1 /* 2 * VMware vSockets Driver 3 * 4 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License as published by the Free 8 * Software Foundation version 2 and no later version. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 */ 15 16 #include <linux/types.h> 17 #include <linux/bitops.h> 18 #include <linux/cred.h> 19 #include <linux/init.h> 20 #include <linux/io.h> 21 #include <linux/kernel.h> 22 #include <linux/kmod.h> 23 #include <linux/list.h> 24 #include <linux/module.h> 25 #include <linux/mutex.h> 26 #include <linux/net.h> 27 #include <linux/poll.h> 28 #include <linux/skbuff.h> 29 #include <linux/smp.h> 30 #include <linux/socket.h> 31 #include <linux/stddef.h> 32 #include <linux/unistd.h> 33 #include <linux/wait.h> 34 #include <linux/workqueue.h> 35 #include <net/sock.h> 36 #include <net/af_vsock.h> 37 38 #include "vmci_transport_notify.h" 39 40 static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg); 41 static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg); 42 static void vmci_transport_peer_detach_cb(u32 sub_id, 43 const struct vmci_event_data *ed, 44 void *client_data); 45 static void vmci_transport_recv_pkt_work(struct work_struct *work); 46 static void vmci_transport_cleanup(struct work_struct *work); 47 static int vmci_transport_recv_listen(struct sock *sk, 48 struct vmci_transport_packet *pkt); 49 static int vmci_transport_recv_connecting_server( 50 struct sock *sk, 51 struct sock *pending, 52 struct vmci_transport_packet *pkt); 53 static int vmci_transport_recv_connecting_client( 54 struct sock *sk, 55 struct vmci_transport_packet *pkt); 56 static int vmci_transport_recv_connecting_client_negotiate( 57 struct sock *sk, 58 struct vmci_transport_packet *pkt); 59 static int vmci_transport_recv_connecting_client_invalid( 60 struct sock *sk, 61 struct vmci_transport_packet *pkt); 62 static int vmci_transport_recv_connected(struct sock *sk, 63 struct vmci_transport_packet *pkt); 64 static bool vmci_transport_old_proto_override(bool *old_pkt_proto); 65 static u16 vmci_transport_new_proto_supported_versions(void); 66 static bool vmci_transport_proto_to_notify_struct(struct sock *sk, u16 *proto, 67 bool old_pkt_proto); 68 69 struct vmci_transport_recv_pkt_info { 70 struct work_struct work; 71 struct sock *sk; 72 struct vmci_transport_packet pkt; 73 }; 74 75 static LIST_HEAD(vmci_transport_cleanup_list); 76 static DEFINE_SPINLOCK(vmci_transport_cleanup_lock); 77 static DECLARE_WORK(vmci_transport_cleanup_work, vmci_transport_cleanup); 78 79 static struct vmci_handle vmci_transport_stream_handle = { VMCI_INVALID_ID, 80 VMCI_INVALID_ID }; 81 static u32 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID; 82 83 static int PROTOCOL_OVERRIDE = -1; 84 85 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE_MIN 128 86 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE 262144 87 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE_MAX 262144 88 89 /* The default peer timeout indicates how long we will wait for a peer response 90 * to a control message. 91 */ 92 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ) 93 94 /* Helper function to convert from a VMCI error code to a VSock error code. */ 95 96 static s32 vmci_transport_error_to_vsock_error(s32 vmci_error) 97 { 98 switch (vmci_error) { 99 case VMCI_ERROR_NO_MEM: 100 return -ENOMEM; 101 case VMCI_ERROR_DUPLICATE_ENTRY: 102 case VMCI_ERROR_ALREADY_EXISTS: 103 return -EADDRINUSE; 104 case VMCI_ERROR_NO_ACCESS: 105 return -EPERM; 106 case VMCI_ERROR_NO_RESOURCES: 107 return -ENOBUFS; 108 case VMCI_ERROR_INVALID_RESOURCE: 109 return -EHOSTUNREACH; 110 case VMCI_ERROR_INVALID_ARGS: 111 default: 112 break; 113 } 114 return -EINVAL; 115 } 116 117 static u32 vmci_transport_peer_rid(u32 peer_cid) 118 { 119 if (VMADDR_CID_HYPERVISOR == peer_cid) 120 return VMCI_TRANSPORT_HYPERVISOR_PACKET_RID; 121 122 return VMCI_TRANSPORT_PACKET_RID; 123 } 124 125 static inline void 126 vmci_transport_packet_init(struct vmci_transport_packet *pkt, 127 struct sockaddr_vm *src, 128 struct sockaddr_vm *dst, 129 u8 type, 130 u64 size, 131 u64 mode, 132 struct vmci_transport_waiting_info *wait, 133 u16 proto, 134 struct vmci_handle handle) 135 { 136 /* We register the stream control handler as an any cid handle so we 137 * must always send from a source address of VMADDR_CID_ANY 138 */ 139 pkt->dg.src = vmci_make_handle(VMADDR_CID_ANY, 140 VMCI_TRANSPORT_PACKET_RID); 141 pkt->dg.dst = vmci_make_handle(dst->svm_cid, 142 vmci_transport_peer_rid(dst->svm_cid)); 143 pkt->dg.payload_size = sizeof(*pkt) - sizeof(pkt->dg); 144 pkt->version = VMCI_TRANSPORT_PACKET_VERSION; 145 pkt->type = type; 146 pkt->src_port = src->svm_port; 147 pkt->dst_port = dst->svm_port; 148 memset(&pkt->proto, 0, sizeof(pkt->proto)); 149 memset(&pkt->_reserved2, 0, sizeof(pkt->_reserved2)); 150 151 switch (pkt->type) { 152 case VMCI_TRANSPORT_PACKET_TYPE_INVALID: 153 pkt->u.size = 0; 154 break; 155 156 case VMCI_TRANSPORT_PACKET_TYPE_REQUEST: 157 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE: 158 pkt->u.size = size; 159 break; 160 161 case VMCI_TRANSPORT_PACKET_TYPE_OFFER: 162 case VMCI_TRANSPORT_PACKET_TYPE_ATTACH: 163 pkt->u.handle = handle; 164 break; 165 166 case VMCI_TRANSPORT_PACKET_TYPE_WROTE: 167 case VMCI_TRANSPORT_PACKET_TYPE_READ: 168 case VMCI_TRANSPORT_PACKET_TYPE_RST: 169 pkt->u.size = 0; 170 break; 171 172 case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN: 173 pkt->u.mode = mode; 174 break; 175 176 case VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ: 177 case VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE: 178 memcpy(&pkt->u.wait, wait, sizeof(pkt->u.wait)); 179 break; 180 181 case VMCI_TRANSPORT_PACKET_TYPE_REQUEST2: 182 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2: 183 pkt->u.size = size; 184 pkt->proto = proto; 185 break; 186 } 187 } 188 189 static inline void 190 vmci_transport_packet_get_addresses(struct vmci_transport_packet *pkt, 191 struct sockaddr_vm *local, 192 struct sockaddr_vm *remote) 193 { 194 vsock_addr_init(local, pkt->dg.dst.context, pkt->dst_port); 195 vsock_addr_init(remote, pkt->dg.src.context, pkt->src_port); 196 } 197 198 static int 199 __vmci_transport_send_control_pkt(struct vmci_transport_packet *pkt, 200 struct sockaddr_vm *src, 201 struct sockaddr_vm *dst, 202 enum vmci_transport_packet_type type, 203 u64 size, 204 u64 mode, 205 struct vmci_transport_waiting_info *wait, 206 u16 proto, 207 struct vmci_handle handle, 208 bool convert_error) 209 { 210 int err; 211 212 vmci_transport_packet_init(pkt, src, dst, type, size, mode, wait, 213 proto, handle); 214 err = vmci_datagram_send(&pkt->dg); 215 if (convert_error && (err < 0)) 216 return vmci_transport_error_to_vsock_error(err); 217 218 return err; 219 } 220 221 static int 222 vmci_transport_reply_control_pkt_fast(struct vmci_transport_packet *pkt, 223 enum vmci_transport_packet_type type, 224 u64 size, 225 u64 mode, 226 struct vmci_transport_waiting_info *wait, 227 struct vmci_handle handle) 228 { 229 struct vmci_transport_packet reply; 230 struct sockaddr_vm src, dst; 231 232 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST) { 233 return 0; 234 } else { 235 vmci_transport_packet_get_addresses(pkt, &src, &dst); 236 return __vmci_transport_send_control_pkt(&reply, &src, &dst, 237 type, 238 size, mode, wait, 239 VSOCK_PROTO_INVALID, 240 handle, true); 241 } 242 } 243 244 static int 245 vmci_transport_send_control_pkt_bh(struct sockaddr_vm *src, 246 struct sockaddr_vm *dst, 247 enum vmci_transport_packet_type type, 248 u64 size, 249 u64 mode, 250 struct vmci_transport_waiting_info *wait, 251 struct vmci_handle handle) 252 { 253 /* Note that it is safe to use a single packet across all CPUs since 254 * two tasklets of the same type are guaranteed to not ever run 255 * simultaneously. If that ever changes, or VMCI stops using tasklets, 256 * we can use per-cpu packets. 257 */ 258 static struct vmci_transport_packet pkt; 259 260 return __vmci_transport_send_control_pkt(&pkt, src, dst, type, 261 size, mode, wait, 262 VSOCK_PROTO_INVALID, handle, 263 false); 264 } 265 266 static int 267 vmci_transport_send_control_pkt(struct sock *sk, 268 enum vmci_transport_packet_type type, 269 u64 size, 270 u64 mode, 271 struct vmci_transport_waiting_info *wait, 272 u16 proto, 273 struct vmci_handle handle) 274 { 275 struct vmci_transport_packet *pkt; 276 struct vsock_sock *vsk; 277 int err; 278 279 vsk = vsock_sk(sk); 280 281 if (!vsock_addr_bound(&vsk->local_addr)) 282 return -EINVAL; 283 284 if (!vsock_addr_bound(&vsk->remote_addr)) 285 return -EINVAL; 286 287 pkt = kmalloc(sizeof(*pkt), GFP_KERNEL); 288 if (!pkt) 289 return -ENOMEM; 290 291 err = __vmci_transport_send_control_pkt(pkt, &vsk->local_addr, 292 &vsk->remote_addr, type, size, 293 mode, wait, proto, handle, 294 true); 295 kfree(pkt); 296 297 return err; 298 } 299 300 static int vmci_transport_send_reset_bh(struct sockaddr_vm *dst, 301 struct sockaddr_vm *src, 302 struct vmci_transport_packet *pkt) 303 { 304 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST) 305 return 0; 306 return vmci_transport_send_control_pkt_bh( 307 dst, src, 308 VMCI_TRANSPORT_PACKET_TYPE_RST, 0, 309 0, NULL, VMCI_INVALID_HANDLE); 310 } 311 312 static int vmci_transport_send_reset(struct sock *sk, 313 struct vmci_transport_packet *pkt) 314 { 315 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST) 316 return 0; 317 return vmci_transport_send_control_pkt(sk, 318 VMCI_TRANSPORT_PACKET_TYPE_RST, 319 0, 0, NULL, VSOCK_PROTO_INVALID, 320 VMCI_INVALID_HANDLE); 321 } 322 323 static int vmci_transport_send_negotiate(struct sock *sk, size_t size) 324 { 325 return vmci_transport_send_control_pkt( 326 sk, 327 VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE, 328 size, 0, NULL, 329 VSOCK_PROTO_INVALID, 330 VMCI_INVALID_HANDLE); 331 } 332 333 static int vmci_transport_send_negotiate2(struct sock *sk, size_t size, 334 u16 version) 335 { 336 return vmci_transport_send_control_pkt( 337 sk, 338 VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2, 339 size, 0, NULL, version, 340 VMCI_INVALID_HANDLE); 341 } 342 343 static int vmci_transport_send_qp_offer(struct sock *sk, 344 struct vmci_handle handle) 345 { 346 return vmci_transport_send_control_pkt( 347 sk, VMCI_TRANSPORT_PACKET_TYPE_OFFER, 0, 348 0, NULL, 349 VSOCK_PROTO_INVALID, handle); 350 } 351 352 static int vmci_transport_send_attach(struct sock *sk, 353 struct vmci_handle handle) 354 { 355 return vmci_transport_send_control_pkt( 356 sk, VMCI_TRANSPORT_PACKET_TYPE_ATTACH, 357 0, 0, NULL, VSOCK_PROTO_INVALID, 358 handle); 359 } 360 361 static int vmci_transport_reply_reset(struct vmci_transport_packet *pkt) 362 { 363 return vmci_transport_reply_control_pkt_fast( 364 pkt, 365 VMCI_TRANSPORT_PACKET_TYPE_RST, 366 0, 0, NULL, 367 VMCI_INVALID_HANDLE); 368 } 369 370 static int vmci_transport_send_invalid_bh(struct sockaddr_vm *dst, 371 struct sockaddr_vm *src) 372 { 373 return vmci_transport_send_control_pkt_bh( 374 dst, src, 375 VMCI_TRANSPORT_PACKET_TYPE_INVALID, 376 0, 0, NULL, VMCI_INVALID_HANDLE); 377 } 378 379 int vmci_transport_send_wrote_bh(struct sockaddr_vm *dst, 380 struct sockaddr_vm *src) 381 { 382 return vmci_transport_send_control_pkt_bh( 383 dst, src, 384 VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0, 385 0, NULL, VMCI_INVALID_HANDLE); 386 } 387 388 int vmci_transport_send_read_bh(struct sockaddr_vm *dst, 389 struct sockaddr_vm *src) 390 { 391 return vmci_transport_send_control_pkt_bh( 392 dst, src, 393 VMCI_TRANSPORT_PACKET_TYPE_READ, 0, 394 0, NULL, VMCI_INVALID_HANDLE); 395 } 396 397 int vmci_transport_send_wrote(struct sock *sk) 398 { 399 return vmci_transport_send_control_pkt( 400 sk, VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0, 401 0, NULL, VSOCK_PROTO_INVALID, 402 VMCI_INVALID_HANDLE); 403 } 404 405 int vmci_transport_send_read(struct sock *sk) 406 { 407 return vmci_transport_send_control_pkt( 408 sk, VMCI_TRANSPORT_PACKET_TYPE_READ, 0, 409 0, NULL, VSOCK_PROTO_INVALID, 410 VMCI_INVALID_HANDLE); 411 } 412 413 int vmci_transport_send_waiting_write(struct sock *sk, 414 struct vmci_transport_waiting_info *wait) 415 { 416 return vmci_transport_send_control_pkt( 417 sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE, 418 0, 0, wait, VSOCK_PROTO_INVALID, 419 VMCI_INVALID_HANDLE); 420 } 421 422 int vmci_transport_send_waiting_read(struct sock *sk, 423 struct vmci_transport_waiting_info *wait) 424 { 425 return vmci_transport_send_control_pkt( 426 sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ, 427 0, 0, wait, VSOCK_PROTO_INVALID, 428 VMCI_INVALID_HANDLE); 429 } 430 431 static int vmci_transport_shutdown(struct vsock_sock *vsk, int mode) 432 { 433 return vmci_transport_send_control_pkt( 434 &vsk->sk, 435 VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN, 436 0, mode, NULL, 437 VSOCK_PROTO_INVALID, 438 VMCI_INVALID_HANDLE); 439 } 440 441 static int vmci_transport_send_conn_request(struct sock *sk, size_t size) 442 { 443 return vmci_transport_send_control_pkt(sk, 444 VMCI_TRANSPORT_PACKET_TYPE_REQUEST, 445 size, 0, NULL, 446 VSOCK_PROTO_INVALID, 447 VMCI_INVALID_HANDLE); 448 } 449 450 static int vmci_transport_send_conn_request2(struct sock *sk, size_t size, 451 u16 version) 452 { 453 return vmci_transport_send_control_pkt( 454 sk, VMCI_TRANSPORT_PACKET_TYPE_REQUEST2, 455 size, 0, NULL, version, 456 VMCI_INVALID_HANDLE); 457 } 458 459 static struct sock *vmci_transport_get_pending( 460 struct sock *listener, 461 struct vmci_transport_packet *pkt) 462 { 463 struct vsock_sock *vlistener; 464 struct vsock_sock *vpending; 465 struct sock *pending; 466 struct sockaddr_vm src; 467 468 vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port); 469 470 vlistener = vsock_sk(listener); 471 472 list_for_each_entry(vpending, &vlistener->pending_links, 473 pending_links) { 474 if (vsock_addr_equals_addr(&src, &vpending->remote_addr) && 475 pkt->dst_port == vpending->local_addr.svm_port) { 476 pending = sk_vsock(vpending); 477 sock_hold(pending); 478 goto found; 479 } 480 } 481 482 pending = NULL; 483 found: 484 return pending; 485 486 } 487 488 static void vmci_transport_release_pending(struct sock *pending) 489 { 490 sock_put(pending); 491 } 492 493 /* We allow two kinds of sockets to communicate with a restricted VM: 1) 494 * trusted sockets 2) sockets from applications running as the same user as the 495 * VM (this is only true for the host side and only when using hosted products) 496 */ 497 498 static bool vmci_transport_is_trusted(struct vsock_sock *vsock, u32 peer_cid) 499 { 500 return vsock->trusted || 501 vmci_is_context_owner(peer_cid, vsock->owner->uid); 502 } 503 504 /* We allow sending datagrams to and receiving datagrams from a restricted VM 505 * only if it is trusted as described in vmci_transport_is_trusted. 506 */ 507 508 static bool vmci_transport_allow_dgram(struct vsock_sock *vsock, u32 peer_cid) 509 { 510 if (VMADDR_CID_HYPERVISOR == peer_cid) 511 return true; 512 513 if (vsock->cached_peer != peer_cid) { 514 vsock->cached_peer = peer_cid; 515 if (!vmci_transport_is_trusted(vsock, peer_cid) && 516 (vmci_context_get_priv_flags(peer_cid) & 517 VMCI_PRIVILEGE_FLAG_RESTRICTED)) { 518 vsock->cached_peer_allow_dgram = false; 519 } else { 520 vsock->cached_peer_allow_dgram = true; 521 } 522 } 523 524 return vsock->cached_peer_allow_dgram; 525 } 526 527 static int 528 vmci_transport_queue_pair_alloc(struct vmci_qp **qpair, 529 struct vmci_handle *handle, 530 u64 produce_size, 531 u64 consume_size, 532 u32 peer, u32 flags, bool trusted) 533 { 534 int err = 0; 535 536 if (trusted) { 537 /* Try to allocate our queue pair as trusted. This will only 538 * work if vsock is running in the host. 539 */ 540 541 err = vmci_qpair_alloc(qpair, handle, produce_size, 542 consume_size, 543 peer, flags, 544 VMCI_PRIVILEGE_FLAG_TRUSTED); 545 if (err != VMCI_ERROR_NO_ACCESS) 546 goto out; 547 548 } 549 550 err = vmci_qpair_alloc(qpair, handle, produce_size, consume_size, 551 peer, flags, VMCI_NO_PRIVILEGE_FLAGS); 552 out: 553 if (err < 0) { 554 pr_err("Could not attach to queue pair with %d\n", 555 err); 556 err = vmci_transport_error_to_vsock_error(err); 557 } 558 559 return err; 560 } 561 562 static int 563 vmci_transport_datagram_create_hnd(u32 resource_id, 564 u32 flags, 565 vmci_datagram_recv_cb recv_cb, 566 void *client_data, 567 struct vmci_handle *out_handle) 568 { 569 int err = 0; 570 571 /* Try to allocate our datagram handler as trusted. This will only work 572 * if vsock is running in the host. 573 */ 574 575 err = vmci_datagram_create_handle_priv(resource_id, flags, 576 VMCI_PRIVILEGE_FLAG_TRUSTED, 577 recv_cb, 578 client_data, out_handle); 579 580 if (err == VMCI_ERROR_NO_ACCESS) 581 err = vmci_datagram_create_handle(resource_id, flags, 582 recv_cb, client_data, 583 out_handle); 584 585 return err; 586 } 587 588 /* This is invoked as part of a tasklet that's scheduled when the VMCI 589 * interrupt fires. This is run in bottom-half context and if it ever needs to 590 * sleep it should defer that work to a work queue. 591 */ 592 593 static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg) 594 { 595 struct sock *sk; 596 size_t size; 597 struct sk_buff *skb; 598 struct vsock_sock *vsk; 599 600 sk = (struct sock *)data; 601 602 /* This handler is privileged when this module is running on the host. 603 * We will get datagrams from all endpoints (even VMs that are in a 604 * restricted context). If we get one from a restricted context then 605 * the destination socket must be trusted. 606 * 607 * NOTE: We access the socket struct without holding the lock here. 608 * This is ok because the field we are interested is never modified 609 * outside of the create and destruct socket functions. 610 */ 611 vsk = vsock_sk(sk); 612 if (!vmci_transport_allow_dgram(vsk, dg->src.context)) 613 return VMCI_ERROR_NO_ACCESS; 614 615 size = VMCI_DG_SIZE(dg); 616 617 /* Attach the packet to the socket's receive queue as an sk_buff. */ 618 skb = alloc_skb(size, GFP_ATOMIC); 619 if (!skb) 620 return VMCI_ERROR_NO_MEM; 621 622 /* sk_receive_skb() will do a sock_put(), so hold here. */ 623 sock_hold(sk); 624 skb_put(skb, size); 625 memcpy(skb->data, dg, size); 626 sk_receive_skb(sk, skb, 0); 627 628 return VMCI_SUCCESS; 629 } 630 631 static bool vmci_transport_stream_allow(u32 cid, u32 port) 632 { 633 static const u32 non_socket_contexts[] = { 634 VMADDR_CID_RESERVED, 635 }; 636 int i; 637 638 BUILD_BUG_ON(sizeof(cid) != sizeof(*non_socket_contexts)); 639 640 for (i = 0; i < ARRAY_SIZE(non_socket_contexts); i++) { 641 if (cid == non_socket_contexts[i]) 642 return false; 643 } 644 645 return true; 646 } 647 648 /* This is invoked as part of a tasklet that's scheduled when the VMCI 649 * interrupt fires. This is run in bottom-half context but it defers most of 650 * its work to the packet handling work queue. 651 */ 652 653 static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg) 654 { 655 struct sock *sk; 656 struct sockaddr_vm dst; 657 struct sockaddr_vm src; 658 struct vmci_transport_packet *pkt; 659 struct vsock_sock *vsk; 660 bool bh_process_pkt; 661 int err; 662 663 sk = NULL; 664 err = VMCI_SUCCESS; 665 bh_process_pkt = false; 666 667 /* Ignore incoming packets from contexts without sockets, or resources 668 * that aren't vsock implementations. 669 */ 670 671 if (!vmci_transport_stream_allow(dg->src.context, -1) 672 || vmci_transport_peer_rid(dg->src.context) != dg->src.resource) 673 return VMCI_ERROR_NO_ACCESS; 674 675 if (VMCI_DG_SIZE(dg) < sizeof(*pkt)) 676 /* Drop datagrams that do not contain full VSock packets. */ 677 return VMCI_ERROR_INVALID_ARGS; 678 679 pkt = (struct vmci_transport_packet *)dg; 680 681 /* Find the socket that should handle this packet. First we look for a 682 * connected socket and if there is none we look for a socket bound to 683 * the destintation address. 684 */ 685 vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port); 686 vsock_addr_init(&dst, pkt->dg.dst.context, pkt->dst_port); 687 688 sk = vsock_find_connected_socket(&src, &dst); 689 if (!sk) { 690 sk = vsock_find_bound_socket(&dst); 691 if (!sk) { 692 /* We could not find a socket for this specified 693 * address. If this packet is a RST, we just drop it. 694 * If it is another packet, we send a RST. Note that 695 * we do not send a RST reply to RSTs so that we do not 696 * continually send RSTs between two endpoints. 697 * 698 * Note that since this is a reply, dst is src and src 699 * is dst. 700 */ 701 if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0) 702 pr_err("unable to send reset\n"); 703 704 err = VMCI_ERROR_NOT_FOUND; 705 goto out; 706 } 707 } 708 709 /* If the received packet type is beyond all types known to this 710 * implementation, reply with an invalid message. Hopefully this will 711 * help when implementing backwards compatibility in the future. 712 */ 713 if (pkt->type >= VMCI_TRANSPORT_PACKET_TYPE_MAX) { 714 vmci_transport_send_invalid_bh(&dst, &src); 715 err = VMCI_ERROR_INVALID_ARGS; 716 goto out; 717 } 718 719 /* This handler is privileged when this module is running on the host. 720 * We will get datagram connect requests from all endpoints (even VMs 721 * that are in a restricted context). If we get one from a restricted 722 * context then the destination socket must be trusted. 723 * 724 * NOTE: We access the socket struct without holding the lock here. 725 * This is ok because the field we are interested is never modified 726 * outside of the create and destruct socket functions. 727 */ 728 vsk = vsock_sk(sk); 729 if (!vmci_transport_allow_dgram(vsk, pkt->dg.src.context)) { 730 err = VMCI_ERROR_NO_ACCESS; 731 goto out; 732 } 733 734 /* We do most everything in a work queue, but let's fast path the 735 * notification of reads and writes to help data transfer performance. 736 * We can only do this if there is no process context code executing 737 * for this socket since that may change the state. 738 */ 739 bh_lock_sock(sk); 740 741 if (!sock_owned_by_user(sk)) { 742 /* The local context ID may be out of date, update it. */ 743 vsk->local_addr.svm_cid = dst.svm_cid; 744 745 if (sk->sk_state == TCP_ESTABLISHED) 746 vmci_trans(vsk)->notify_ops->handle_notify_pkt( 747 sk, pkt, true, &dst, &src, 748 &bh_process_pkt); 749 } 750 751 bh_unlock_sock(sk); 752 753 if (!bh_process_pkt) { 754 struct vmci_transport_recv_pkt_info *recv_pkt_info; 755 756 recv_pkt_info = kmalloc(sizeof(*recv_pkt_info), GFP_ATOMIC); 757 if (!recv_pkt_info) { 758 if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0) 759 pr_err("unable to send reset\n"); 760 761 err = VMCI_ERROR_NO_MEM; 762 goto out; 763 } 764 765 recv_pkt_info->sk = sk; 766 memcpy(&recv_pkt_info->pkt, pkt, sizeof(recv_pkt_info->pkt)); 767 INIT_WORK(&recv_pkt_info->work, vmci_transport_recv_pkt_work); 768 769 schedule_work(&recv_pkt_info->work); 770 /* Clear sk so that the reference count incremented by one of 771 * the Find functions above is not decremented below. We need 772 * that reference count for the packet handler we've scheduled 773 * to run. 774 */ 775 sk = NULL; 776 } 777 778 out: 779 if (sk) 780 sock_put(sk); 781 782 return err; 783 } 784 785 static void vmci_transport_handle_detach(struct sock *sk) 786 { 787 struct vsock_sock *vsk; 788 789 vsk = vsock_sk(sk); 790 if (!vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)) { 791 sock_set_flag(sk, SOCK_DONE); 792 793 /* On a detach the peer will not be sending or receiving 794 * anymore. 795 */ 796 vsk->peer_shutdown = SHUTDOWN_MASK; 797 798 /* We should not be sending anymore since the peer won't be 799 * there to receive, but we can still receive if there is data 800 * left in our consume queue. 801 */ 802 if (vsock_stream_has_data(vsk) <= 0) { 803 sk->sk_state = TCP_CLOSE; 804 805 if (sk->sk_state == TCP_SYN_SENT) { 806 /* The peer may detach from a queue pair while 807 * we are still in the connecting state, i.e., 808 * if the peer VM is killed after attaching to 809 * a queue pair, but before we complete the 810 * handshake. In that case, we treat the detach 811 * event like a reset. 812 */ 813 814 sk->sk_err = ECONNRESET; 815 sk->sk_error_report(sk); 816 return; 817 } 818 } 819 sk->sk_state_change(sk); 820 } 821 } 822 823 static void vmci_transport_peer_detach_cb(u32 sub_id, 824 const struct vmci_event_data *e_data, 825 void *client_data) 826 { 827 struct vmci_transport *trans = client_data; 828 const struct vmci_event_payload_qp *e_payload; 829 830 e_payload = vmci_event_data_const_payload(e_data); 831 832 /* XXX This is lame, we should provide a way to lookup sockets by 833 * qp_handle. 834 */ 835 if (vmci_handle_is_invalid(e_payload->handle) || 836 !vmci_handle_is_equal(trans->qp_handle, e_payload->handle)) 837 return; 838 839 /* We don't ask for delayed CBs when we subscribe to this event (we 840 * pass 0 as flags to vmci_event_subscribe()). VMCI makes no 841 * guarantees in that case about what context we might be running in, 842 * so it could be BH or process, blockable or non-blockable. So we 843 * need to account for all possible contexts here. 844 */ 845 spin_lock_bh(&trans->lock); 846 if (!trans->sk) 847 goto out; 848 849 /* Apart from here, trans->lock is only grabbed as part of sk destruct, 850 * where trans->sk isn't locked. 851 */ 852 bh_lock_sock(trans->sk); 853 854 vmci_transport_handle_detach(trans->sk); 855 856 bh_unlock_sock(trans->sk); 857 out: 858 spin_unlock_bh(&trans->lock); 859 } 860 861 static void vmci_transport_qp_resumed_cb(u32 sub_id, 862 const struct vmci_event_data *e_data, 863 void *client_data) 864 { 865 vsock_for_each_connected_socket(vmci_transport_handle_detach); 866 } 867 868 static void vmci_transport_recv_pkt_work(struct work_struct *work) 869 { 870 struct vmci_transport_recv_pkt_info *recv_pkt_info; 871 struct vmci_transport_packet *pkt; 872 struct sock *sk; 873 874 recv_pkt_info = 875 container_of(work, struct vmci_transport_recv_pkt_info, work); 876 sk = recv_pkt_info->sk; 877 pkt = &recv_pkt_info->pkt; 878 879 lock_sock(sk); 880 881 /* The local context ID may be out of date. */ 882 vsock_sk(sk)->local_addr.svm_cid = pkt->dg.dst.context; 883 884 switch (sk->sk_state) { 885 case TCP_LISTEN: 886 vmci_transport_recv_listen(sk, pkt); 887 break; 888 case TCP_SYN_SENT: 889 /* Processing of pending connections for servers goes through 890 * the listening socket, so see vmci_transport_recv_listen() 891 * for that path. 892 */ 893 vmci_transport_recv_connecting_client(sk, pkt); 894 break; 895 case TCP_ESTABLISHED: 896 vmci_transport_recv_connected(sk, pkt); 897 break; 898 default: 899 /* Because this function does not run in the same context as 900 * vmci_transport_recv_stream_cb it is possible that the 901 * socket has closed. We need to let the other side know or it 902 * could be sitting in a connect and hang forever. Send a 903 * reset to prevent that. 904 */ 905 vmci_transport_send_reset(sk, pkt); 906 break; 907 } 908 909 release_sock(sk); 910 kfree(recv_pkt_info); 911 /* Release reference obtained in the stream callback when we fetched 912 * this socket out of the bound or connected list. 913 */ 914 sock_put(sk); 915 } 916 917 static int vmci_transport_recv_listen(struct sock *sk, 918 struct vmci_transport_packet *pkt) 919 { 920 struct sock *pending; 921 struct vsock_sock *vpending; 922 int err; 923 u64 qp_size; 924 bool old_request = false; 925 bool old_pkt_proto = false; 926 927 err = 0; 928 929 /* Because we are in the listen state, we could be receiving a packet 930 * for ourself or any previous connection requests that we received. 931 * If it's the latter, we try to find a socket in our list of pending 932 * connections and, if we do, call the appropriate handler for the 933 * state that that socket is in. Otherwise we try to service the 934 * connection request. 935 */ 936 pending = vmci_transport_get_pending(sk, pkt); 937 if (pending) { 938 lock_sock(pending); 939 940 /* The local context ID may be out of date. */ 941 vsock_sk(pending)->local_addr.svm_cid = pkt->dg.dst.context; 942 943 switch (pending->sk_state) { 944 case TCP_SYN_SENT: 945 err = vmci_transport_recv_connecting_server(sk, 946 pending, 947 pkt); 948 break; 949 default: 950 vmci_transport_send_reset(pending, pkt); 951 err = -EINVAL; 952 } 953 954 if (err < 0) 955 vsock_remove_pending(sk, pending); 956 957 release_sock(pending); 958 vmci_transport_release_pending(pending); 959 960 return err; 961 } 962 963 /* The listen state only accepts connection requests. Reply with a 964 * reset unless we received a reset. 965 */ 966 967 if (!(pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST || 968 pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)) { 969 vmci_transport_reply_reset(pkt); 970 return -EINVAL; 971 } 972 973 if (pkt->u.size == 0) { 974 vmci_transport_reply_reset(pkt); 975 return -EINVAL; 976 } 977 978 /* If this socket can't accommodate this connection request, we send a 979 * reset. Otherwise we create and initialize a child socket and reply 980 * with a connection negotiation. 981 */ 982 if (sk->sk_ack_backlog >= sk->sk_max_ack_backlog) { 983 vmci_transport_reply_reset(pkt); 984 return -ECONNREFUSED; 985 } 986 987 pending = __vsock_create(sock_net(sk), NULL, sk, GFP_KERNEL, 988 sk->sk_type, 0); 989 if (!pending) { 990 vmci_transport_send_reset(sk, pkt); 991 return -ENOMEM; 992 } 993 994 vpending = vsock_sk(pending); 995 996 vsock_addr_init(&vpending->local_addr, pkt->dg.dst.context, 997 pkt->dst_port); 998 vsock_addr_init(&vpending->remote_addr, pkt->dg.src.context, 999 pkt->src_port); 1000 1001 /* If the proposed size fits within our min/max, accept it. Otherwise 1002 * propose our own size. 1003 */ 1004 if (pkt->u.size >= vmci_trans(vpending)->queue_pair_min_size && 1005 pkt->u.size <= vmci_trans(vpending)->queue_pair_max_size) { 1006 qp_size = pkt->u.size; 1007 } else { 1008 qp_size = vmci_trans(vpending)->queue_pair_size; 1009 } 1010 1011 /* Figure out if we are using old or new requests based on the 1012 * overrides pkt types sent by our peer. 1013 */ 1014 if (vmci_transport_old_proto_override(&old_pkt_proto)) { 1015 old_request = old_pkt_proto; 1016 } else { 1017 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST) 1018 old_request = true; 1019 else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2) 1020 old_request = false; 1021 1022 } 1023 1024 if (old_request) { 1025 /* Handle a REQUEST (or override) */ 1026 u16 version = VSOCK_PROTO_INVALID; 1027 if (vmci_transport_proto_to_notify_struct( 1028 pending, &version, true)) 1029 err = vmci_transport_send_negotiate(pending, qp_size); 1030 else 1031 err = -EINVAL; 1032 1033 } else { 1034 /* Handle a REQUEST2 (or override) */ 1035 int proto_int = pkt->proto; 1036 int pos; 1037 u16 active_proto_version = 0; 1038 1039 /* The list of possible protocols is the intersection of all 1040 * protocols the client supports ... plus all the protocols we 1041 * support. 1042 */ 1043 proto_int &= vmci_transport_new_proto_supported_versions(); 1044 1045 /* We choose the highest possible protocol version and use that 1046 * one. 1047 */ 1048 pos = fls(proto_int); 1049 if (pos) { 1050 active_proto_version = (1 << (pos - 1)); 1051 if (vmci_transport_proto_to_notify_struct( 1052 pending, &active_proto_version, false)) 1053 err = vmci_transport_send_negotiate2(pending, 1054 qp_size, 1055 active_proto_version); 1056 else 1057 err = -EINVAL; 1058 1059 } else { 1060 err = -EINVAL; 1061 } 1062 } 1063 1064 if (err < 0) { 1065 vmci_transport_send_reset(sk, pkt); 1066 sock_put(pending); 1067 err = vmci_transport_error_to_vsock_error(err); 1068 goto out; 1069 } 1070 1071 vsock_add_pending(sk, pending); 1072 sk->sk_ack_backlog++; 1073 1074 pending->sk_state = TCP_SYN_SENT; 1075 vmci_trans(vpending)->produce_size = 1076 vmci_trans(vpending)->consume_size = qp_size; 1077 vmci_trans(vpending)->queue_pair_size = qp_size; 1078 1079 vmci_trans(vpending)->notify_ops->process_request(pending); 1080 1081 /* We might never receive another message for this socket and it's not 1082 * connected to any process, so we have to ensure it gets cleaned up 1083 * ourself. Our delayed work function will take care of that. Note 1084 * that we do not ever cancel this function since we have few 1085 * guarantees about its state when calling cancel_delayed_work(). 1086 * Instead we hold a reference on the socket for that function and make 1087 * it capable of handling cases where it needs to do nothing but 1088 * release that reference. 1089 */ 1090 vpending->listener = sk; 1091 sock_hold(sk); 1092 sock_hold(pending); 1093 INIT_DELAYED_WORK(&vpending->dwork, vsock_pending_work); 1094 schedule_delayed_work(&vpending->dwork, HZ); 1095 1096 out: 1097 return err; 1098 } 1099 1100 static int 1101 vmci_transport_recv_connecting_server(struct sock *listener, 1102 struct sock *pending, 1103 struct vmci_transport_packet *pkt) 1104 { 1105 struct vsock_sock *vpending; 1106 struct vmci_handle handle; 1107 struct vmci_qp *qpair; 1108 bool is_local; 1109 u32 flags; 1110 u32 detach_sub_id; 1111 int err; 1112 int skerr; 1113 1114 vpending = vsock_sk(pending); 1115 detach_sub_id = VMCI_INVALID_ID; 1116 1117 switch (pkt->type) { 1118 case VMCI_TRANSPORT_PACKET_TYPE_OFFER: 1119 if (vmci_handle_is_invalid(pkt->u.handle)) { 1120 vmci_transport_send_reset(pending, pkt); 1121 skerr = EPROTO; 1122 err = -EINVAL; 1123 goto destroy; 1124 } 1125 break; 1126 default: 1127 /* Close and cleanup the connection. */ 1128 vmci_transport_send_reset(pending, pkt); 1129 skerr = EPROTO; 1130 err = pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST ? 0 : -EINVAL; 1131 goto destroy; 1132 } 1133 1134 /* In order to complete the connection we need to attach to the offered 1135 * queue pair and send an attach notification. We also subscribe to the 1136 * detach event so we know when our peer goes away, and we do that 1137 * before attaching so we don't miss an event. If all this succeeds, 1138 * we update our state and wakeup anything waiting in accept() for a 1139 * connection. 1140 */ 1141 1142 /* We don't care about attach since we ensure the other side has 1143 * attached by specifying the ATTACH_ONLY flag below. 1144 */ 1145 err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH, 1146 vmci_transport_peer_detach_cb, 1147 vmci_trans(vpending), &detach_sub_id); 1148 if (err < VMCI_SUCCESS) { 1149 vmci_transport_send_reset(pending, pkt); 1150 err = vmci_transport_error_to_vsock_error(err); 1151 skerr = -err; 1152 goto destroy; 1153 } 1154 1155 vmci_trans(vpending)->detach_sub_id = detach_sub_id; 1156 1157 /* Now attach to the queue pair the client created. */ 1158 handle = pkt->u.handle; 1159 1160 /* vpending->local_addr always has a context id so we do not need to 1161 * worry about VMADDR_CID_ANY in this case. 1162 */ 1163 is_local = 1164 vpending->remote_addr.svm_cid == vpending->local_addr.svm_cid; 1165 flags = VMCI_QPFLAG_ATTACH_ONLY; 1166 flags |= is_local ? VMCI_QPFLAG_LOCAL : 0; 1167 1168 err = vmci_transport_queue_pair_alloc( 1169 &qpair, 1170 &handle, 1171 vmci_trans(vpending)->produce_size, 1172 vmci_trans(vpending)->consume_size, 1173 pkt->dg.src.context, 1174 flags, 1175 vmci_transport_is_trusted( 1176 vpending, 1177 vpending->remote_addr.svm_cid)); 1178 if (err < 0) { 1179 vmci_transport_send_reset(pending, pkt); 1180 skerr = -err; 1181 goto destroy; 1182 } 1183 1184 vmci_trans(vpending)->qp_handle = handle; 1185 vmci_trans(vpending)->qpair = qpair; 1186 1187 /* When we send the attach message, we must be ready to handle incoming 1188 * control messages on the newly connected socket. So we move the 1189 * pending socket to the connected state before sending the attach 1190 * message. Otherwise, an incoming packet triggered by the attach being 1191 * received by the peer may be processed concurrently with what happens 1192 * below after sending the attach message, and that incoming packet 1193 * will find the listening socket instead of the (currently) pending 1194 * socket. Note that enqueueing the socket increments the reference 1195 * count, so even if a reset comes before the connection is accepted, 1196 * the socket will be valid until it is removed from the queue. 1197 * 1198 * If we fail sending the attach below, we remove the socket from the 1199 * connected list and move the socket to TCP_CLOSE before 1200 * releasing the lock, so a pending slow path processing of an incoming 1201 * packet will not see the socket in the connected state in that case. 1202 */ 1203 pending->sk_state = TCP_ESTABLISHED; 1204 1205 vsock_insert_connected(vpending); 1206 1207 /* Notify our peer of our attach. */ 1208 err = vmci_transport_send_attach(pending, handle); 1209 if (err < 0) { 1210 vsock_remove_connected(vpending); 1211 pr_err("Could not send attach\n"); 1212 vmci_transport_send_reset(pending, pkt); 1213 err = vmci_transport_error_to_vsock_error(err); 1214 skerr = -err; 1215 goto destroy; 1216 } 1217 1218 /* We have a connection. Move the now connected socket from the 1219 * listener's pending list to the accept queue so callers of accept() 1220 * can find it. 1221 */ 1222 vsock_remove_pending(listener, pending); 1223 vsock_enqueue_accept(listener, pending); 1224 1225 /* Callers of accept() will be be waiting on the listening socket, not 1226 * the pending socket. 1227 */ 1228 listener->sk_data_ready(listener); 1229 1230 return 0; 1231 1232 destroy: 1233 pending->sk_err = skerr; 1234 pending->sk_state = TCP_CLOSE; 1235 /* As long as we drop our reference, all necessary cleanup will handle 1236 * when the cleanup function drops its reference and our destruct 1237 * implementation is called. Note that since the listen handler will 1238 * remove pending from the pending list upon our failure, the cleanup 1239 * function won't drop the additional reference, which is why we do it 1240 * here. 1241 */ 1242 sock_put(pending); 1243 1244 return err; 1245 } 1246 1247 static int 1248 vmci_transport_recv_connecting_client(struct sock *sk, 1249 struct vmci_transport_packet *pkt) 1250 { 1251 struct vsock_sock *vsk; 1252 int err; 1253 int skerr; 1254 1255 vsk = vsock_sk(sk); 1256 1257 switch (pkt->type) { 1258 case VMCI_TRANSPORT_PACKET_TYPE_ATTACH: 1259 if (vmci_handle_is_invalid(pkt->u.handle) || 1260 !vmci_handle_is_equal(pkt->u.handle, 1261 vmci_trans(vsk)->qp_handle)) { 1262 skerr = EPROTO; 1263 err = -EINVAL; 1264 goto destroy; 1265 } 1266 1267 /* Signify the socket is connected and wakeup the waiter in 1268 * connect(). Also place the socket in the connected table for 1269 * accounting (it can already be found since it's in the bound 1270 * table). 1271 */ 1272 sk->sk_state = TCP_ESTABLISHED; 1273 sk->sk_socket->state = SS_CONNECTED; 1274 vsock_insert_connected(vsk); 1275 sk->sk_state_change(sk); 1276 1277 break; 1278 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE: 1279 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2: 1280 if (pkt->u.size == 0 1281 || pkt->dg.src.context != vsk->remote_addr.svm_cid 1282 || pkt->src_port != vsk->remote_addr.svm_port 1283 || !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle) 1284 || vmci_trans(vsk)->qpair 1285 || vmci_trans(vsk)->produce_size != 0 1286 || vmci_trans(vsk)->consume_size != 0 1287 || vmci_trans(vsk)->detach_sub_id != VMCI_INVALID_ID) { 1288 skerr = EPROTO; 1289 err = -EINVAL; 1290 1291 goto destroy; 1292 } 1293 1294 err = vmci_transport_recv_connecting_client_negotiate(sk, pkt); 1295 if (err) { 1296 skerr = -err; 1297 goto destroy; 1298 } 1299 1300 break; 1301 case VMCI_TRANSPORT_PACKET_TYPE_INVALID: 1302 err = vmci_transport_recv_connecting_client_invalid(sk, pkt); 1303 if (err) { 1304 skerr = -err; 1305 goto destroy; 1306 } 1307 1308 break; 1309 case VMCI_TRANSPORT_PACKET_TYPE_RST: 1310 /* Older versions of the linux code (WS 6.5 / ESX 4.0) used to 1311 * continue processing here after they sent an INVALID packet. 1312 * This meant that we got a RST after the INVALID. We ignore a 1313 * RST after an INVALID. The common code doesn't send the RST 1314 * ... so we can hang if an old version of the common code 1315 * fails between getting a REQUEST and sending an OFFER back. 1316 * Not much we can do about it... except hope that it doesn't 1317 * happen. 1318 */ 1319 if (vsk->ignore_connecting_rst) { 1320 vsk->ignore_connecting_rst = false; 1321 } else { 1322 skerr = ECONNRESET; 1323 err = 0; 1324 goto destroy; 1325 } 1326 1327 break; 1328 default: 1329 /* Close and cleanup the connection. */ 1330 skerr = EPROTO; 1331 err = -EINVAL; 1332 goto destroy; 1333 } 1334 1335 return 0; 1336 1337 destroy: 1338 vmci_transport_send_reset(sk, pkt); 1339 1340 sk->sk_state = TCP_CLOSE; 1341 sk->sk_err = skerr; 1342 sk->sk_error_report(sk); 1343 return err; 1344 } 1345 1346 static int vmci_transport_recv_connecting_client_negotiate( 1347 struct sock *sk, 1348 struct vmci_transport_packet *pkt) 1349 { 1350 int err; 1351 struct vsock_sock *vsk; 1352 struct vmci_handle handle; 1353 struct vmci_qp *qpair; 1354 u32 detach_sub_id; 1355 bool is_local; 1356 u32 flags; 1357 bool old_proto = true; 1358 bool old_pkt_proto; 1359 u16 version; 1360 1361 vsk = vsock_sk(sk); 1362 handle = VMCI_INVALID_HANDLE; 1363 detach_sub_id = VMCI_INVALID_ID; 1364 1365 /* If we have gotten here then we should be past the point where old 1366 * linux vsock could have sent the bogus rst. 1367 */ 1368 vsk->sent_request = false; 1369 vsk->ignore_connecting_rst = false; 1370 1371 /* Verify that we're OK with the proposed queue pair size */ 1372 if (pkt->u.size < vmci_trans(vsk)->queue_pair_min_size || 1373 pkt->u.size > vmci_trans(vsk)->queue_pair_max_size) { 1374 err = -EINVAL; 1375 goto destroy; 1376 } 1377 1378 /* At this point we know the CID the peer is using to talk to us. */ 1379 1380 if (vsk->local_addr.svm_cid == VMADDR_CID_ANY) 1381 vsk->local_addr.svm_cid = pkt->dg.dst.context; 1382 1383 /* Setup the notify ops to be the highest supported version that both 1384 * the server and the client support. 1385 */ 1386 1387 if (vmci_transport_old_proto_override(&old_pkt_proto)) { 1388 old_proto = old_pkt_proto; 1389 } else { 1390 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE) 1391 old_proto = true; 1392 else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2) 1393 old_proto = false; 1394 1395 } 1396 1397 if (old_proto) 1398 version = VSOCK_PROTO_INVALID; 1399 else 1400 version = pkt->proto; 1401 1402 if (!vmci_transport_proto_to_notify_struct(sk, &version, old_proto)) { 1403 err = -EINVAL; 1404 goto destroy; 1405 } 1406 1407 /* Subscribe to detach events first. 1408 * 1409 * XXX We attach once for each queue pair created for now so it is easy 1410 * to find the socket (it's provided), but later we should only 1411 * subscribe once and add a way to lookup sockets by queue pair handle. 1412 */ 1413 err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH, 1414 vmci_transport_peer_detach_cb, 1415 vmci_trans(vsk), &detach_sub_id); 1416 if (err < VMCI_SUCCESS) { 1417 err = vmci_transport_error_to_vsock_error(err); 1418 goto destroy; 1419 } 1420 1421 /* Make VMCI select the handle for us. */ 1422 handle = VMCI_INVALID_HANDLE; 1423 is_local = vsk->remote_addr.svm_cid == vsk->local_addr.svm_cid; 1424 flags = is_local ? VMCI_QPFLAG_LOCAL : 0; 1425 1426 err = vmci_transport_queue_pair_alloc(&qpair, 1427 &handle, 1428 pkt->u.size, 1429 pkt->u.size, 1430 vsk->remote_addr.svm_cid, 1431 flags, 1432 vmci_transport_is_trusted( 1433 vsk, 1434 vsk-> 1435 remote_addr.svm_cid)); 1436 if (err < 0) 1437 goto destroy; 1438 1439 err = vmci_transport_send_qp_offer(sk, handle); 1440 if (err < 0) { 1441 err = vmci_transport_error_to_vsock_error(err); 1442 goto destroy; 1443 } 1444 1445 vmci_trans(vsk)->qp_handle = handle; 1446 vmci_trans(vsk)->qpair = qpair; 1447 1448 vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size = 1449 pkt->u.size; 1450 1451 vmci_trans(vsk)->detach_sub_id = detach_sub_id; 1452 1453 vmci_trans(vsk)->notify_ops->process_negotiate(sk); 1454 1455 return 0; 1456 1457 destroy: 1458 if (detach_sub_id != VMCI_INVALID_ID) 1459 vmci_event_unsubscribe(detach_sub_id); 1460 1461 if (!vmci_handle_is_invalid(handle)) 1462 vmci_qpair_detach(&qpair); 1463 1464 return err; 1465 } 1466 1467 static int 1468 vmci_transport_recv_connecting_client_invalid(struct sock *sk, 1469 struct vmci_transport_packet *pkt) 1470 { 1471 int err = 0; 1472 struct vsock_sock *vsk = vsock_sk(sk); 1473 1474 if (vsk->sent_request) { 1475 vsk->sent_request = false; 1476 vsk->ignore_connecting_rst = true; 1477 1478 err = vmci_transport_send_conn_request( 1479 sk, vmci_trans(vsk)->queue_pair_size); 1480 if (err < 0) 1481 err = vmci_transport_error_to_vsock_error(err); 1482 else 1483 err = 0; 1484 1485 } 1486 1487 return err; 1488 } 1489 1490 static int vmci_transport_recv_connected(struct sock *sk, 1491 struct vmci_transport_packet *pkt) 1492 { 1493 struct vsock_sock *vsk; 1494 bool pkt_processed = false; 1495 1496 /* In cases where we are closing the connection, it's sufficient to 1497 * mark the state change (and maybe error) and wake up any waiting 1498 * threads. Since this is a connected socket, it's owned by a user 1499 * process and will be cleaned up when the failure is passed back on 1500 * the current or next system call. Our system call implementations 1501 * must therefore check for error and state changes on entry and when 1502 * being awoken. 1503 */ 1504 switch (pkt->type) { 1505 case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN: 1506 if (pkt->u.mode) { 1507 vsk = vsock_sk(sk); 1508 1509 vsk->peer_shutdown |= pkt->u.mode; 1510 sk->sk_state_change(sk); 1511 } 1512 break; 1513 1514 case VMCI_TRANSPORT_PACKET_TYPE_RST: 1515 vsk = vsock_sk(sk); 1516 /* It is possible that we sent our peer a message (e.g a 1517 * WAITING_READ) right before we got notified that the peer had 1518 * detached. If that happens then we can get a RST pkt back 1519 * from our peer even though there is data available for us to 1520 * read. In that case, don't shutdown the socket completely but 1521 * instead allow the local client to finish reading data off 1522 * the queuepair. Always treat a RST pkt in connected mode like 1523 * a clean shutdown. 1524 */ 1525 sock_set_flag(sk, SOCK_DONE); 1526 vsk->peer_shutdown = SHUTDOWN_MASK; 1527 if (vsock_stream_has_data(vsk) <= 0) 1528 sk->sk_state = TCP_CLOSING; 1529 1530 sk->sk_state_change(sk); 1531 break; 1532 1533 default: 1534 vsk = vsock_sk(sk); 1535 vmci_trans(vsk)->notify_ops->handle_notify_pkt( 1536 sk, pkt, false, NULL, NULL, 1537 &pkt_processed); 1538 if (!pkt_processed) 1539 return -EINVAL; 1540 1541 break; 1542 } 1543 1544 return 0; 1545 } 1546 1547 static int vmci_transport_socket_init(struct vsock_sock *vsk, 1548 struct vsock_sock *psk) 1549 { 1550 vsk->trans = kmalloc(sizeof(struct vmci_transport), GFP_KERNEL); 1551 if (!vsk->trans) 1552 return -ENOMEM; 1553 1554 vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE; 1555 vmci_trans(vsk)->qp_handle = VMCI_INVALID_HANDLE; 1556 vmci_trans(vsk)->qpair = NULL; 1557 vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size = 0; 1558 vmci_trans(vsk)->detach_sub_id = VMCI_INVALID_ID; 1559 vmci_trans(vsk)->notify_ops = NULL; 1560 INIT_LIST_HEAD(&vmci_trans(vsk)->elem); 1561 vmci_trans(vsk)->sk = &vsk->sk; 1562 spin_lock_init(&vmci_trans(vsk)->lock); 1563 if (psk) { 1564 vmci_trans(vsk)->queue_pair_size = 1565 vmci_trans(psk)->queue_pair_size; 1566 vmci_trans(vsk)->queue_pair_min_size = 1567 vmci_trans(psk)->queue_pair_min_size; 1568 vmci_trans(vsk)->queue_pair_max_size = 1569 vmci_trans(psk)->queue_pair_max_size; 1570 } else { 1571 vmci_trans(vsk)->queue_pair_size = 1572 VMCI_TRANSPORT_DEFAULT_QP_SIZE; 1573 vmci_trans(vsk)->queue_pair_min_size = 1574 VMCI_TRANSPORT_DEFAULT_QP_SIZE_MIN; 1575 vmci_trans(vsk)->queue_pair_max_size = 1576 VMCI_TRANSPORT_DEFAULT_QP_SIZE_MAX; 1577 } 1578 1579 return 0; 1580 } 1581 1582 static void vmci_transport_free_resources(struct list_head *transport_list) 1583 { 1584 while (!list_empty(transport_list)) { 1585 struct vmci_transport *transport = 1586 list_first_entry(transport_list, struct vmci_transport, 1587 elem); 1588 list_del(&transport->elem); 1589 1590 if (transport->detach_sub_id != VMCI_INVALID_ID) { 1591 vmci_event_unsubscribe(transport->detach_sub_id); 1592 transport->detach_sub_id = VMCI_INVALID_ID; 1593 } 1594 1595 if (!vmci_handle_is_invalid(transport->qp_handle)) { 1596 vmci_qpair_detach(&transport->qpair); 1597 transport->qp_handle = VMCI_INVALID_HANDLE; 1598 transport->produce_size = 0; 1599 transport->consume_size = 0; 1600 } 1601 1602 kfree(transport); 1603 } 1604 } 1605 1606 static void vmci_transport_cleanup(struct work_struct *work) 1607 { 1608 LIST_HEAD(pending); 1609 1610 spin_lock_bh(&vmci_transport_cleanup_lock); 1611 list_replace_init(&vmci_transport_cleanup_list, &pending); 1612 spin_unlock_bh(&vmci_transport_cleanup_lock); 1613 vmci_transport_free_resources(&pending); 1614 } 1615 1616 static void vmci_transport_destruct(struct vsock_sock *vsk) 1617 { 1618 /* Ensure that the detach callback doesn't use the sk/vsk 1619 * we are about to destruct. 1620 */ 1621 spin_lock_bh(&vmci_trans(vsk)->lock); 1622 vmci_trans(vsk)->sk = NULL; 1623 spin_unlock_bh(&vmci_trans(vsk)->lock); 1624 1625 if (vmci_trans(vsk)->notify_ops) 1626 vmci_trans(vsk)->notify_ops->socket_destruct(vsk); 1627 1628 spin_lock_bh(&vmci_transport_cleanup_lock); 1629 list_add(&vmci_trans(vsk)->elem, &vmci_transport_cleanup_list); 1630 spin_unlock_bh(&vmci_transport_cleanup_lock); 1631 schedule_work(&vmci_transport_cleanup_work); 1632 1633 vsk->trans = NULL; 1634 } 1635 1636 static void vmci_transport_release(struct vsock_sock *vsk) 1637 { 1638 vsock_remove_sock(vsk); 1639 1640 if (!vmci_handle_is_invalid(vmci_trans(vsk)->dg_handle)) { 1641 vmci_datagram_destroy_handle(vmci_trans(vsk)->dg_handle); 1642 vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE; 1643 } 1644 } 1645 1646 static int vmci_transport_dgram_bind(struct vsock_sock *vsk, 1647 struct sockaddr_vm *addr) 1648 { 1649 u32 port; 1650 u32 flags; 1651 int err; 1652 1653 /* VMCI will select a resource ID for us if we provide 1654 * VMCI_INVALID_ID. 1655 */ 1656 port = addr->svm_port == VMADDR_PORT_ANY ? 1657 VMCI_INVALID_ID : addr->svm_port; 1658 1659 if (port <= LAST_RESERVED_PORT && !capable(CAP_NET_BIND_SERVICE)) 1660 return -EACCES; 1661 1662 flags = addr->svm_cid == VMADDR_CID_ANY ? 1663 VMCI_FLAG_ANYCID_DG_HND : 0; 1664 1665 err = vmci_transport_datagram_create_hnd(port, flags, 1666 vmci_transport_recv_dgram_cb, 1667 &vsk->sk, 1668 &vmci_trans(vsk)->dg_handle); 1669 if (err < VMCI_SUCCESS) 1670 return vmci_transport_error_to_vsock_error(err); 1671 vsock_addr_init(&vsk->local_addr, addr->svm_cid, 1672 vmci_trans(vsk)->dg_handle.resource); 1673 1674 return 0; 1675 } 1676 1677 static int vmci_transport_dgram_enqueue( 1678 struct vsock_sock *vsk, 1679 struct sockaddr_vm *remote_addr, 1680 struct msghdr *msg, 1681 size_t len) 1682 { 1683 int err; 1684 struct vmci_datagram *dg; 1685 1686 if (len > VMCI_MAX_DG_PAYLOAD_SIZE) 1687 return -EMSGSIZE; 1688 1689 if (!vmci_transport_allow_dgram(vsk, remote_addr->svm_cid)) 1690 return -EPERM; 1691 1692 /* Allocate a buffer for the user's message and our packet header. */ 1693 dg = kmalloc(len + sizeof(*dg), GFP_KERNEL); 1694 if (!dg) 1695 return -ENOMEM; 1696 1697 memcpy_from_msg(VMCI_DG_PAYLOAD(dg), msg, len); 1698 1699 dg->dst = vmci_make_handle(remote_addr->svm_cid, 1700 remote_addr->svm_port); 1701 dg->src = vmci_make_handle(vsk->local_addr.svm_cid, 1702 vsk->local_addr.svm_port); 1703 dg->payload_size = len; 1704 1705 err = vmci_datagram_send(dg); 1706 kfree(dg); 1707 if (err < 0) 1708 return vmci_transport_error_to_vsock_error(err); 1709 1710 return err - sizeof(*dg); 1711 } 1712 1713 static int vmci_transport_dgram_dequeue(struct vsock_sock *vsk, 1714 struct msghdr *msg, size_t len, 1715 int flags) 1716 { 1717 int err; 1718 int noblock; 1719 struct vmci_datagram *dg; 1720 size_t payload_len; 1721 struct sk_buff *skb; 1722 1723 noblock = flags & MSG_DONTWAIT; 1724 1725 if (flags & MSG_OOB || flags & MSG_ERRQUEUE) 1726 return -EOPNOTSUPP; 1727 1728 /* Retrieve the head sk_buff from the socket's receive queue. */ 1729 err = 0; 1730 skb = skb_recv_datagram(&vsk->sk, flags, noblock, &err); 1731 if (!skb) 1732 return err; 1733 1734 dg = (struct vmci_datagram *)skb->data; 1735 if (!dg) 1736 /* err is 0, meaning we read zero bytes. */ 1737 goto out; 1738 1739 payload_len = dg->payload_size; 1740 /* Ensure the sk_buff matches the payload size claimed in the packet. */ 1741 if (payload_len != skb->len - sizeof(*dg)) { 1742 err = -EINVAL; 1743 goto out; 1744 } 1745 1746 if (payload_len > len) { 1747 payload_len = len; 1748 msg->msg_flags |= MSG_TRUNC; 1749 } 1750 1751 /* Place the datagram payload in the user's iovec. */ 1752 err = skb_copy_datagram_msg(skb, sizeof(*dg), msg, payload_len); 1753 if (err) 1754 goto out; 1755 1756 if (msg->msg_name) { 1757 /* Provide the address of the sender. */ 1758 DECLARE_SOCKADDR(struct sockaddr_vm *, vm_addr, msg->msg_name); 1759 vsock_addr_init(vm_addr, dg->src.context, dg->src.resource); 1760 msg->msg_namelen = sizeof(*vm_addr); 1761 } 1762 err = payload_len; 1763 1764 out: 1765 skb_free_datagram(&vsk->sk, skb); 1766 return err; 1767 } 1768 1769 static bool vmci_transport_dgram_allow(u32 cid, u32 port) 1770 { 1771 if (cid == VMADDR_CID_HYPERVISOR) { 1772 /* Registrations of PBRPC Servers do not modify VMX/Hypervisor 1773 * state and are allowed. 1774 */ 1775 return port == VMCI_UNITY_PBRPC_REGISTER; 1776 } 1777 1778 return true; 1779 } 1780 1781 static int vmci_transport_connect(struct vsock_sock *vsk) 1782 { 1783 int err; 1784 bool old_pkt_proto = false; 1785 struct sock *sk = &vsk->sk; 1786 1787 if (vmci_transport_old_proto_override(&old_pkt_proto) && 1788 old_pkt_proto) { 1789 err = vmci_transport_send_conn_request( 1790 sk, vmci_trans(vsk)->queue_pair_size); 1791 if (err < 0) { 1792 sk->sk_state = TCP_CLOSE; 1793 return err; 1794 } 1795 } else { 1796 int supported_proto_versions = 1797 vmci_transport_new_proto_supported_versions(); 1798 err = vmci_transport_send_conn_request2( 1799 sk, vmci_trans(vsk)->queue_pair_size, 1800 supported_proto_versions); 1801 if (err < 0) { 1802 sk->sk_state = TCP_CLOSE; 1803 return err; 1804 } 1805 1806 vsk->sent_request = true; 1807 } 1808 1809 return err; 1810 } 1811 1812 static ssize_t vmci_transport_stream_dequeue( 1813 struct vsock_sock *vsk, 1814 struct msghdr *msg, 1815 size_t len, 1816 int flags) 1817 { 1818 if (flags & MSG_PEEK) 1819 return vmci_qpair_peekv(vmci_trans(vsk)->qpair, msg, len, 0); 1820 else 1821 return vmci_qpair_dequev(vmci_trans(vsk)->qpair, msg, len, 0); 1822 } 1823 1824 static ssize_t vmci_transport_stream_enqueue( 1825 struct vsock_sock *vsk, 1826 struct msghdr *msg, 1827 size_t len) 1828 { 1829 return vmci_qpair_enquev(vmci_trans(vsk)->qpair, msg, len, 0); 1830 } 1831 1832 static s64 vmci_transport_stream_has_data(struct vsock_sock *vsk) 1833 { 1834 return vmci_qpair_consume_buf_ready(vmci_trans(vsk)->qpair); 1835 } 1836 1837 static s64 vmci_transport_stream_has_space(struct vsock_sock *vsk) 1838 { 1839 return vmci_qpair_produce_free_space(vmci_trans(vsk)->qpair); 1840 } 1841 1842 static u64 vmci_transport_stream_rcvhiwat(struct vsock_sock *vsk) 1843 { 1844 return vmci_trans(vsk)->consume_size; 1845 } 1846 1847 static bool vmci_transport_stream_is_active(struct vsock_sock *vsk) 1848 { 1849 return !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle); 1850 } 1851 1852 static u64 vmci_transport_get_buffer_size(struct vsock_sock *vsk) 1853 { 1854 return vmci_trans(vsk)->queue_pair_size; 1855 } 1856 1857 static u64 vmci_transport_get_min_buffer_size(struct vsock_sock *vsk) 1858 { 1859 return vmci_trans(vsk)->queue_pair_min_size; 1860 } 1861 1862 static u64 vmci_transport_get_max_buffer_size(struct vsock_sock *vsk) 1863 { 1864 return vmci_trans(vsk)->queue_pair_max_size; 1865 } 1866 1867 static void vmci_transport_set_buffer_size(struct vsock_sock *vsk, u64 val) 1868 { 1869 if (val < vmci_trans(vsk)->queue_pair_min_size) 1870 vmci_trans(vsk)->queue_pair_min_size = val; 1871 if (val > vmci_trans(vsk)->queue_pair_max_size) 1872 vmci_trans(vsk)->queue_pair_max_size = val; 1873 vmci_trans(vsk)->queue_pair_size = val; 1874 } 1875 1876 static void vmci_transport_set_min_buffer_size(struct vsock_sock *vsk, 1877 u64 val) 1878 { 1879 if (val > vmci_trans(vsk)->queue_pair_size) 1880 vmci_trans(vsk)->queue_pair_size = val; 1881 vmci_trans(vsk)->queue_pair_min_size = val; 1882 } 1883 1884 static void vmci_transport_set_max_buffer_size(struct vsock_sock *vsk, 1885 u64 val) 1886 { 1887 if (val < vmci_trans(vsk)->queue_pair_size) 1888 vmci_trans(vsk)->queue_pair_size = val; 1889 vmci_trans(vsk)->queue_pair_max_size = val; 1890 } 1891 1892 static int vmci_transport_notify_poll_in( 1893 struct vsock_sock *vsk, 1894 size_t target, 1895 bool *data_ready_now) 1896 { 1897 return vmci_trans(vsk)->notify_ops->poll_in( 1898 &vsk->sk, target, data_ready_now); 1899 } 1900 1901 static int vmci_transport_notify_poll_out( 1902 struct vsock_sock *vsk, 1903 size_t target, 1904 bool *space_available_now) 1905 { 1906 return vmci_trans(vsk)->notify_ops->poll_out( 1907 &vsk->sk, target, space_available_now); 1908 } 1909 1910 static int vmci_transport_notify_recv_init( 1911 struct vsock_sock *vsk, 1912 size_t target, 1913 struct vsock_transport_recv_notify_data *data) 1914 { 1915 return vmci_trans(vsk)->notify_ops->recv_init( 1916 &vsk->sk, target, 1917 (struct vmci_transport_recv_notify_data *)data); 1918 } 1919 1920 static int vmci_transport_notify_recv_pre_block( 1921 struct vsock_sock *vsk, 1922 size_t target, 1923 struct vsock_transport_recv_notify_data *data) 1924 { 1925 return vmci_trans(vsk)->notify_ops->recv_pre_block( 1926 &vsk->sk, target, 1927 (struct vmci_transport_recv_notify_data *)data); 1928 } 1929 1930 static int vmci_transport_notify_recv_pre_dequeue( 1931 struct vsock_sock *vsk, 1932 size_t target, 1933 struct vsock_transport_recv_notify_data *data) 1934 { 1935 return vmci_trans(vsk)->notify_ops->recv_pre_dequeue( 1936 &vsk->sk, target, 1937 (struct vmci_transport_recv_notify_data *)data); 1938 } 1939 1940 static int vmci_transport_notify_recv_post_dequeue( 1941 struct vsock_sock *vsk, 1942 size_t target, 1943 ssize_t copied, 1944 bool data_read, 1945 struct vsock_transport_recv_notify_data *data) 1946 { 1947 return vmci_trans(vsk)->notify_ops->recv_post_dequeue( 1948 &vsk->sk, target, copied, data_read, 1949 (struct vmci_transport_recv_notify_data *)data); 1950 } 1951 1952 static int vmci_transport_notify_send_init( 1953 struct vsock_sock *vsk, 1954 struct vsock_transport_send_notify_data *data) 1955 { 1956 return vmci_trans(vsk)->notify_ops->send_init( 1957 &vsk->sk, 1958 (struct vmci_transport_send_notify_data *)data); 1959 } 1960 1961 static int vmci_transport_notify_send_pre_block( 1962 struct vsock_sock *vsk, 1963 struct vsock_transport_send_notify_data *data) 1964 { 1965 return vmci_trans(vsk)->notify_ops->send_pre_block( 1966 &vsk->sk, 1967 (struct vmci_transport_send_notify_data *)data); 1968 } 1969 1970 static int vmci_transport_notify_send_pre_enqueue( 1971 struct vsock_sock *vsk, 1972 struct vsock_transport_send_notify_data *data) 1973 { 1974 return vmci_trans(vsk)->notify_ops->send_pre_enqueue( 1975 &vsk->sk, 1976 (struct vmci_transport_send_notify_data *)data); 1977 } 1978 1979 static int vmci_transport_notify_send_post_enqueue( 1980 struct vsock_sock *vsk, 1981 ssize_t written, 1982 struct vsock_transport_send_notify_data *data) 1983 { 1984 return vmci_trans(vsk)->notify_ops->send_post_enqueue( 1985 &vsk->sk, written, 1986 (struct vmci_transport_send_notify_data *)data); 1987 } 1988 1989 static bool vmci_transport_old_proto_override(bool *old_pkt_proto) 1990 { 1991 if (PROTOCOL_OVERRIDE != -1) { 1992 if (PROTOCOL_OVERRIDE == 0) 1993 *old_pkt_proto = true; 1994 else 1995 *old_pkt_proto = false; 1996 1997 pr_info("Proto override in use\n"); 1998 return true; 1999 } 2000 2001 return false; 2002 } 2003 2004 static bool vmci_transport_proto_to_notify_struct(struct sock *sk, 2005 u16 *proto, 2006 bool old_pkt_proto) 2007 { 2008 struct vsock_sock *vsk = vsock_sk(sk); 2009 2010 if (old_pkt_proto) { 2011 if (*proto != VSOCK_PROTO_INVALID) { 2012 pr_err("Can't set both an old and new protocol\n"); 2013 return false; 2014 } 2015 vmci_trans(vsk)->notify_ops = &vmci_transport_notify_pkt_ops; 2016 goto exit; 2017 } 2018 2019 switch (*proto) { 2020 case VSOCK_PROTO_PKT_ON_NOTIFY: 2021 vmci_trans(vsk)->notify_ops = 2022 &vmci_transport_notify_pkt_q_state_ops; 2023 break; 2024 default: 2025 pr_err("Unknown notify protocol version\n"); 2026 return false; 2027 } 2028 2029 exit: 2030 vmci_trans(vsk)->notify_ops->socket_init(sk); 2031 return true; 2032 } 2033 2034 static u16 vmci_transport_new_proto_supported_versions(void) 2035 { 2036 if (PROTOCOL_OVERRIDE != -1) 2037 return PROTOCOL_OVERRIDE; 2038 2039 return VSOCK_PROTO_ALL_SUPPORTED; 2040 } 2041 2042 static u32 vmci_transport_get_local_cid(void) 2043 { 2044 return vmci_get_context_id(); 2045 } 2046 2047 static const struct vsock_transport vmci_transport = { 2048 .init = vmci_transport_socket_init, 2049 .destruct = vmci_transport_destruct, 2050 .release = vmci_transport_release, 2051 .connect = vmci_transport_connect, 2052 .dgram_bind = vmci_transport_dgram_bind, 2053 .dgram_dequeue = vmci_transport_dgram_dequeue, 2054 .dgram_enqueue = vmci_transport_dgram_enqueue, 2055 .dgram_allow = vmci_transport_dgram_allow, 2056 .stream_dequeue = vmci_transport_stream_dequeue, 2057 .stream_enqueue = vmci_transport_stream_enqueue, 2058 .stream_has_data = vmci_transport_stream_has_data, 2059 .stream_has_space = vmci_transport_stream_has_space, 2060 .stream_rcvhiwat = vmci_transport_stream_rcvhiwat, 2061 .stream_is_active = vmci_transport_stream_is_active, 2062 .stream_allow = vmci_transport_stream_allow, 2063 .notify_poll_in = vmci_transport_notify_poll_in, 2064 .notify_poll_out = vmci_transport_notify_poll_out, 2065 .notify_recv_init = vmci_transport_notify_recv_init, 2066 .notify_recv_pre_block = vmci_transport_notify_recv_pre_block, 2067 .notify_recv_pre_dequeue = vmci_transport_notify_recv_pre_dequeue, 2068 .notify_recv_post_dequeue = vmci_transport_notify_recv_post_dequeue, 2069 .notify_send_init = vmci_transport_notify_send_init, 2070 .notify_send_pre_block = vmci_transport_notify_send_pre_block, 2071 .notify_send_pre_enqueue = vmci_transport_notify_send_pre_enqueue, 2072 .notify_send_post_enqueue = vmci_transport_notify_send_post_enqueue, 2073 .shutdown = vmci_transport_shutdown, 2074 .set_buffer_size = vmci_transport_set_buffer_size, 2075 .set_min_buffer_size = vmci_transport_set_min_buffer_size, 2076 .set_max_buffer_size = vmci_transport_set_max_buffer_size, 2077 .get_buffer_size = vmci_transport_get_buffer_size, 2078 .get_min_buffer_size = vmci_transport_get_min_buffer_size, 2079 .get_max_buffer_size = vmci_transport_get_max_buffer_size, 2080 .get_local_cid = vmci_transport_get_local_cid, 2081 }; 2082 2083 static int __init vmci_transport_init(void) 2084 { 2085 int err; 2086 2087 /* Create the datagram handle that we will use to send and receive all 2088 * VSocket control messages for this context. 2089 */ 2090 err = vmci_transport_datagram_create_hnd(VMCI_TRANSPORT_PACKET_RID, 2091 VMCI_FLAG_ANYCID_DG_HND, 2092 vmci_transport_recv_stream_cb, 2093 NULL, 2094 &vmci_transport_stream_handle); 2095 if (err < VMCI_SUCCESS) { 2096 pr_err("Unable to create datagram handle. (%d)\n", err); 2097 return vmci_transport_error_to_vsock_error(err); 2098 } 2099 2100 err = vmci_event_subscribe(VMCI_EVENT_QP_RESUMED, 2101 vmci_transport_qp_resumed_cb, 2102 NULL, &vmci_transport_qp_resumed_sub_id); 2103 if (err < VMCI_SUCCESS) { 2104 pr_err("Unable to subscribe to resumed event. (%d)\n", err); 2105 err = vmci_transport_error_to_vsock_error(err); 2106 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID; 2107 goto err_destroy_stream_handle; 2108 } 2109 2110 err = vsock_core_init(&vmci_transport); 2111 if (err < 0) 2112 goto err_unsubscribe; 2113 2114 return 0; 2115 2116 err_unsubscribe: 2117 vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id); 2118 err_destroy_stream_handle: 2119 vmci_datagram_destroy_handle(vmci_transport_stream_handle); 2120 return err; 2121 } 2122 module_init(vmci_transport_init); 2123 2124 static void __exit vmci_transport_exit(void) 2125 { 2126 cancel_work_sync(&vmci_transport_cleanup_work); 2127 vmci_transport_free_resources(&vmci_transport_cleanup_list); 2128 2129 if (!vmci_handle_is_invalid(vmci_transport_stream_handle)) { 2130 if (vmci_datagram_destroy_handle( 2131 vmci_transport_stream_handle) != VMCI_SUCCESS) 2132 pr_err("Couldn't destroy datagram handle\n"); 2133 vmci_transport_stream_handle = VMCI_INVALID_HANDLE; 2134 } 2135 2136 if (vmci_transport_qp_resumed_sub_id != VMCI_INVALID_ID) { 2137 vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id); 2138 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID; 2139 } 2140 2141 vsock_core_exit(); 2142 } 2143 module_exit(vmci_transport_exit); 2144 2145 MODULE_AUTHOR("VMware, Inc."); 2146 MODULE_DESCRIPTION("VMCI transport for Virtual Sockets"); 2147 MODULE_VERSION("1.0.4.0-k"); 2148 MODULE_LICENSE("GPL v2"); 2149 MODULE_ALIAS("vmware_vsock"); 2150 MODULE_ALIAS_NETPROTO(PF_VSOCK); 2151