 static u32 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID; 81 82 static int PROTOCOL_OVERRIDE = -1; 83 84 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE_MIN 128 85 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE 262144 86 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE_MAX 262144 87 88 /* The default peer timeout indicates how long we will wait for a peer response 89 * to a control message. 90 */ 91 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ) 92 93 #define SS_LISTEN 255 94 95 /* Helper function to convert from a VMCI error code to a VSock error code. */ 96 97 static s32 vmci_transport_error_to_vsock_error(s32 vmci_error) 98 { 99 int err; 100 101 switch (vmci_error) { 102 case VMCI_ERROR_NO_MEM: 103 err = ENOMEM; 104 break; 105 case VMCI_ERROR_DUPLICATE_ENTRY: 106 case VMCI_ERROR_ALREADY_EXISTS: 107 err = EADDRINUSE; 108 break; 109 case VMCI_ERROR_NO_ACCESS: 110 err = EPERM; 111 break; 112 case VMCI_ERROR_NO_RESOURCES: 113 err = ENOBUFS; 114 break; 115 case VMCI_ERROR_INVALID_RESOURCE: 116 err = EHOSTUNREACH; 117 break; 118 case VMCI_ERROR_INVALID_ARGS: 119 default: 120 err = EINVAL; 121 } 122 123 return err > 0 ? -err : err; 124 } 125 126 static inline void 127 vmci_transport_packet_init(struct vmci_transport_packet *pkt, 128 struct sockaddr_vm *src, 129 struct sockaddr_vm *dst, 130 u8 type, 131 u64 size, 132 u64 mode, 133 struct vmci_transport_waiting_info *wait, 134 u16 proto, 135 struct vmci_handle handle) 136 { 137 /* We register the stream control handler as an any cid handle so we 138 * must always send from a source address of VMADDR_CID_ANY 139 */ 140 pkt->dg.src = vmci_make_handle(VMADDR_CID_ANY, 141 VMCI_TRANSPORT_PACKET_RID); 142 pkt->dg.dst = vmci_make_handle(dst->svm_cid, 143 VMCI_TRANSPORT_PACKET_RID); 144 pkt->dg.payload_size = sizeof(*pkt) - sizeof(pkt->dg); 145 pkt->version = VMCI_TRANSPORT_PACKET_VERSION; 146 pkt->type = type; 147 pkt->src_port = src->svm_port; 148 pkt->dst_port = dst->svm_port; 149 memset(&pkt->proto, 0, sizeof(pkt->proto)); 150 memset(&pkt->_reserved2, 0, sizeof(pkt->_reserved2)); 151 152 switch (pkt->type) { 153 case VMCI_TRANSPORT_PACKET_TYPE_INVALID: 154 pkt->u.size = 0; 155 break; 156 157 case VMCI_TRANSPORT_PACKET_TYPE_REQUEST: 158 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE: 159 pkt->u.size = size; 160 break; 161 162 case VMCI_TRANSPORT_PACKET_TYPE_OFFER: 163 case VMCI_TRANSPORT_PACKET_TYPE_ATTACH: 164 pkt->u.handle = handle; 165 break; 166 167 case VMCI_TRANSPORT_PACKET_TYPE_WROTE: 168 case VMCI_TRANSPORT_PACKET_TYPE_READ: 169 case VMCI_TRANSPORT_PACKET_TYPE_RST: 170 pkt->u.size = 0; 171 break; 172 173 case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN: 174 pkt->u.mode = mode; 175 break; 176 177 case VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ: 178 case VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE: 179 memcpy(&pkt->u.wait, wait, sizeof(pkt->u.wait)); 180 break; 181 182 case VMCI_TRANSPORT_PACKET_TYPE_REQUEST2: 183 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2: 184 pkt->u.size = size; 185 pkt->proto = proto; 186 break; 187 } 188 } 189 190 static inline void 191 vmci_transport_packet_get_addresses(struct vmci_transport_packet *pkt, 192 struct sockaddr_vm *local, 193 struct sockaddr_vm *remote) 194 { 195 vsock_addr_init(local, pkt->dg.dst.context, pkt->dst_port); 196 vsock_addr_init(remote, pkt->dg.src.context, pkt->src_port); 197 } 198 199 static int 200 __vmci_transport_send_control_pkt(struct vmci_transport_packet *pkt, 201 struct sockaddr_vm *src, 202 struct sockaddr_vm *dst, 203 enum vmci_transport_packet_type type, 204 u64 size, 205 u64 mode, 206 struct vmci_transport_waiting_info *wait, 207 u16 proto, 208 struct vmci_handle handle, 209 bool convert_error) 210 { 211 int err; 212 213 vmci_transport_packet_init(pkt, src, dst, type, size, mode, wait, 214 proto, handle); 215 err = vmci_datagram_send(&pkt->dg); 216 if (convert_error && (err < 0)) 217 return vmci_transport_error_to_vsock_error(err); 218 219 return err; 220 } 221 222 static int 223 vmci_transport_reply_control_pkt_fast(struct vmci_transport_packet *pkt, 224 enum vmci_transport_packet_type type, 225 u64 size, 226 u64 mode, 227 struct vmci_transport_waiting_info *wait, 228 struct vmci_handle handle) 229 { 230 struct vmci_transport_packet reply; 231 struct sockaddr_vm src, dst; 232 233 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST) { 234 return 0; 235 } else { 236 vmci_transport_packet_get_addresses(pkt, &src, &dst); 237 return __vmci_transport_send_control_pkt(&reply, &src, &dst, 238 type, 239 size, mode, wait, 240 VSOCK_PROTO_INVALID, 241 handle, true); 242 } 243 } 244 245 static int 246 vmci_transport_send_control_pkt_bh(struct sockaddr_vm *src, 247 struct sockaddr_vm *dst, 248 enum vmci_transport_packet_type type, 249 u64 size, 250 u64 mode, 251 struct vmci_transport_waiting_info *wait, 252 struct vmci_handle handle) 253 { 254 /* Note that it is safe to use a single packet across all CPUs since 255 * two tasklets of the same type are guaranteed to not ever run 256 * simultaneously. If that ever changes, or VMCI stops using tasklets, 257 * we can use per-cpu packets. 258 */ 259 static struct vmci_transport_packet pkt; 260 261 return __vmci_transport_send_control_pkt(&pkt, src, dst, type, 262 size, mode, wait, 263 VSOCK_PROTO_INVALID, handle, 264 false); 265 } 266 267 static int 268 vmci_transport_send_control_pkt(struct sock *sk, 269 enum vmci_transport_packet_type type, 270 u64 size, 271 u64 mode, 272 struct vmci_transport_waiting_info *wait, 273 u16 proto, 274 struct vmci_handle handle) 275 { 276 struct vmci_transport_packet *pkt; 277 struct vsock_sock *vsk; 278 int err; 279 280 vsk = vsock_sk(sk); 281 282 if (!vsock_addr_bound(&vsk->local_addr)) 283 return -EINVAL; 284 285 if (!vsock_addr_bound(&vsk->remote_addr)) 286 return -EINVAL; 287 288 pkt = kmalloc(sizeof(*pkt), GFP_KERNEL); 289 if (!pkt) 290 return -ENOMEM; 291 292 err = __vmci_transport_send_control_pkt(pkt, &vsk->local_addr, 293 &vsk->remote_addr, type, size, 294 mode, wait, proto, handle, 295 true); 296 kfree(pkt); 297 298 return err; 299 } 300 301 static int vmci_transport_send_reset_bh(struct sockaddr_vm *dst, 302 struct sockaddr_vm *src, 303 struct vmci_transport_packet *pkt) 304 { 305 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST) 306 return 0; 307 return vmci_transport_send_control_pkt_bh( 308 dst, src, 309 VMCI_TRANSPORT_PACKET_TYPE_RST, 0, 310 0, NULL, VMCI_INVALID_HANDLE); 311 } 312 313 static int vmci_transport_send_reset(struct sock *sk, 314 struct vmci_transport_packet *pkt) 315 { 316 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST) 317 return 0; 318 return vmci_transport_send_control_pkt(sk, 319 VMCI_TRANSPORT_PACKET_TYPE_RST, 320 0, 0, NULL, VSOCK_PROTO_INVALID, 321 VMCI_INVALID_HANDLE); 322 } 323 324 static int vmci_transport_send_negotiate(struct sock *sk, size_t size) 325 { 326 return vmci_transport_send_control_pkt( 327 sk, 328 VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE, 329 size, 0, NULL, 330 VSOCK_PROTO_INVALID, 331 VMCI_INVALID_HANDLE); 332 } 333 334 static int vmci_transport_send_negotiate2(struct sock *sk, size_t size, 335 u16 version) 336 { 337 return vmci_transport_send_control_pkt( 338 sk, 339 VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2, 340 size, 0, NULL, version, 341 VMCI_INVALID_HANDLE); 342 } 343 344 static int vmci_transport_send_qp_offer(struct sock *sk, 345 struct vmci_handle handle) 346 { 347 return vmci_transport_send_control_pkt( 348 sk, VMCI_TRANSPORT_PACKET_TYPE_OFFER, 0, 349 0, NULL, 350 VSOCK_PROTO_INVALID, handle); 351 } 352 353 static int vmci_transport_send_attach(struct sock *sk, 354 struct vmci_handle handle) 355 { 356 return vmci_transport_send_control_pkt( 357 sk, VMCI_TRANSPORT_PACKET_TYPE_ATTACH, 358 0, 0, NULL, VSOCK_PROTO_INVALID, 359 handle); 360 } 361 362 static int vmci_transport_reply_reset(struct vmci_transport_packet *pkt) 363 { 364 return vmci_transport_reply_control_pkt_fast( 365 pkt, 366 VMCI_TRANSPORT_PACKET_TYPE_RST, 367 0, 0, NULL, 368 VMCI_INVALID_HANDLE); 369 } 370 371 static int vmci_transport_send_invalid_bh(struct sockaddr_vm *dst, 372 struct sockaddr_vm *src) 373 { 374 return vmci_transport_send_control_pkt_bh( 375 dst, src, 376 VMCI_TRANSPORT_PACKET_TYPE_INVALID, 377 0, 0, NULL, VMCI_INVALID_HANDLE); 378 } 379 380 int vmci_transport_send_wrote_bh(struct sockaddr_vm *dst, 381 struct sockaddr_vm *src) 382 { 383 return vmci_transport_send_control_pkt_bh( 384 dst, src, 385 VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0, 386 0, NULL, VMCI_INVALID_HANDLE); 387 } 388 389 int vmci_transport_send_read_bh(struct sockaddr_vm *dst, 390 struct sockaddr_vm *src) 391 { 392 return vmci_transport_send_control_pkt_bh( 393 dst, src, 394 VMCI_TRANSPORT_PACKET_TYPE_READ, 0, 395 0, NULL, VMCI_INVALID_HANDLE); 396 } 397 398 int vmci_transport_send_wrote(struct sock *sk) 399 { 400 return vmci_transport_send_control_pkt( 401 sk, VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0, 402 0, NULL, VSOCK_PROTO_INVALID, 403 VMCI_INVALID_HANDLE); 404 } 405 406 int vmci_transport_send_read(struct sock *sk) 407 { 408 return vmci_transport_send_control_pkt( 409 sk, VMCI_TRANSPORT_PACKET_TYPE_READ, 0, 410 0, NULL, VSOCK_PROTO_INVALID, 411 VMCI_INVALID_HANDLE); 412 } 413 414 int vmci_transport_send_waiting_write(struct sock *sk, 415 struct vmci_transport_waiting_info *wait) 416 { 417 return vmci_transport_send_control_pkt( 418 sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE, 419 0, 0, wait, VSOCK_PROTO_INVALID, 420 VMCI_INVALID_HANDLE); 421 } 422 423 int vmci_transport_send_waiting_read(struct sock *sk, 424 struct vmci_transport_waiting_info *wait) 425 { 426 return vmci_transport_send_control_pkt( 427 sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ, 428 0, 0, wait, VSOCK_PROTO_INVALID, 429 VMCI_INVALID_HANDLE); 430 } 431 432 static int vmci_transport_shutdown(struct vsock_sock *vsk, int mode) 433 { 434 return vmci_transport_send_control_pkt( 435 &vsk->sk, 436 VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN, 437 0, mode, NULL, 438 VSOCK_PROTO_INVALID, 439 VMCI_INVALID_HANDLE); 440 } 441 442 static int vmci_transport_send_conn_request(struct sock *sk, size_t size) 443 { 444 return vmci_transport_send_control_pkt(sk, 445 VMCI_TRANSPORT_PACKET_TYPE_REQUEST, 446 size, 0, NULL, 447 VSOCK_PROTO_INVALID, 448 VMCI_INVALID_HANDLE); 449 } 450 451 static int vmci_transport_send_conn_request2(struct sock *sk, size_t size, 452 u16 version) 453 { 454 return vmci_transport_send_control_pkt( 455 sk, VMCI_TRANSPORT_PACKET_TYPE_REQUEST2, 456 size, 0, NULL, version, 457 VMCI_INVALID_HANDLE); 458 } 459 460 static struct sock *vmci_transport_get_pending( 461 struct sock *listener, 462 struct vmci_transport_packet *pkt) 463 { 464 struct vsock_sock *vlistener; 465 struct vsock_sock *vpending; 466 struct sock *pending; 467 468 vlistener = vsock_sk(listener); 469 470 list_for_each_entry(vpending, &vlistener->pending_links, 471 pending_links) { 472 struct sockaddr_vm src; 473 struct sockaddr_vm dst; 474 475 vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port); 476 vsock_addr_init(&dst, pkt->dg.dst.context, pkt->dst_port); 477 478 if (vsock_addr_equals_addr(&src, &vpending->remote_addr) && 479 vsock_addr_equals_addr(&dst, &vpending->local_addr)) { 480 pending = sk_vsock(vpending); 481 sock_hold(pending); 482 goto found; 483 } 484 } 485 486 pending = NULL; 487 found: 488 return pending; 489 490 } 491 492 static void vmci_transport_release_pending(struct sock *pending) 493 { 494 sock_put(pending); 495 } 496 497 /* We allow two kinds of sockets to communicate with a restricted VM: 1) 498 * trusted sockets 2) sockets from applications running as the same user as the 499 * VM (this is only true for the host side and only when using hosted products) 500 */ 501 502 static bool vmci_transport_is_trusted(struct vsock_sock *vsock, u32 peer_cid) 503 { 504 return vsock->trusted || 505 vmci_is_context_owner(peer_cid, vsock->owner->uid); 506 } 507 508 /* We allow sending datagrams to and receiving datagrams from a restricted VM 509 * only if it is trusted as described in vmci_transport_is_trusted. 510 */ 511 512 static bool vmci_transport_allow_dgram(struct vsock_sock *vsock, u32 peer_cid) 513 { 514 if (vsock->cached_peer != peer_cid) { 515 vsock->cached_peer = peer_cid; 516 if (!vmci_transport_is_trusted(vsock, peer_cid) && 517 (vmci_context_get_priv_flags(peer_cid) & 518 VMCI_PRIVILEGE_FLAG_RESTRICTED)) { 519 vsock->cached_peer_allow_dgram = false; 520 } else { 521 vsock->cached_peer_allow_dgram = true; 522 } 523 } 524 525 return vsock->cached_peer_allow_dgram; 526 } 527 528 static int 529 vmci_transport_queue_pair_alloc(struct vmci_qp **qpair, 530 struct vmci_handle *handle, 531 u64 produce_size, 532 u64 consume_size, 533 u32 peer, u32 flags, bool trusted) 534 { 535 int err = 0; 536 537 if (trusted) { 538 /* Try to allocate our queue pair as trusted. This will only 539 * work if vsock is running in the host. 540 */ 541 542 err = vmci_qpair_alloc(qpair, handle, produce_size, 543 consume_size, 544 peer, flags, 545 VMCI_PRIVILEGE_FLAG_TRUSTED); 546 if (err != VMCI_ERROR_NO_ACCESS) 547 goto out; 548 549 } 550 551 err = vmci_qpair_alloc(qpair, handle, produce_size, consume_size, 552 peer, flags, VMCI_NO_PRIVILEGE_FLAGS); 553 out: 554 if (err < 0) { 555 pr_err("Could not attach to queue pair with %d\n", 556 err); 557 err = vmci_transport_error_to_vsock_error(err); 558 } 559 560 return err; 561 } 562 563 static int 564 vmci_transport_datagram_create_hnd(u32 resource_id, 565 u32 flags, 566 vmci_datagram_recv_cb recv_cb, 567 void *client_data, 568 struct vmci_handle *out_handle) 569 { 570 int err = 0; 571 572 /* Try to allocate our datagram handler as trusted. This will only work 573 * if vsock is running in the host. 574 */ 575 576 err = vmci_datagram_create_handle_priv(resource_id, flags, 577 VMCI_PRIVILEGE_FLAG_TRUSTED, 578 recv_cb, 579 client_data, out_handle); 580 581 if (err == VMCI_ERROR_NO_ACCESS) 582 err = vmci_datagram_create_handle(resource_id, flags, 583 recv_cb, client_data, 584 out_handle); 585 586 return err; 587 } 588 589 /* This is invoked as part of a tasklet that's scheduled when the VMCI 590 * interrupt fires. This is run in bottom-half context and if it ever needs to 591 * sleep it should defer that work to a work queue. 592 */ 593 594 static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg) 595 { 596 struct sock *sk; 597 size_t size; 598 struct sk_buff *skb; 599 struct vsock_sock *vsk; 600 601 sk = (struct sock *)data; 602 603 /* This handler is privileged when this module is running on the host. 604 * We will get datagrams from all endpoints (even VMs that are in a 605 * restricted context). If we get one from a restricted context then 606 * the destination socket must be trusted. 607 * 608 * NOTE: We access the socket struct without holding the lock here. 609 * This is ok because the field we are interested is never modified 610 * outside of the create and destruct socket functions. 611 */ 612 vsk = vsock_sk(sk); 613 if (!vmci_transport_allow_dgram(vsk, dg->src.context)) 614 return VMCI_ERROR_NO_ACCESS; 615 616 size = VMCI_DG_SIZE(dg); 617 618 /* Attach the packet to the socket's receive queue as an sk_buff. */ 619 skb = alloc_skb(size, GFP_ATOMIC); 620 if (skb) { 621 /* sk_receive_skb() will do a sock_put(), so hold here. */ 622 sock_hold(sk); 623 skb_put(skb, size); 624 memcpy(skb->data, dg, size); 625 sk_receive_skb(sk, skb, 0); 626 } 627 628 return VMCI_SUCCESS; 629 } 630 631 static bool vmci_transport_stream_allow(u32 cid, u32 port) 632 { 633 static const u32 non_socket_contexts[] = { 634 VMADDR_CID_HYPERVISOR, 635 VMADDR_CID_RESERVED, 636 }; 637 int i; 638 639 BUILD_BUG_ON(sizeof(cid) != sizeof(*non_socket_contexts)); 640 641 for (i = 0; i < ARRAY_SIZE(non_socket_contexts); i++) { 642 if (cid == non_socket_contexts[i]) 643 return false; 644 } 645 646 return true; 647 } 648 649 /* This is invoked as part of a tasklet that's scheduled when the VMCI 650 * interrupt fires. This is run in bottom-half context but it defers most of 651 * its work to the packet handling work queue. 652 */ 653 654 static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg) 655 { 656 struct sock *sk; 657 struct sockaddr_vm dst; 658 struct sockaddr_vm src; 659 struct vmci_transport_packet *pkt; 660 struct vsock_sock *vsk; 661 bool bh_process_pkt; 662 int err; 663 664 sk = NULL; 665 err = VMCI_SUCCESS; 666 bh_process_pkt = false; 667 668 /* Ignore incoming packets from contexts without sockets, or resources 669 * that aren't vsock implementations. 670 */ 671 672 if (!vmci_transport_stream_allow(dg->src.context, -1) 673 || VMCI_TRANSPORT_PACKET_RID != dg->src.resource) 674 return VMCI_ERROR_NO_ACCESS; 675 676 if (VMCI_DG_SIZE(dg) < sizeof(*pkt)) 677 /* Drop datagrams that do not contain full VSock packets. */ 678 return VMCI_ERROR_INVALID_ARGS; 679 680 pkt = (struct vmci_transport_packet *)dg; 681 682 /* Find the socket that should handle this packet. First we look for a 683 * connected socket and if there is none we look for a socket bound to 684 * the destintation address. 685 */ 686 vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port); 687 vsock_addr_init(&dst, pkt->dg.dst.context, pkt->dst_port); 688 689 sk = vsock_find_connected_socket(&src, &dst); 690 if (!sk) { 691 sk = vsock_find_bound_socket(&dst); 692 if (!sk) { 693 /* We could not find a socket for this specified 694 * address. If this packet is a RST, we just drop it. 695 * If it is another packet, we send a RST. Note that 696 * we do not send a RST reply to RSTs so that we do not 697 * continually send RSTs between two endpoints. 698 * 699 * Note that since this is a reply, dst is src and src 700 * is dst. 701 */ 702 if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0) 703 pr_err("unable to send reset\n"); 704 705 err = VMCI_ERROR_NOT_FOUND; 706 goto out; 707 } 708 } 709 710 /* If the received packet type is beyond all types known to this 711 * implementation, reply with an invalid message. Hopefully this will 712 * help when implementing backwards compatibility in the future. 713 */ 714 if (pkt->type >= VMCI_TRANSPORT_PACKET_TYPE_MAX) { 715 vmci_transport_send_invalid_bh(&dst, &src); 716 err = VMCI_ERROR_INVALID_ARGS; 717 goto out; 718 } 719 720 /* This handler is privileged when this module is running on the host. 721 * We will get datagram connect requests from all endpoints (even VMs 722 * that are in a restricted context). If we get one from a restricted 723 * context then the destination socket must be trusted. 724 * 725 * NOTE: We access the socket struct without holding the lock here. 726 * This is ok because the field we are interested is never modified 727 * outside of the create and destruct socket functions. 728 */ 729 vsk = vsock_sk(sk); 730 if (!vmci_transport_allow_dgram(vsk, pkt->dg.src.context)) { 731 err = VMCI_ERROR_NO_ACCESS; 732 goto out; 733 } 734 735 /* We do most everything in a work queue, but let's fast path the 736 * notification of reads and writes to help data transfer performance. 737 * We can only do this if there is no process context code executing 738 * for this socket since that may change the state. 739 */ 740 bh_lock_sock(sk); 741 742 if (!sock_owned_by_user(sk) && sk->sk_state == SS_CONNECTED) 743 vmci_trans(vsk)->notify_ops->handle_notify_pkt( 744 sk, pkt, true, &dst, &src, 745 &bh_process_pkt); 746 747 bh_unlock_sock(sk); 748 749 if (!bh_process_pkt) { 750 struct vmci_transport_recv_pkt_info *recv_pkt_info; 751 752 recv_pkt_info = kmalloc(sizeof(*recv_pkt_info), GFP_ATOMIC); 753 if (!recv_pkt_info) { 754 if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0) 755 pr_err("unable to send reset\n"); 756 757 err = VMCI_ERROR_NO_MEM; 758 goto out; 759 } 760 761 recv_pkt_info->sk = sk; 762 memcpy(&recv_pkt_info->pkt, pkt, sizeof(recv_pkt_info->pkt)); 763 INIT_WORK(&recv_pkt_info->work, vmci_transport_recv_pkt_work); 764 765 schedule_work(&recv_pkt_info->work); 766 /* Clear sk so that the reference count incremented by one of 767 * the Find functions above is not decremented below. We need 768 * that reference count for the packet handler we've scheduled 769 * to run. 770 */ 771 sk = NULL; 772 } 773 774 out: 775 if (sk) 776 sock_put(sk); 777 778 return err; 779 } 780 781 static void vmci_transport_peer_attach_cb(u32 sub_id, 782 const struct vmci_event_data *e_data, 783 void *client_data) 784 { 785 struct sock *sk = client_data; 786 const struct vmci_event_payload_qp *e_payload; 787 struct vsock_sock *vsk; 788 789 e_payload = vmci_event_data_const_payload(e_data); 790 791 vsk = vsock_sk(sk); 792 793 /* We don't ask for delayed CBs when we subscribe to this event (we 794 * pass 0 as flags to vmci_event_subscribe()). VMCI makes no 795 * guarantees in that case about what context we might be running in, 796 * so it could be BH or process, blockable or non-blockable. So we 797 * need to account for all possible contexts here. 798 */ 799 local_bh_disable(); 800 bh_lock_sock(sk); 801 802 /* XXX This is lame, we should provide a way to lookup sockets by 803 * qp_handle. 804 */ 805 if (vmci_handle_is_equal(vmci_trans(vsk)->qp_handle, 806 e_payload->handle)) { 807 /* XXX This doesn't do anything, but in the future we may want 808 * to set a flag here to verify the attach really did occur and 809 * we weren't just sent a datagram claiming it was. 810 */ 811 goto out; 812 } 813 814 out: 815 bh_unlock_sock(sk); 816 local_bh_enable(); 817 } 818 819 static void vmci_transport_handle_detach(struct sock *sk) 820 { 821 struct vsock_sock *vsk; 822 823 vsk = vsock_sk(sk); 824 if (!vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)) { 825 sock_set_flag(sk, SOCK_DONE); 826 827 /* On a detach the peer will not be sending or receiving 828 * anymore. 829 */ 830 vsk->peer_shutdown = SHUTDOWN_MASK; 831 832 /* We should not be sending anymore since the peer won't be 833 * there to receive, but we can still receive if there is data 834 * left in our consume queue. 835 */ 836 if (vsock_stream_has_data(vsk) <= 0) { 837 if (sk->sk_state == SS_CONNECTING) { 838 /* The peer may detach from a queue pair while 839 * we are still in the connecting state, i.e., 840 * if the peer VM is killed after attaching to 841 * a queue pair, but before we complete the 842 * handshake. In that case, we treat the detach 843 * event like a reset. 844 */ 845 846 sk->sk_state = SS_UNCONNECTED; 847 sk->sk_err = ECONNRESET; 848 sk->sk_error_report(sk); 849 return; 850 } 851 sk->sk_state = SS_UNCONNECTED; 852 } 853 sk->sk_state_change(sk); 854 } 855 } 856 857 static void vmci_transport_peer_detach_cb(u32 sub_id, 858 const struct vmci_event_data *e_data, 859 void *client_data) 860 { 861 struct sock *sk = client_data; 862 const struct vmci_event_payload_qp *e_payload; 863 struct vsock_sock *vsk; 864 865 e_payload = vmci_event_data_const_payload(e_data); 866 vsk = vsock_sk(sk); 867 if (vmci_handle_is_invalid(e_payload->handle)) 868 return; 869 870 /* Same rules for locking as for peer_attach_cb(). */ 871 local_bh_disable(); 872 bh_lock_sock(sk); 873 874 /* XXX This is lame, we should provide a way to lookup sockets by 875 * qp_handle. 876 */ 877 if (vmci_handle_is_equal(vmci_trans(vsk)->qp_handle, 878 e_payload->handle)) 879 vmci_transport_handle_detach(sk); 880 881 bh_unlock_sock(sk); 882 local_bh_enable(); 883 } 884 885 static void vmci_transport_qp_resumed_cb(u32 sub_id, 886 const struct vmci_event_data *e_data, 887 void *client_data) 888 { 889 vsock_for_each_connected_socket(vmci_transport_handle_detach); 890 } 891 892 static void vmci_transport_recv_pkt_work(struct work_struct *work) 893 { 894 struct vmci_transport_recv_pkt_info *recv_pkt_info; 895 struct vmci_transport_packet *pkt; 896 struct sock *sk; 897 898 recv_pkt_info = 899 container_of(work, struct vmci_transport_recv_pkt_info, work); 900 sk = recv_pkt_info->sk; 901 pkt = &recv_pkt_info->pkt; 902 903 lock_sock(sk); 904 905 switch (sk->sk_state) { 906 case SS_LISTEN: 907 vmci_transport_recv_listen(sk, pkt); 908 break; 909 case SS_CONNECTING: 910 /* Processing of pending connections for servers goes through 911 * the listening socket, so see vmci_transport_recv_listen() 912 * for that path. 913 */ 914 vmci_transport_recv_connecting_client(sk, pkt); 915 break; 916 case SS_CONNECTED: 917 vmci_transport_recv_connected(sk, pkt); 918 break; 919 default: 920 /* Because this function does not run in the same context as 921 * vmci_transport_recv_stream_cb it is possible that the 922 * socket has closed. We need to let the other side know or it 923 * could be sitting in a connect and hang forever. Send a 924 * reset to prevent that. 925 */ 926 vmci_transport_send_reset(sk, pkt); 927 goto out; 928 } 929 930 out: 931 release_sock(sk); 932 kfree(recv_pkt_info); 933 /* Release reference obtained in the stream callback when we fetched 934 * this socket out of the bound or connected list. 935 */ 936 sock_put(sk); 937 } 938 939 static int vmci_transport_recv_listen(struct sock *sk, 940 struct vmci_transport_packet *pkt) 941 { 942 struct sock *pending; 943 struct vsock_sock *vpending; 944 int err; 945 u64 qp_size; 946 bool old_request = false; 947 bool old_pkt_proto = false; 948 949 err = 0; 950 951 /* Because we are in the listen state, we could be receiving a packet 952 * for ourself or any previous connection requests that we received. 953 * If it's the latter, we try to find a socket in our list of pending 954 * connections and, if we do, call the appropriate handler for the 955 * state that that socket is in. Otherwise we try to service the 956 * connection request. 957 */ 958 pending = vmci_transport_get_pending(sk, pkt); 959 if (pending) { 960 lock_sock(pending); 961 switch (pending->sk_state) { 962 case SS_CONNECTING: 963 err = vmci_transport_recv_connecting_server(sk, 964 pending, 965 pkt); 966 break; 967 default: 968 vmci_transport_send_reset(pending, pkt); 969 err = -EINVAL; 970 } 971 972 if (err < 0) 973 vsock_remove_pending(sk, pending); 974 975 release_sock(pending); 976 vmci_transport_release_pending(pending); 977 978 return err; 979 } 980 981 /* The listen state only accepts connection requests. Reply with a 982 * reset unless we received a reset. 983 */ 984 985 if (!(pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST || 986 pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)) { 987 vmci_transport_reply_reset(pkt); 988 return -EINVAL; 989 } 990 991 if (pkt->u.size == 0) { 992 vmci_transport_reply_reset(pkt); 993 return -EINVAL; 994 } 995 996 /* If this socket can't accommodate this connection request, we send a 997 * reset. Otherwise we create and initialize a child socket and reply 998 * with a connection negotiation. 999 */ 1000 if (sk->sk_ack_backlog >= sk->sk_max_ack_backlog) { 1001 vmci_transport_reply_reset(pkt); 1002 return -ECONNREFUSED; 1003 } 1004 1005 pending = __vsock_create(sock_net(sk), NULL, sk, GFP_KERNEL, 1006 sk->sk_type); 1007 if (!pending) { 1008 vmci_transport_send_reset(sk, pkt); 1009 return -ENOMEM; 1010 } 1011 1012 vpending = vsock_sk(pending); 1013 1014 vsock_addr_init(&vpending->local_addr, pkt->dg.dst.context, 1015 pkt->dst_port); 1016 vsock_addr_init(&vpending->remote_addr, pkt->dg.src.context, 1017 pkt->src_port); 1018 1019 /* If the proposed size fits within our min/max, accept it. Otherwise 1020 * propose our own size. 1021 */ 1022 if (pkt->u.size >= vmci_trans(vpending)->queue_pair_min_size && 1023 pkt->u.size <= vmci_trans(vpending)->queue_pair_max_size) { 1024 qp_size = pkt->u.size; 1025 } else { 1026 qp_size = vmci_trans(vpending)->queue_pair_size; 1027 } 1028 1029 /* Figure out if we are using old or new requests based on the 1030 * overrides pkt types sent by our peer. 1031 */ 1032 if (vmci_transport_old_proto_override(&old_pkt_proto)) { 1033 old_request = old_pkt_proto; 1034 } else { 1035 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST) 1036 old_request = true; 1037 else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2) 1038 old_request = false; 1039 1040 } 1041 1042 if (old_request) { 1043 /* Handle a REQUEST (or override) */ 1044 u16 version = VSOCK_PROTO_INVALID; 1045 if (vmci_transport_proto_to_notify_struct( 1046 pending, &version, true)) 1047 err = vmci_transport_send_negotiate(pending, qp_size); 1048 else 1049 err = -EINVAL; 1050 1051 } else { 1052 /* Handle a REQUEST2 (or override) */ 1053 int proto_int = pkt->proto; 1054 int pos; 1055 u16 active_proto_version = 0; 1056 1057 /* The list of possible protocols is the intersection of all 1058 * protocols the client supports ... plus all the protocols we 1059 * support. 1060 */ 1061 proto_int &= vmci_transport_new_proto_supported_versions(); 1062 1063 /* We choose the highest possible protocol version and use that 1064 * one. 1065 */ 1066 pos = fls(proto_int); 1067 if (pos) { 1068 active_proto_version = (1 << (pos - 1)); 1069 if (vmci_transport_proto_to_notify_struct( 1070 pending, &active_proto_version, false)) 1071 err = vmci_transport_send_negotiate2(pending, 1072 qp_size, 1073 active_proto_version); 1074 else 1075 err = -EINVAL; 1076 1077 } else { 1078 err = -EINVAL; 1079 } 1080 } 1081 1082 if (err < 0) { 1083 vmci_transport_send_reset(sk, pkt); 1084 sock_put(pending); 1085 err = vmci_transport_error_to_vsock_error(err); 1086 goto out; 1087 } 1088 1089 vsock_add_pending(sk, pending); 1090 sk->sk_ack_backlog++; 1091 1092 pending->sk_state = SS_CONNECTING; 1093 vmci_trans(vpending)->produce_size = 1094 vmci_trans(vpending)->consume_size = qp_size; 1095 vmci_trans(vpending)->queue_pair_size = qp_size; 1096 1097 vmci_trans(vpending)->notify_ops->process_request(pending); 1098 1099 /* We might never receive another message for this socket and it's not 1100 * connected to any process, so we have to ensure it gets cleaned up 1101 * ourself. Our delayed work function will take care of that. Note 1102 * that we do not ever cancel this function since we have few 1103 * guarantees about its state when calling cancel_delayed_work(). 1104 * Instead we hold a reference on the socket for that function and make 1105 * it capable of handling cases where it needs to do nothing but 1106 * release that reference. 1107 */ 1108 vpending->listener = sk; 1109 sock_hold(sk); 1110 sock_hold(pending); 1111 INIT_DELAYED_WORK(&vpending->dwork, vsock_pending_work); 1112 schedule_delayed_work(&vpending->dwork, HZ); 1113 1114 out: 1115 return err; 1116 } 1117 1118 static int 1119 vmci_transport_recv_connecting_server(struct sock *listener, 1120 struct sock *pending, 1121 struct vmci_transport_packet *pkt) 1122 { 1123 struct vsock_sock *vpending; 1124 struct vmci_handle handle; 1125 struct vmci_qp *qpair; 1126 bool is_local; 1127 u32 flags; 1128 u32 detach_sub_id; 1129 int err; 1130 int skerr; 1131 1132 vpending = vsock_sk(pending); 1133 detach_sub_id = VMCI_INVALID_ID; 1134 1135 switch (pkt->type) { 1136 case VMCI_TRANSPORT_PACKET_TYPE_OFFER: 1137 if (vmci_handle_is_invalid(pkt->u.handle)) { 1138 vmci_transport_send_reset(pending, pkt); 1139 skerr = EPROTO; 1140 err = -EINVAL; 1141 goto destroy; 1142 } 1143 break; 1144 default: 1145 /* Close and cleanup the connection. */ 1146 vmci_transport_send_reset(pending, pkt); 1147 skerr = EPROTO; 1148 err = pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST ? 0 : -EINVAL; 1149 goto destroy; 1150 } 1151 1152 /* In order to complete the connection we need to attach to the offered 1153 * queue pair and send an attach notification. We also subscribe to the 1154 * detach event so we know when our peer goes away, and we do that 1155 * before attaching so we don't miss an event. If all this succeeds, 1156 * we update our state and wakeup anything waiting in accept() for a 1157 * connection. 1158 */ 1159 1160 /* We don't care about attach since we ensure the other side has 1161 * attached by specifying the ATTACH_ONLY flag below. 1162 */ 1163 err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH, 1164 vmci_transport_peer_detach_cb, 1165 pending, &detach_sub_id); 1166 if (err < VMCI_SUCCESS) { 1167 vmci_transport_send_reset(pending, pkt); 1168 err = vmci_transport_error_to_vsock_error(err); 1169 skerr = -err; 1170 goto destroy; 1171 } 1172 1173 vmci_trans(vpending)->detach_sub_id = detach_sub_id; 1174 1175 /* Now attach to the queue pair the client created. */ 1176 handle = pkt->u.handle; 1177 1178 /* vpending->local_addr always has a context id so we do not need to 1179 * worry about VMADDR_CID_ANY in this case. 1180 */ 1181 is_local = 1182 vpending->remote_addr.svm_cid == vpending->local_addr.svm_cid; 1183 flags = VMCI_QPFLAG_ATTACH_ONLY; 1184 flags |= is_local ? VMCI_QPFLAG_LOCAL : 0; 1185 1186 err = vmci_transport_queue_pair_alloc( 1187 &qpair, 1188 &handle, 1189 vmci_trans(vpending)->produce_size, 1190 vmci_trans(vpending)->consume_size, 1191 pkt->dg.src.context, 1192 flags, 1193 vmci_transport_is_trusted( 1194 vpending, 1195 vpending->remote_addr.svm_cid)); 1196 if (err < 0) { 1197 vmci_transport_send_reset(pending, pkt); 1198 skerr = -err; 1199 goto destroy; 1200 } 1201 1202 vmci_trans(vpending)->qp_handle = handle; 1203 vmci_trans(vpending)->qpair = qpair; 1204 1205 /* When we send the attach message, we must be ready to handle incoming 1206 * control messages on the newly connected socket. So we move the 1207 * pending socket to the connected state before sending the attach 1208 * message. Otherwise, an incoming packet triggered by the attach being 1209 * received by the peer may be processed concurrently with what happens 1210 * below after sending the attach message, and that incoming packet 1211 * will find the listening socket instead of the (currently) pending 1212 * socket. Note that enqueueing the socket increments the reference 1213 * count, so even if a reset comes before the connection is accepted, 1214 * the socket will be valid until it is removed from the queue. 1215 * 1216 * If we fail sending the attach below, we remove the socket from the 1217 * connected list and move the socket to SS_UNCONNECTED before 1218 * releasing the lock, so a pending slow path processing of an incoming 1219 * packet will not see the socket in the connected state in that case. 1220 */ 1221 pending->sk_state = SS_CONNECTED; 1222 1223 vsock_insert_connected(vpending); 1224 1225 /* Notify our peer of our attach. */ 1226 err = vmci_transport_send_attach(pending, handle); 1227 if (err < 0) { 1228 vsock_remove_connected(vpending); 1229 pr_err("Could not send attach\n"); 1230 vmci_transport_send_reset(pending, pkt); 1231 err = vmci_transport_error_to_vsock_error(err); 1232 skerr = -err; 1233 goto destroy; 1234 } 1235 1236 /* We have a connection. Move the now connected socket from the 1237 * listener's pending list to the accept queue so callers of accept() 1238 * can find it. 1239 */ 1240 vsock_remove_pending(listener, pending); 1241 vsock_enqueue_accept(listener, pending); 1242 1243 /* Callers of accept() will be be waiting on the listening socket, not 1244 * the pending socket. 1245 */ 1246 listener->sk_state_change(listener); 1247 1248 return 0; 1249 1250 destroy: 1251 pending->sk_err = skerr; 1252 pending->sk_state = SS_UNCONNECTED; 1253 /* As long as we drop our reference, all necessary cleanup will handle 1254 * when the cleanup function drops its reference and our destruct 1255 * implementation is called. Note that since the listen handler will 1256 * remove pending from the pending list upon our failure, the cleanup 1257 * function won't drop the additional reference, which is why we do it 1258 * here. 1259 */ 1260 sock_put(pending); 1261 1262 return err; 1263 } 1264 1265 static int 1266 vmci_transport_recv_connecting_client(struct sock *sk, 1267 struct vmci_transport_packet *pkt) 1268 { 1269 struct vsock_sock *vsk; 1270 int err; 1271 int skerr; 1272 1273 vsk = vsock_sk(sk); 1274 1275 switch (pkt->type) { 1276 case VMCI_TRANSPORT_PACKET_TYPE_ATTACH: 1277 if (vmci_handle_is_invalid(pkt->u.handle) || 1278 !vmci_handle_is_equal(pkt->u.handle, 1279 vmci_trans(vsk)->qp_handle)) { 1280 skerr = EPROTO; 1281 err = -EINVAL; 1282 goto destroy; 1283 } 1284 1285 /* Signify the socket is connected and wakeup the waiter in 1286 * connect(). Also place the socket in the connected table for 1287 * accounting (it can already be found since it's in the bound 1288 * table). 1289 */ 1290 sk->sk_state = SS_CONNECTED; 1291 sk->sk_socket->state = SS_CONNECTED; 1292 vsock_insert_connected(vsk); 1293 sk->sk_state_change(sk); 1294 1295 break; 1296 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE: 1297 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2: 1298 if (pkt->u.size == 0 1299 || pkt->dg.src.context != vsk->remote_addr.svm_cid 1300 || pkt->src_port != vsk->remote_addr.svm_port 1301 || !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle) 1302 || vmci_trans(vsk)->qpair 1303 || vmci_trans(vsk)->produce_size != 0 1304 || vmci_trans(vsk)->consume_size != 0 1305 || vmci_trans(vsk)->attach_sub_id != VMCI_INVALID_ID 1306 || vmci_trans(vsk)->detach_sub_id != VMCI_INVALID_ID) { 1307 skerr = EPROTO; 1308 err = -EINVAL; 1309 1310 goto destroy; 1311 } 1312 1313 err = vmci_transport_recv_connecting_client_negotiate(sk, pkt); 1314 if (err) { 1315 skerr = -err; 1316 goto destroy; 1317 } 1318 1319 break; 1320 case VMCI_TRANSPORT_PACKET_TYPE_INVALID: 1321 err = vmci_transport_recv_connecting_client_invalid(sk, pkt); 1322 if (err) { 1323 skerr = -err; 1324 goto destroy; 1325 } 1326 1327 break; 1328 case VMCI_TRANSPORT_PACKET_TYPE_RST: 1329 /* Older versions of the linux code (WS 6.5 / ESX 4.0) used to 1330 * continue processing here after they sent an INVALID packet. 1331 * This meant that we got a RST after the INVALID. We ignore a 1332 * RST after an INVALID. The common code doesn't send the RST 1333 * ... so we can hang if an old version of the common code 1334 * fails between getting a REQUEST and sending an OFFER back. 1335 * Not much we can do about it... except hope that it doesn't 1336 * happen. 1337 */ 1338 if (vsk->ignore_connecting_rst) { 1339 vsk->ignore_connecting_rst = false; 1340 } else { 1341 skerr = ECONNRESET; 1342 err = 0; 1343 goto destroy; 1344 } 1345 1346 break; 1347 default: 1348 /* Close and cleanup the connection. */ 1349 skerr = EPROTO; 1350 err = -EINVAL; 1351 goto destroy; 1352 } 1353 1354 return 0; 1355 1356 destroy: 1357 vmci_transport_send_reset(sk, pkt); 1358 1359 sk->sk_state = SS_UNCONNECTED; 1360 sk->sk_err = skerr; 1361 sk->sk_error_report(sk); 1362 return err; 1363 } 1364 1365 static int vmci_transport_recv_connecting_client_negotiate( 1366 struct sock *sk, 1367 struct vmci_transport_packet *pkt) 1368 { 1369 int err; 1370 struct vsock_sock *vsk; 1371 struct vmci_handle handle; 1372 struct vmci_qp *qpair; 1373 u32 attach_sub_id; 1374 u32 detach_sub_id; 1375 bool is_local; 1376 u32 flags; 1377 bool old_proto = true; 1378 bool old_pkt_proto; 1379 u16 version; 1380 1381 vsk = vsock_sk(sk); 1382 handle = VMCI_INVALID_HANDLE; 1383 attach_sub_id = VMCI_INVALID_ID; 1384 detach_sub_id = VMCI_INVALID_ID; 1385 1386 /* If we have gotten here then we should be past the point where old 1387 * linux vsock could have sent the bogus rst. 1388 */ 1389 vsk->sent_request = false; 1390 vsk->ignore_connecting_rst = false; 1391 1392 /* Verify that we're OK with the proposed queue pair size */ 1393 if (pkt->u.size < vmci_trans(vsk)->queue_pair_min_size || 1394 pkt->u.size > vmci_trans(vsk)->queue_pair_max_size) { 1395 err = -EINVAL; 1396 goto destroy; 1397 } 1398 1399 /* At this point we know the CID the peer is using to talk to us. */ 1400 1401 if (vsk->local_addr.svm_cid == VMADDR_CID_ANY) 1402 vsk->local_addr.svm_cid = pkt->dg.dst.context; 1403 1404 /* Setup the notify ops to be the highest supported version that both 1405 * the server and the client support. 1406 */ 1407 1408 if (vmci_transport_old_proto_override(&old_pkt_proto)) { 1409 old_proto = old_pkt_proto; 1410 } else { 1411 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE) 1412 old_proto = true; 1413 else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2) 1414 old_proto = false; 1415 1416 } 1417 1418 if (old_proto) 1419 version = VSOCK_PROTO_INVALID; 1420 else 1421 version = pkt->proto; 1422 1423 if (!vmci_transport_proto_to_notify_struct(sk, &version, old_proto)) { 1424 err = -EINVAL; 1425 goto destroy; 1426 } 1427 1428 /* Subscribe to attach and detach events first. 1429 * 1430 * XXX We attach once for each queue pair created for now so it is easy 1431 * to find the socket (it's provided), but later we should only 1432 * subscribe once and add a way to lookup sockets by queue pair handle. 1433 */ 1434 err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_ATTACH, 1435 vmci_transport_peer_attach_cb, 1436 sk, &attach_sub_id); 1437 if (err < VMCI_SUCCESS) { 1438 err = vmci_transport_error_to_vsock_error(err); 1439 goto destroy; 1440 } 1441 1442 err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH, 1443 vmci_transport_peer_detach_cb, 1444 sk, &detach_sub_id); 1445 if (err < VMCI_SUCCESS) { 1446 err = vmci_transport_error_to_vsock_error(err); 1447 goto destroy; 1448 } 1449 1450 /* Make VMCI select the handle for us. */ 1451 handle = VMCI_INVALID_HANDLE; 1452 is_local = vsk->remote_addr.svm_cid == vsk->local_addr.svm_cid; 1453 flags = is_local ? VMCI_QPFLAG_LOCAL : 0; 1454 1455 err = vmci_transport_queue_pair_alloc(&qpair, 1456 &handle, 1457 pkt->u.size, 1458 pkt->u.size, 1459 vsk->remote_addr.svm_cid, 1460 flags, 1461 vmci_transport_is_trusted( 1462 vsk, 1463 vsk-> 1464 remote_addr.svm_cid)); 1465 if (err < 0) 1466 goto destroy; 1467 1468 err = vmci_transport_send_qp_offer(sk, handle); 1469 if (err < 0) { 1470 err = vmci_transport_error_to_vsock_error(err); 1471 goto destroy; 1472 } 1473 1474 vmci_trans(vsk)->qp_handle = handle; 1475 vmci_trans(vsk)->qpair = qpair; 1476 1477 vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size = 1478 pkt->u.size; 1479 1480 vmci_trans(vsk)->attach_sub_id = attach_sub_id; 1481 vmci_trans(vsk)->detach_sub_id = detach_sub_id; 1482 1483 vmci_trans(vsk)->notify_ops->process_negotiate(sk); 1484 1485 return 0; 1486 1487 destroy: 1488 if (attach_sub_id != VMCI_INVALID_ID) 1489 vmci_event_unsubscribe(attach_sub_id); 1490 1491 if (detach_sub_id != VMCI_INVALID_ID) 1492 vmci_event_unsubscribe(detach_sub_id); 1493 1494 if (!vmci_handle_is_invalid(handle)) 1495 vmci_qpair_detach(&qpair); 1496 1497 return err; 1498 } 1499 1500 static int 1501 vmci_transport_recv_connecting_client_invalid(struct sock *sk, 1502 struct vmci_transport_packet *pkt) 1503 { 1504 int err = 0; 1505 struct vsock_sock *vsk = vsock_sk(sk); 1506 1507 if (vsk->sent_request) { 1508 vsk->sent_request = false; 1509 vsk->ignore_connecting_rst = true; 1510 1511 err = vmci_transport_send_conn_request( 1512 sk, vmci_trans(vsk)->queue_pair_size); 1513 if (err < 0) 1514 err = vmci_transport_error_to_vsock_error(err); 1515 else 1516 err = 0; 1517 1518 } 1519 1520 return err; 1521 } 1522 1523 static int vmci_transport_recv_connected(struct sock *sk, 1524 struct vmci_transport_packet *pkt) 1525 { 1526 struct vsock_sock *vsk; 1527 bool pkt_processed = false; 1528 1529 /* In cases where we are closing the connection, it's sufficient to 1530 * mark the state change (and maybe error) and wake up any waiting 1531 * threads. Since this is a connected socket, it's owned by a user 1532 * process and will be cleaned up when the failure is passed back on 1533 * the current or next system call. Our system call implementations 1534 * must therefore check for error and state changes on entry and when 1535 * being awoken. 1536 */ 1537 switch (pkt->type) { 1538 case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN: 1539 if (pkt->u.mode) { 1540 vsk = vsock_sk(sk); 1541 1542 vsk->peer_shutdown |= pkt->u.mode; 1543 sk->sk_state_change(sk); 1544 } 1545 break; 1546 1547 case VMCI_TRANSPORT_PACKET_TYPE_RST: 1548 vsk = vsock_sk(sk); 1549 /* It is possible that we sent our peer a message (e.g a 1550 * WAITING_READ) right before we got notified that the peer had 1551 * detached. If that happens then we can get a RST pkt back 1552 * from our peer even though there is data available for us to 1553 * read. In that case, don't shutdown the socket completely but 1554 * instead allow the local client to finish reading data off 1555 * the queuepair. Always treat a RST pkt in connected mode like 1556 * a clean shutdown. 1557 */ 1558 sock_set_flag(sk, SOCK_DONE); 1559 vsk->peer_shutdown = SHUTDOWN_MASK; 1560 if (vsock_stream_has_data(vsk) <= 0) 1561 sk->sk_state = SS_DISCONNECTING; 1562 1563 sk->sk_state_change(sk); 1564 break; 1565 1566 default: 1567 vsk = vsock_sk(sk); 1568 vmci_trans(vsk)->notify_ops->handle_notify_pkt( 1569 sk, pkt, false, NULL, NULL, 1570 &pkt_processed); 1571 if (!pkt_processed) 1572 return -EINVAL; 1573 1574 break; 1575 } 1576 1577 return 0; 1578 } 1579 1580 static int vmci_transport_socket_init(struct vsock_sock *vsk, 1581 struct vsock_sock *psk) 1582 { 1583 vsk->trans = kmalloc(sizeof(struct vmci_transport), GFP_KERNEL); 1584 if (!vsk->trans) 1585 return -ENOMEM; 1586 1587 vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE; 1588 vmci_trans(vsk)->qp_handle = VMCI_INVALID_HANDLE; 1589 vmci_trans(vsk)->qpair = NULL; 1590 vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size = 0; 1591 vmci_trans(vsk)->attach_sub_id = vmci_trans(vsk)->detach_sub_id = 1592 VMCI_INVALID_ID; 1593 vmci_trans(vsk)->notify_ops = NULL; 1594 if (psk) { 1595 vmci_trans(vsk)->queue_pair_size = 1596 vmci_trans(psk)->queue_pair_size; 1597 vmci_trans(vsk)->queue_pair_min_size = 1598 vmci_trans(psk)->queue_pair_min_size; 1599 vmci_trans(vsk)->queue_pair_max_size = 1600 vmci_trans(psk)->queue_pair_max_size; 1601 } else { 1602 vmci_trans(vsk)->queue_pair_size = 1603 VMCI_TRANSPORT_DEFAULT_QP_SIZE; 1604 vmci_trans(vsk)->queue_pair_min_size = 1605 VMCI_TRANSPORT_DEFAULT_QP_SIZE_MIN; 1606 vmci_trans(vsk)->queue_pair_max_size = 1607 VMCI_TRANSPORT_DEFAULT_QP_SIZE_MAX; 1608 } 1609 1610 return 0; 1611 } 1612 1613 static void vmci_transport_destruct(struct vsock_sock *vsk) 1614 { 1615 if (vmci_trans(vsk)->attach_sub_id != VMCI_INVALID_ID) { 1616 vmci_event_unsubscribe(vmci_trans(vsk)->attach_sub_id); 1617 vmci_trans(vsk)->attach_sub_id = VMCI_INVALID_ID; 1618 } 1619 1620 if (vmci_trans(vsk)->detach_sub_id != VMCI_INVALID_ID) { 1621 vmci_event_unsubscribe(vmci_trans(vsk)->detach_sub_id); 1622 vmci_trans(vsk)->detach_sub_id = VMCI_INVALID_ID; 1623 } 1624 1625 if (!vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)) { 1626 vmci_qpair_detach(&vmci_trans(vsk)->qpair); 1627 vmci_trans(vsk)->qp_handle = VMCI_INVALID_HANDLE; 1628 vmci_trans(vsk)->produce_size = 0; 1629 vmci_trans(vsk)->consume_size = 0; 1630 } 1631 1632 if (vmci_trans(vsk)->notify_ops) 1633 vmci_trans(vsk)->notify_ops->socket_destruct(vsk); 1634 1635 kfree(vsk->trans); 1636 vsk->trans = NULL; 1637 } 1638 1639 static void vmci_transport_release(struct vsock_sock *vsk) 1640 { 1641 if (!vmci_handle_is_invalid(vmci_trans(vsk)->dg_handle)) { 1642 vmci_datagram_destroy_handle(vmci_trans(vsk)->dg_handle); 1643 vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE; 1644 } 1645 } 1646 1647 static int vmci_transport_dgram_bind(struct vsock_sock *vsk, 1648 struct sockaddr_vm *addr) 1649 { 1650 u32 port; 1651 u32 flags; 1652 int err; 1653 1654 /* VMCI will select a resource ID for us if we provide 1655 * VMCI_INVALID_ID. 1656 */ 1657 port = addr->svm_port == VMADDR_PORT_ANY ? 1658 VMCI_INVALID_ID : addr->svm_port; 1659 1660 if (port <= LAST_RESERVED_PORT && !capable(CAP_NET_BIND_SERVICE)) 1661 return -EACCES; 1662 1663 flags = addr->svm_cid == VMADDR_CID_ANY ? 1664 VMCI_FLAG_ANYCID_DG_HND : 0; 1665 1666 err = vmci_transport_datagram_create_hnd(port, flags, 1667 vmci_transport_recv_dgram_cb, 1668 &vsk->sk, 1669 &vmci_trans(vsk)->dg_handle); 1670 if (err < VMCI_SUCCESS) 1671 return vmci_transport_error_to_vsock_error(err); 1672 vsock_addr_init(&vsk->local_addr, addr->svm_cid, 1673 vmci_trans(vsk)->dg_handle.resource); 1674 1675 return 0; 1676 } 1677 1678 static int vmci_transport_dgram_enqueue( 1679 struct vsock_sock *vsk, 1680 struct sockaddr_vm *remote_addr, 1681 struct iovec *iov, 1682 size_t len) 1683 { 1684 int err; 1685 struct vmci_datagram *dg; 1686 1687 if (len > VMCI_MAX_DG_PAYLOAD_SIZE) 1688 return -EMSGSIZE; 1689 1690 if (!vmci_transport_allow_dgram(vsk, remote_addr->svm_cid)) 1691 return -EPERM; 1692 1693 /* Allocate a buffer for the user's message and our packet header. */ 1694 dg = kmalloc(len + sizeof(*dg), GFP_KERNEL); 1695 if (!dg) 1696 return -ENOMEM; 1697 1698 memcpy_fromiovec(VMCI_DG_PAYLOAD(dg), iov, len); 1699 1700 dg->dst = vmci_make_handle(remote_addr->svm_cid, 1701 remote_addr->svm_port); 1702 dg->src = vmci_make_handle(vsk->local_addr.svm_cid, 1703 vsk->local_addr.svm_port); 1704 dg->payload_size = len; 1705 1706 err = vmci_datagram_send(dg); 1707 kfree(dg); 1708 if (err < 0) 1709 return vmci_transport_error_to_vsock_error(err); 1710 1711 return err - sizeof(*dg); 1712 } 1713 1714 static int vmci_transport_dgram_dequeue(struct kiocb *kiocb, 1715 struct vsock_sock *vsk, 1716 struct msghdr *msg, size_t len, 1717 int flags) 1718 { 1719 int err; 1720 int noblock; 1721 struct vmci_datagram *dg; 1722 size_t payload_len; 1723 struct sk_buff *skb; 1724 1725 noblock = flags & MSG_DONTWAIT; 1726 1727 if (flags & MSG_OOB || flags & MSG_ERRQUEUE) 1728 return -EOPNOTSUPP; 1729 1730 /* Retrieve the head sk_buff from the socket's receive queue. */ 1731 err = 0; 1732 skb = skb_recv_datagram(&vsk->sk, flags, noblock, &err); 1733 if (err) 1734 return err; 1735 1736 if (!skb) 1737 return -EAGAIN; 1738 1739 dg = (struct vmci_datagram *)skb->data; 1740 if (!dg) 1741 /* err is 0, meaning we read zero bytes. */ 1742 goto out; 1743 1744 payload_len = dg->payload_size; 1745 /* Ensure the sk_buff matches the payload size claimed in the packet. */ 1746 if (payload_len != skb->len - sizeof(*dg)) { 1747 err = -EINVAL; 1748 goto out; 1749 } 1750 1751 if (payload_len > len) { 1752 payload_len = len; 1753 msg->msg_flags |= MSG_TRUNC; 1754 } 1755 1756 /* Place the datagram payload in the user's iovec. */ 1757 err = skb_copy_datagram_iovec(skb, sizeof(*dg), msg->msg_iov, 1758 payload_len); 1759 if (err) 1760 goto out; 1761 1762 msg->msg_namelen = 0; 1763 if (msg->msg_name) { 1764 struct sockaddr_vm *vm_addr; 1765 1766 /* Provide the address of the sender. */ 1767 vm_addr = (struct sockaddr_vm *)msg->msg_name; 1768 vsock_addr_init(vm_addr, dg->src.context, dg->src.resource); 1769 msg->msg_namelen = sizeof(*vm_addr); 1770 } 1771 err = payload_len; 1772 1773 out: 1774 skb_free_datagram(&vsk->sk, skb); 1775 return err; 1776 } 1777 1778 static bool vmci_transport_dgram_allow(u32 cid, u32 port) 1779 { 1780 if (cid == VMADDR_CID_HYPERVISOR) { 1781 /* Registrations of PBRPC Servers do not modify VMX/Hypervisor 1782 * state and are allowed. 1783 */ 1784 return port == VMCI_UNITY_PBRPC_REGISTER; 1785 } 1786 1787 return true; 1788 } 1789 1790 static int vmci_transport_connect(struct vsock_sock *vsk) 1791 { 1792 int err; 1793 bool old_pkt_proto = false; 1794 struct sock *sk = &vsk->sk; 1795 1796 if (vmci_transport_old_proto_override(&old_pkt_proto) && 1797 old_pkt_proto) { 1798 err = vmci_transport_send_conn_request( 1799 sk, vmci_trans(vsk)->queue_pair_size); 1800 if (err < 0) { 1801 sk->sk_state = SS_UNCONNECTED; 1802 return err; 1803 } 1804 } else { 1805 int supported_proto_versions = 1806 vmci_transport_new_proto_supported_versions(); 1807 err = vmci_transport_send_conn_request2( 1808 sk, vmci_trans(vsk)->queue_pair_size, 1809 supported_proto_versions); 1810 if (err < 0) { 1811 sk->sk_state = SS_UNCONNECTED; 1812 return err; 1813 } 1814 1815 vsk->sent_request = true; 1816 } 1817 1818 return err; 1819 } 1820 1821 static ssize_t vmci_transport_stream_dequeue( 1822 struct vsock_sock *vsk, 1823 struct iovec *iov, 1824 size_t len, 1825 int flags) 1826 { 1827 if (flags & MSG_PEEK) 1828 return vmci_qpair_peekv(vmci_trans(vsk)->qpair, iov, len, 0); 1829 else 1830 return vmci_qpair_dequev(vmci_trans(vsk)->qpair, iov, len, 0); 1831 } 1832 1833 static ssize_t vmci_transport_stream_enqueue( 1834 struct vsock_sock *vsk, 1835 struct iovec *iov, 1836 size_t len) 1837 { 1838 return vmci_qpair_enquev(vmci_trans(vsk)->qpair, iov, len, 0); 1839 } 1840 1841 static s64 vmci_transport_stream_has_data(struct vsock_sock *vsk) 1842 { 1843 return vmci_qpair_consume_buf_ready(vmci_trans(vsk)->qpair); 1844 } 1845 1846 static s64 vmci_transport_stream_has_space(struct vsock_sock *vsk) 1847 { 1848 return vmci_qpair_produce_free_space(vmci_trans(vsk)->qpair); 1849 } 1850 1851 static u64 vmci_transport_stream_rcvhiwat(struct vsock_sock *vsk) 1852 { 1853 return vmci_trans(vsk)->consume_size; 1854 } 1855 1856 static bool vmci_transport_stream_is_active(struct vsock_sock *vsk) 1857 { 1858 return !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle); 1859 } 1860 1861 static u64 vmci_transport_get_buffer_size(struct vsock_sock *vsk) 1862 { 1863 return vmci_trans(vsk)->queue_pair_size; 1864 } 1865 1866 static u64 vmci_transport_get_min_buffer_size(struct vsock_sock *vsk) 1867 { 1868 return vmci_trans(vsk)->queue_pair_min_size; 1869 } 1870 1871 static u64 vmci_transport_get_max_buffer_size(struct vsock_sock *vsk) 1872 { 1873 return vmci_trans(vsk)->queue_pair_max_size; 1874 } 1875 1876 static void vmci_transport_set_buffer_size(struct vsock_sock *vsk, u64 val) 1877 { 1878 if (val < vmci_trans(vsk)->queue_pair_min_size) 1879 vmci_trans(vsk)->queue_pair_min_size = val; 1880 if (val > vmci_trans(vsk)->queue_pair_max_size) 1881 vmci_trans(vsk)->queue_pair_max_size = val; 1882 vmci_trans(vsk)->queue_pair_size = val; 1883 } 1884 1885 static void vmci_transport_set_min_buffer_size(struct vsock_sock *vsk, 1886 u64 val) 1887 { 1888 if (val > vmci_trans(vsk)->queue_pair_size) 1889 vmci_trans(vsk)->queue_pair_size = val; 1890 vmci_trans(vsk)->queue_pair_min_size = val; 1891 } 1892 1893 static void vmci_transport_set_max_buffer_size(struct vsock_sock *vsk, 1894 u64 val) 1895 { 1896 if (val < vmci_trans(vsk)->queue_pair_size) 1897 vmci_trans(vsk)->queue_pair_size = val; 1898 vmci_trans(vsk)->queue_pair_max_size = val; 1899 } 1900 1901 static int vmci_transport_notify_poll_in( 1902 struct vsock_sock *vsk, 1903 size_t target, 1904 bool *data_ready_now) 1905 { 1906 return vmci_trans(vsk)->notify_ops->poll_in( 1907 &vsk->sk, target, data_ready_now); 1908 } 1909 1910 static int vmci_transport_notify_poll_out( 1911 struct vsock_sock *vsk, 1912 size_t target, 1913 bool *space_available_now) 1914 { 1915 return vmci_trans(vsk)->notify_ops->poll_out( 1916 &vsk->sk, target, space_available_now); 1917 } 1918 1919 static int vmci_transport_notify_recv_init( 1920 struct vsock_sock *vsk, 1921 size_t target, 1922 struct vsock_transport_recv_notify_data *data) 1923 { 1924 return vmci_trans(vsk)->notify_ops->recv_init( 1925 &vsk->sk, target, 1926 (struct vmci_transport_recv_notify_data *)data); 1927 } 1928 1929 static int vmci_transport_notify_recv_pre_block( 1930 struct vsock_sock *vsk, 1931 size_t target, 1932 struct vsock_transport_recv_notify_data *data) 1933 { 1934 return vmci_trans(vsk)->notify_ops->recv_pre_block( 1935 &vsk->sk, target, 1936 (struct vmci_transport_recv_notify_data *)data); 1937 } 1938 1939 static int vmci_transport_notify_recv_pre_dequeue( 1940 struct vsock_sock *vsk, 1941 size_t target, 1942 struct vsock_transport_recv_notify_data *data) 1943 { 1944 return vmci_trans(vsk)->notify_ops->recv_pre_dequeue( 1945 &vsk->sk, target, 1946 (struct vmci_transport_recv_notify_data *)data); 1947 } 1948 1949 static int vmci_transport_notify_recv_post_dequeue( 1950 struct vsock_sock *vsk, 1951 size_t target, 1952 ssize_t copied, 1953 bool data_read, 1954 struct vsock_transport_recv_notify_data *data) 1955 { 1956 return vmci_trans(vsk)->notify_ops->recv_post_dequeue( 1957 &vsk->sk, target, copied, data_read, 1958 (struct vmci_transport_recv_notify_data *)data); 1959 } 1960 1961 static int vmci_transport_notify_send_init( 1962 struct vsock_sock *vsk, 1963 struct vsock_transport_send_notify_data *data) 1964 { 1965 return vmci_trans(vsk)->notify_ops->send_init( 1966 &vsk->sk, 1967 (struct vmci_transport_send_notify_data *)data); 1968 } 1969 1970 static int vmci_transport_notify_send_pre_block( 1971 struct vsock_sock *vsk, 1972 struct vsock_transport_send_notify_data *data) 1973 { 1974 return vmci_trans(vsk)->notify_ops->send_pre_block( 1975 &vsk->sk, 1976 (struct vmci_transport_send_notify_data *)data); 1977 } 1978 1979 static int vmci_transport_notify_send_pre_enqueue( 1980 struct vsock_sock *vsk, 1981 struct vsock_transport_send_notify_data *data) 1982 { 1983 return vmci_trans(vsk)->notify_ops->send_pre_enqueue( 1984 &vsk->sk, 1985 (struct vmci_transport_send_notify_data *)data); 1986 } 1987 1988 static int vmci_transport_notify_send_post_enqueue( 1989 struct vsock_sock *vsk, 1990 ssize_t written, 1991 struct vsock_transport_send_notify_data *data) 1992 { 1993 return vmci_trans(vsk)->notify_ops->send_post_enqueue( 1994 &vsk->sk, written, 1995 (struct vmci_transport_send_notify_data *)data); 1996 } 1997 1998 static bool vmci_transport_old_proto_override(bool *old_pkt_proto) 1999 { 2000 if (PROTOCOL_OVERRIDE != -1) { 2001 if (PROTOCOL_OVERRIDE == 0) 2002 *old_pkt_proto = true; 2003 else 2004 *old_pkt_proto = false; 2005 2006 pr_info("Proto override in use\n"); 2007 return true; 2008 } 2009 2010 return false; 2011 } 2012 2013 static bool vmci_transport_proto_to_notify_struct(struct sock *sk, 2014 u16 *proto, 2015 bool old_pkt_proto) 2016 { 2017 struct vsock_sock *vsk = vsock_sk(sk); 2018 2019 if (old_pkt_proto) { 2020 if (*proto != VSOCK_PROTO_INVALID) { 2021 pr_err("Can't set both an old and new protocol\n"); 2022 return false; 2023 } 2024 vmci_trans(vsk)->notify_ops = &vmci_transport_notify_pkt_ops; 2025 goto exit; 2026 } 2027 2028 switch (*proto) { 2029 case VSOCK_PROTO_PKT_ON_NOTIFY: 2030 vmci_trans(vsk)->notify_ops = 2031 &vmci_transport_notify_pkt_q_state_ops; 2032 break; 2033 default: 2034 pr_err("Unknown notify protocol version\n"); 2035 return false; 2036 } 2037 2038 exit: 2039 vmci_trans(vsk)->notify_ops->socket_init(sk); 2040 return true; 2041 } 2042 2043 static u16 vmci_transport_new_proto_supported_versions(void) 2044 { 2045 if (PROTOCOL_OVERRIDE != -1) 2046 return PROTOCOL_OVERRIDE; 2047 2048 return VSOCK_PROTO_ALL_SUPPORTED; 2049 } 2050 2051 static u32 vmci_transport_get_local_cid(void) 2052 { 2053 return vmci_get_context_id(); 2054 } 2055 2056 static struct vsock_transport vmci_transport = { 2057 .init = vmci_transport_socket_init, 2058 .destruct = vmci_transport_destruct, 2059 .release = vmci_transport_release, 2060 .connect = vmci_transport_connect, 2061 .dgram_bind = vmci_transport_dgram_bind, 2062 .dgram_dequeue = vmci_transport_dgram_dequeue, 2063 .dgram_enqueue = vmci_transport_dgram_enqueue, 2064 .dgram_allow = vmci_transport_dgram_allow, 2065 .stream_dequeue = vmci_transport_stream_dequeue, 2066 .stream_enqueue = vmci_transport_stream_enqueue, 2067 .stream_has_data = vmci_transport_stream_has_data, 2068 .stream_has_space = vmci_transport_stream_has_space, 2069 .stream_rcvhiwat = vmci_transport_stream_rcvhiwat, 2070 .stream_is_active = vmci_transport_stream_is_active, 2071 .stream_allow = vmci_transport_stream_allow, 2072 .notify_poll_in = vmci_transport_notify_poll_in, 2073 .notify_poll_out = vmci_transport_notify_poll_out, 2074 .notify_recv_init = vmci_transport_notify_recv_init, 2075 .notify_recv_pre_block = vmci_transport_notify_recv_pre_block, 2076 .notify_recv_pre_dequeue = vmci_transport_notify_recv_pre_dequeue, 2077 .notify_recv_post_dequeue = vmci_transport_notify_recv_post_dequeue, 2078 .notify_send_init = vmci_transport_notify_send_init, 2079 .notify_send_pre_block = vmci_transport_notify_send_pre_block, 2080 .notify_send_pre_enqueue = vmci_transport_notify_send_pre_enqueue, 2081 .notify_send_post_enqueue = vmci_transport_notify_send_post_enqueue, 2082 .shutdown = vmci_transport_shutdown, 2083 .set_buffer_size = vmci_transport_set_buffer_size, 2084 .set_min_buffer_size = vmci_transport_set_min_buffer_size, 2085 .set_max_buffer_size = vmci_transport_set_max_buffer_size, 2086 .get_buffer_size = vmci_transport_get_buffer_size, 2087 .get_min_buffer_size = vmci_transport_get_min_buffer_size, 2088 .get_max_buffer_size = vmci_transport_get_max_buffer_size, 2089 .get_local_cid = vmci_transport_get_local_cid, 2090 }; 2091 2092 static int __init vmci_transport_init(void) 2093 { 2094 int err; 2095 2096 /* Create the datagram handle that we will use to send and receive all 2097 * VSocket control messages for this context. 2098 */ 2099 err = vmci_transport_datagram_create_hnd(VMCI_TRANSPORT_PACKET_RID, 2100 VMCI_FLAG_ANYCID_DG_HND, 2101 vmci_transport_recv_stream_cb, 2102 NULL, 2103 &vmci_transport_stream_handle); 2104 if (err < VMCI_SUCCESS) { 2105 pr_err("Unable to create datagram handle. (%d)\n", err); 2106 return vmci_transport_error_to_vsock_error(err); 2107 } 2108 2109 err = vmci_event_subscribe(VMCI_EVENT_QP_RESUMED, 2110 vmci_transport_qp_resumed_cb, 2111 NULL, &vmci_transport_qp_resumed_sub_id); 2112 if (err < VMCI_SUCCESS) { 2113 pr_err("Unable to subscribe to resumed event. (%d)\n", err); 2114 err = vmci_transport_error_to_vsock_error(err); 2115 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID; 2116 goto err_destroy_stream_handle; 2117 } 2118 2119 err = vsock_core_init(&vmci_transport); 2120 if (err < 0) 2121 goto err_unsubscribe; 2122 2123 return 0; 2124 2125 err_unsubscribe: 2126 vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id); 2127 err_destroy_stream_handle: 2128 vmci_datagram_destroy_handle(vmci_transport_stream_handle); 2129 return err; 2130 } 2131 module_init(vmci_transport_init); 2132 2133 static void __exit vmci_transport_exit(void) 2134 { 2135 if (!vmci_handle_is_invalid(vmci_transport_stream_handle)) { 2136 if (vmci_datagram_destroy_handle( 2137 vmci_transport_stream_handle) != VMCI_SUCCESS) 2138 pr_err("Couldn't destroy datagram handle\n"); 2139 vmci_transport_stream_handle = VMCI_INVALID_HANDLE; 2140 } 2141 2142 if (vmci_transport_qp_resumed_sub_id != VMCI_INVALID_ID) { 2143 vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id); 2144 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID; 2145 } 2146 2147 vsock_core_exit(); 2148 } 2149 module_exit(vmci_transport_exit); 2150 2151 MODULE_AUTHOR("VMware, Inc."); 2152 MODULE_DESCRIPTION("VMCI transport for Virtual Sockets"); 2153 MODULE_LICENSE("GPL v2"); 2154 MODULE_ALIAS("vmware_vsock"); 2155 MODULE_ALIAS_NETPROTO(PF_VSOCK); 2156