1 /*
2  * VMware vSockets Driver
3  *
4  * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published by the Free
8  * Software Foundation version 2 and no later version.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  */
15 
16 #include <linux/types.h>
17 #include <linux/bitops.h>
18 #include <linux/cred.h>
19 #include <linux/init.h>
20 #include <linux/io.h>
21 #include <linux/kernel.h>
22 #include <linux/kmod.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/net.h>
27 #include <linux/poll.h>
28 #include <linux/skbuff.h>
29 #include <linux/smp.h>
30 #include <linux/socket.h>
31 #include <linux/stddef.h>
32 #include <linux/unistd.h>
33 #include <linux/wait.h>
34 #include <linux/workqueue.h>
35 #include <net/sock.h>
36 #include <net/af_vsock.h>
37 
38 #include "vmci_transport_notify.h"
39 
40 static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg);
41 static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg);
42 static void vmci_transport_peer_detach_cb(u32 sub_id,
43 					  const struct vmci_event_data *ed,
44 					  void *client_data);
45 static void vmci_transport_recv_pkt_work(struct work_struct *work);
46 static void vmci_transport_cleanup(struct work_struct *work);
47 static int vmci_transport_recv_listen(struct sock *sk,
48 				      struct vmci_transport_packet *pkt);
49 static int vmci_transport_recv_connecting_server(
50 					struct sock *sk,
51 					struct sock *pending,
52 					struct vmci_transport_packet *pkt);
53 static int vmci_transport_recv_connecting_client(
54 					struct sock *sk,
55 					struct vmci_transport_packet *pkt);
56 static int vmci_transport_recv_connecting_client_negotiate(
57 					struct sock *sk,
58 					struct vmci_transport_packet *pkt);
59 static int vmci_transport_recv_connecting_client_invalid(
60 					struct sock *sk,
61 					struct vmci_transport_packet *pkt);
62 static int vmci_transport_recv_connected(struct sock *sk,
63 					 struct vmci_transport_packet *pkt);
64 static bool vmci_transport_old_proto_override(bool *old_pkt_proto);
65 static u16 vmci_transport_new_proto_supported_versions(void);
66 static bool vmci_transport_proto_to_notify_struct(struct sock *sk, u16 *proto,
67 						  bool old_pkt_proto);
68 
69 struct vmci_transport_recv_pkt_info {
70 	struct work_struct work;
71 	struct sock *sk;
72 	struct vmci_transport_packet pkt;
73 };
74 
75 static LIST_HEAD(vmci_transport_cleanup_list);
76 static DEFINE_SPINLOCK(vmci_transport_cleanup_lock);
77 static DECLARE_WORK(vmci_transport_cleanup_work, vmci_transport_cleanup);
78 
79 static struct vmci_handle vmci_transport_stream_handle = { VMCI_INVALID_ID,
80 							   VMCI_INVALID_ID };
81 static u32 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
82 
83 static int PROTOCOL_OVERRIDE = -1;
84 
85 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE_MIN   128
86 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE       262144
87 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE_MAX   262144
88 
89 /* The default peer timeout indicates how long we will wait for a peer response
90  * to a control message.
91  */
92 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
93 
94 /* Helper function to convert from a VMCI error code to a VSock error code. */
95 
96 static s32 vmci_transport_error_to_vsock_error(s32 vmci_error)
97 {
98 	switch (vmci_error) {
99 	case VMCI_ERROR_NO_MEM:
100 		return -ENOMEM;
101 	case VMCI_ERROR_DUPLICATE_ENTRY:
102 	case VMCI_ERROR_ALREADY_EXISTS:
103 		return -EADDRINUSE;
104 	case VMCI_ERROR_NO_ACCESS:
105 		return -EPERM;
106 	case VMCI_ERROR_NO_RESOURCES:
107 		return -ENOBUFS;
108 	case VMCI_ERROR_INVALID_RESOURCE:
109 		return -EHOSTUNREACH;
110 	case VMCI_ERROR_INVALID_ARGS:
111 	default:
112 		break;
113 	}
114 	return -EINVAL;
115 }
116 
117 static u32 vmci_transport_peer_rid(u32 peer_cid)
118 {
119 	if (VMADDR_CID_HYPERVISOR == peer_cid)
120 		return VMCI_TRANSPORT_HYPERVISOR_PACKET_RID;
121 
122 	return VMCI_TRANSPORT_PACKET_RID;
123 }
124 
125 static inline void
126 vmci_transport_packet_init(struct vmci_transport_packet *pkt,
127 			   struct sockaddr_vm *src,
128 			   struct sockaddr_vm *dst,
129 			   u8 type,
130 			   u64 size,
131 			   u64 mode,
132 			   struct vmci_transport_waiting_info *wait,
133 			   u16 proto,
134 			   struct vmci_handle handle)
135 {
136 	/* We register the stream control handler as an any cid handle so we
137 	 * must always send from a source address of VMADDR_CID_ANY
138 	 */
139 	pkt->dg.src = vmci_make_handle(VMADDR_CID_ANY,
140 				       VMCI_TRANSPORT_PACKET_RID);
141 	pkt->dg.dst = vmci_make_handle(dst->svm_cid,
142 				       vmci_transport_peer_rid(dst->svm_cid));
143 	pkt->dg.payload_size = sizeof(*pkt) - sizeof(pkt->dg);
144 	pkt->version = VMCI_TRANSPORT_PACKET_VERSION;
145 	pkt->type = type;
146 	pkt->src_port = src->svm_port;
147 	pkt->dst_port = dst->svm_port;
148 	memset(&pkt->proto, 0, sizeof(pkt->proto));
149 	memset(&pkt->_reserved2, 0, sizeof(pkt->_reserved2));
150 
151 	switch (pkt->type) {
152 	case VMCI_TRANSPORT_PACKET_TYPE_INVALID:
153 		pkt->u.size = 0;
154 		break;
155 
156 	case VMCI_TRANSPORT_PACKET_TYPE_REQUEST:
157 	case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE:
158 		pkt->u.size = size;
159 		break;
160 
161 	case VMCI_TRANSPORT_PACKET_TYPE_OFFER:
162 	case VMCI_TRANSPORT_PACKET_TYPE_ATTACH:
163 		pkt->u.handle = handle;
164 		break;
165 
166 	case VMCI_TRANSPORT_PACKET_TYPE_WROTE:
167 	case VMCI_TRANSPORT_PACKET_TYPE_READ:
168 	case VMCI_TRANSPORT_PACKET_TYPE_RST:
169 		pkt->u.size = 0;
170 		break;
171 
172 	case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN:
173 		pkt->u.mode = mode;
174 		break;
175 
176 	case VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ:
177 	case VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE:
178 		memcpy(&pkt->u.wait, wait, sizeof(pkt->u.wait));
179 		break;
180 
181 	case VMCI_TRANSPORT_PACKET_TYPE_REQUEST2:
182 	case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2:
183 		pkt->u.size = size;
184 		pkt->proto = proto;
185 		break;
186 	}
187 }
188 
189 static inline void
190 vmci_transport_packet_get_addresses(struct vmci_transport_packet *pkt,
191 				    struct sockaddr_vm *local,
192 				    struct sockaddr_vm *remote)
193 {
194 	vsock_addr_init(local, pkt->dg.dst.context, pkt->dst_port);
195 	vsock_addr_init(remote, pkt->dg.src.context, pkt->src_port);
196 }
197 
198 static int
199 __vmci_transport_send_control_pkt(struct vmci_transport_packet *pkt,
200 				  struct sockaddr_vm *src,
201 				  struct sockaddr_vm *dst,
202 				  enum vmci_transport_packet_type type,
203 				  u64 size,
204 				  u64 mode,
205 				  struct vmci_transport_waiting_info *wait,
206 				  u16 proto,
207 				  struct vmci_handle handle,
208 				  bool convert_error)
209 {
210 	int err;
211 
212 	vmci_transport_packet_init(pkt, src, dst, type, size, mode, wait,
213 				   proto, handle);
214 	err = vmci_datagram_send(&pkt->dg);
215 	if (convert_error && (err < 0))
216 		return vmci_transport_error_to_vsock_error(err);
217 
218 	return err;
219 }
220 
221 static int
222 vmci_transport_reply_control_pkt_fast(struct vmci_transport_packet *pkt,
223 				      enum vmci_transport_packet_type type,
224 				      u64 size,
225 				      u64 mode,
226 				      struct vmci_transport_waiting_info *wait,
227 				      struct vmci_handle handle)
228 {
229 	struct vmci_transport_packet reply;
230 	struct sockaddr_vm src, dst;
231 
232 	if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST) {
233 		return 0;
234 	} else {
235 		vmci_transport_packet_get_addresses(pkt, &src, &dst);
236 		return __vmci_transport_send_control_pkt(&reply, &src, &dst,
237 							 type,
238 							 size, mode, wait,
239 							 VSOCK_PROTO_INVALID,
240 							 handle, true);
241 	}
242 }
243 
244 static int
245 vmci_transport_send_control_pkt_bh(struct sockaddr_vm *src,
246 				   struct sockaddr_vm *dst,
247 				   enum vmci_transport_packet_type type,
248 				   u64 size,
249 				   u64 mode,
250 				   struct vmci_transport_waiting_info *wait,
251 				   struct vmci_handle handle)
252 {
253 	/* Note that it is safe to use a single packet across all CPUs since
254 	 * two tasklets of the same type are guaranteed to not ever run
255 	 * simultaneously. If that ever changes, or VMCI stops using tasklets,
256 	 * we can use per-cpu packets.
257 	 */
258 	static struct vmci_transport_packet pkt;
259 
260 	return __vmci_transport_send_control_pkt(&pkt, src, dst, type,
261 						 size, mode, wait,
262 						 VSOCK_PROTO_INVALID, handle,
263 						 false);
264 }
265 
266 static int
267 vmci_transport_send_control_pkt(struct sock *sk,
268 				enum vmci_transport_packet_type type,
269 				u64 size,
270 				u64 mode,
271 				struct vmci_transport_waiting_info *wait,
272 				u16 proto,
273 				struct vmci_handle handle)
274 {
275 	struct vmci_transport_packet *pkt;
276 	struct vsock_sock *vsk;
277 	int err;
278 
279 	vsk = vsock_sk(sk);
280 
281 	if (!vsock_addr_bound(&vsk->local_addr))
282 		return -EINVAL;
283 
284 	if (!vsock_addr_bound(&vsk->remote_addr))
285 		return -EINVAL;
286 
287 	pkt = kmalloc(sizeof(*pkt), GFP_KERNEL);
288 	if (!pkt)
289 		return -ENOMEM;
290 
291 	err = __vmci_transport_send_control_pkt(pkt, &vsk->local_addr,
292 						&vsk->remote_addr, type, size,
293 						mode, wait, proto, handle,
294 						true);
295 	kfree(pkt);
296 
297 	return err;
298 }
299 
300 static int vmci_transport_send_reset_bh(struct sockaddr_vm *dst,
301 					struct sockaddr_vm *src,
302 					struct vmci_transport_packet *pkt)
303 {
304 	if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST)
305 		return 0;
306 	return vmci_transport_send_control_pkt_bh(
307 					dst, src,
308 					VMCI_TRANSPORT_PACKET_TYPE_RST, 0,
309 					0, NULL, VMCI_INVALID_HANDLE);
310 }
311 
312 static int vmci_transport_send_reset(struct sock *sk,
313 				     struct vmci_transport_packet *pkt)
314 {
315 	if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST)
316 		return 0;
317 	return vmci_transport_send_control_pkt(sk,
318 					VMCI_TRANSPORT_PACKET_TYPE_RST,
319 					0, 0, NULL, VSOCK_PROTO_INVALID,
320 					VMCI_INVALID_HANDLE);
321 }
322 
323 static int vmci_transport_send_negotiate(struct sock *sk, size_t size)
324 {
325 	return vmci_transport_send_control_pkt(
326 					sk,
327 					VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE,
328 					size, 0, NULL,
329 					VSOCK_PROTO_INVALID,
330 					VMCI_INVALID_HANDLE);
331 }
332 
333 static int vmci_transport_send_negotiate2(struct sock *sk, size_t size,
334 					  u16 version)
335 {
336 	return vmci_transport_send_control_pkt(
337 					sk,
338 					VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2,
339 					size, 0, NULL, version,
340 					VMCI_INVALID_HANDLE);
341 }
342 
343 static int vmci_transport_send_qp_offer(struct sock *sk,
344 					struct vmci_handle handle)
345 {
346 	return vmci_transport_send_control_pkt(
347 					sk, VMCI_TRANSPORT_PACKET_TYPE_OFFER, 0,
348 					0, NULL,
349 					VSOCK_PROTO_INVALID, handle);
350 }
351 
352 static int vmci_transport_send_attach(struct sock *sk,
353 				      struct vmci_handle handle)
354 {
355 	return vmci_transport_send_control_pkt(
356 					sk, VMCI_TRANSPORT_PACKET_TYPE_ATTACH,
357 					0, 0, NULL, VSOCK_PROTO_INVALID,
358 					handle);
359 }
360 
361 static int vmci_transport_reply_reset(struct vmci_transport_packet *pkt)
362 {
363 	return vmci_transport_reply_control_pkt_fast(
364 						pkt,
365 						VMCI_TRANSPORT_PACKET_TYPE_RST,
366 						0, 0, NULL,
367 						VMCI_INVALID_HANDLE);
368 }
369 
370 static int vmci_transport_send_invalid_bh(struct sockaddr_vm *dst,
371 					  struct sockaddr_vm *src)
372 {
373 	return vmci_transport_send_control_pkt_bh(
374 					dst, src,
375 					VMCI_TRANSPORT_PACKET_TYPE_INVALID,
376 					0, 0, NULL, VMCI_INVALID_HANDLE);
377 }
378 
379 int vmci_transport_send_wrote_bh(struct sockaddr_vm *dst,
380 				 struct sockaddr_vm *src)
381 {
382 	return vmci_transport_send_control_pkt_bh(
383 					dst, src,
384 					VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0,
385 					0, NULL, VMCI_INVALID_HANDLE);
386 }
387 
388 int vmci_transport_send_read_bh(struct sockaddr_vm *dst,
389 				struct sockaddr_vm *src)
390 {
391 	return vmci_transport_send_control_pkt_bh(
392 					dst, src,
393 					VMCI_TRANSPORT_PACKET_TYPE_READ, 0,
394 					0, NULL, VMCI_INVALID_HANDLE);
395 }
396 
397 int vmci_transport_send_wrote(struct sock *sk)
398 {
399 	return vmci_transport_send_control_pkt(
400 					sk, VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0,
401 					0, NULL, VSOCK_PROTO_INVALID,
402 					VMCI_INVALID_HANDLE);
403 }
404 
405 int vmci_transport_send_read(struct sock *sk)
406 {
407 	return vmci_transport_send_control_pkt(
408 					sk, VMCI_TRANSPORT_PACKET_TYPE_READ, 0,
409 					0, NULL, VSOCK_PROTO_INVALID,
410 					VMCI_INVALID_HANDLE);
411 }
412 
413 int vmci_transport_send_waiting_write(struct sock *sk,
414 				      struct vmci_transport_waiting_info *wait)
415 {
416 	return vmci_transport_send_control_pkt(
417 				sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE,
418 				0, 0, wait, VSOCK_PROTO_INVALID,
419 				VMCI_INVALID_HANDLE);
420 }
421 
422 int vmci_transport_send_waiting_read(struct sock *sk,
423 				     struct vmci_transport_waiting_info *wait)
424 {
425 	return vmci_transport_send_control_pkt(
426 				sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ,
427 				0, 0, wait, VSOCK_PROTO_INVALID,
428 				VMCI_INVALID_HANDLE);
429 }
430 
431 static int vmci_transport_shutdown(struct vsock_sock *vsk, int mode)
432 {
433 	return vmci_transport_send_control_pkt(
434 					&vsk->sk,
435 					VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN,
436 					0, mode, NULL,
437 					VSOCK_PROTO_INVALID,
438 					VMCI_INVALID_HANDLE);
439 }
440 
441 static int vmci_transport_send_conn_request(struct sock *sk, size_t size)
442 {
443 	return vmci_transport_send_control_pkt(sk,
444 					VMCI_TRANSPORT_PACKET_TYPE_REQUEST,
445 					size, 0, NULL,
446 					VSOCK_PROTO_INVALID,
447 					VMCI_INVALID_HANDLE);
448 }
449 
450 static int vmci_transport_send_conn_request2(struct sock *sk, size_t size,
451 					     u16 version)
452 {
453 	return vmci_transport_send_control_pkt(
454 					sk, VMCI_TRANSPORT_PACKET_TYPE_REQUEST2,
455 					size, 0, NULL, version,
456 					VMCI_INVALID_HANDLE);
457 }
458 
459 static struct sock *vmci_transport_get_pending(
460 					struct sock *listener,
461 					struct vmci_transport_packet *pkt)
462 {
463 	struct vsock_sock *vlistener;
464 	struct vsock_sock *vpending;
465 	struct sock *pending;
466 	struct sockaddr_vm src;
467 
468 	vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port);
469 
470 	vlistener = vsock_sk(listener);
471 
472 	list_for_each_entry(vpending, &vlistener->pending_links,
473 			    pending_links) {
474 		if (vsock_addr_equals_addr(&src, &vpending->remote_addr) &&
475 		    pkt->dst_port == vpending->local_addr.svm_port) {
476 			pending = sk_vsock(vpending);
477 			sock_hold(pending);
478 			goto found;
479 		}
480 	}
481 
482 	pending = NULL;
483 found:
484 	return pending;
485 
486 }
487 
488 static void vmci_transport_release_pending(struct sock *pending)
489 {
490 	sock_put(pending);
491 }
492 
493 /* We allow two kinds of sockets to communicate with a restricted VM: 1)
494  * trusted sockets 2) sockets from applications running as the same user as the
495  * VM (this is only true for the host side and only when using hosted products)
496  */
497 
498 static bool vmci_transport_is_trusted(struct vsock_sock *vsock, u32 peer_cid)
499 {
500 	return vsock->trusted ||
501 	       vmci_is_context_owner(peer_cid, vsock->owner->uid);
502 }
503 
504 /* We allow sending datagrams to and receiving datagrams from a restricted VM
505  * only if it is trusted as described in vmci_transport_is_trusted.
506  */
507 
508 static bool vmci_transport_allow_dgram(struct vsock_sock *vsock, u32 peer_cid)
509 {
510 	if (VMADDR_CID_HYPERVISOR == peer_cid)
511 		return true;
512 
513 	if (vsock->cached_peer != peer_cid) {
514 		vsock->cached_peer = peer_cid;
515 		if (!vmci_transport_is_trusted(vsock, peer_cid) &&
516 		    (vmci_context_get_priv_flags(peer_cid) &
517 		     VMCI_PRIVILEGE_FLAG_RESTRICTED)) {
518 			vsock->cached_peer_allow_dgram = false;
519 		} else {
520 			vsock->cached_peer_allow_dgram = true;
521 		}
522 	}
523 
524 	return vsock->cached_peer_allow_dgram;
525 }
526 
527 static int
528 vmci_transport_queue_pair_alloc(struct vmci_qp **qpair,
529 				struct vmci_handle *handle,
530 				u64 produce_size,
531 				u64 consume_size,
532 				u32 peer, u32 flags, bool trusted)
533 {
534 	int err = 0;
535 
536 	if (trusted) {
537 		/* Try to allocate our queue pair as trusted. This will only
538 		 * work if vsock is running in the host.
539 		 */
540 
541 		err = vmci_qpair_alloc(qpair, handle, produce_size,
542 				       consume_size,
543 				       peer, flags,
544 				       VMCI_PRIVILEGE_FLAG_TRUSTED);
545 		if (err != VMCI_ERROR_NO_ACCESS)
546 			goto out;
547 
548 	}
549 
550 	err = vmci_qpair_alloc(qpair, handle, produce_size, consume_size,
551 			       peer, flags, VMCI_NO_PRIVILEGE_FLAGS);
552 out:
553 	if (err < 0) {
554 		pr_err("Could not attach to queue pair with %d\n",
555 		       err);
556 		err = vmci_transport_error_to_vsock_error(err);
557 	}
558 
559 	return err;
560 }
561 
562 static int
563 vmci_transport_datagram_create_hnd(u32 resource_id,
564 				   u32 flags,
565 				   vmci_datagram_recv_cb recv_cb,
566 				   void *client_data,
567 				   struct vmci_handle *out_handle)
568 {
569 	int err = 0;
570 
571 	/* Try to allocate our datagram handler as trusted. This will only work
572 	 * if vsock is running in the host.
573 	 */
574 
575 	err = vmci_datagram_create_handle_priv(resource_id, flags,
576 					       VMCI_PRIVILEGE_FLAG_TRUSTED,
577 					       recv_cb,
578 					       client_data, out_handle);
579 
580 	if (err == VMCI_ERROR_NO_ACCESS)
581 		err = vmci_datagram_create_handle(resource_id, flags,
582 						  recv_cb, client_data,
583 						  out_handle);
584 
585 	return err;
586 }
587 
588 /* This is invoked as part of a tasklet that's scheduled when the VMCI
589  * interrupt fires.  This is run in bottom-half context and if it ever needs to
590  * sleep it should defer that work to a work queue.
591  */
592 
593 static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg)
594 {
595 	struct sock *sk;
596 	size_t size;
597 	struct sk_buff *skb;
598 	struct vsock_sock *vsk;
599 
600 	sk = (struct sock *)data;
601 
602 	/* This handler is privileged when this module is running on the host.
603 	 * We will get datagrams from all endpoints (even VMs that are in a
604 	 * restricted context). If we get one from a restricted context then
605 	 * the destination socket must be trusted.
606 	 *
607 	 * NOTE: We access the socket struct without holding the lock here.
608 	 * This is ok because the field we are interested is never modified
609 	 * outside of the create and destruct socket functions.
610 	 */
611 	vsk = vsock_sk(sk);
612 	if (!vmci_transport_allow_dgram(vsk, dg->src.context))
613 		return VMCI_ERROR_NO_ACCESS;
614 
615 	size = VMCI_DG_SIZE(dg);
616 
617 	/* Attach the packet to the socket's receive queue as an sk_buff. */
618 	skb = alloc_skb(size, GFP_ATOMIC);
619 	if (!skb)
620 		return VMCI_ERROR_NO_MEM;
621 
622 	/* sk_receive_skb() will do a sock_put(), so hold here. */
623 	sock_hold(sk);
624 	skb_put(skb, size);
625 	memcpy(skb->data, dg, size);
626 	sk_receive_skb(sk, skb, 0);
627 
628 	return VMCI_SUCCESS;
629 }
630 
631 static bool vmci_transport_stream_allow(u32 cid, u32 port)
632 {
633 	static const u32 non_socket_contexts[] = {
634 		VMADDR_CID_RESERVED,
635 	};
636 	int i;
637 
638 	BUILD_BUG_ON(sizeof(cid) != sizeof(*non_socket_contexts));
639 
640 	for (i = 0; i < ARRAY_SIZE(non_socket_contexts); i++) {
641 		if (cid == non_socket_contexts[i])
642 			return false;
643 	}
644 
645 	return true;
646 }
647 
648 /* This is invoked as part of a tasklet that's scheduled when the VMCI
649  * interrupt fires.  This is run in bottom-half context but it defers most of
650  * its work to the packet handling work queue.
651  */
652 
653 static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg)
654 {
655 	struct sock *sk;
656 	struct sockaddr_vm dst;
657 	struct sockaddr_vm src;
658 	struct vmci_transport_packet *pkt;
659 	struct vsock_sock *vsk;
660 	bool bh_process_pkt;
661 	int err;
662 
663 	sk = NULL;
664 	err = VMCI_SUCCESS;
665 	bh_process_pkt = false;
666 
667 	/* Ignore incoming packets from contexts without sockets, or resources
668 	 * that aren't vsock implementations.
669 	 */
670 
671 	if (!vmci_transport_stream_allow(dg->src.context, -1)
672 	    || vmci_transport_peer_rid(dg->src.context) != dg->src.resource)
673 		return VMCI_ERROR_NO_ACCESS;
674 
675 	if (VMCI_DG_SIZE(dg) < sizeof(*pkt))
676 		/* Drop datagrams that do not contain full VSock packets. */
677 		return VMCI_ERROR_INVALID_ARGS;
678 
679 	pkt = (struct vmci_transport_packet *)dg;
680 
681 	/* Find the socket that should handle this packet.  First we look for a
682 	 * connected socket and if there is none we look for a socket bound to
683 	 * the destintation address.
684 	 */
685 	vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port);
686 	vsock_addr_init(&dst, pkt->dg.dst.context, pkt->dst_port);
687 
688 	sk = vsock_find_connected_socket(&src, &dst);
689 	if (!sk) {
690 		sk = vsock_find_bound_socket(&dst);
691 		if (!sk) {
692 			/* We could not find a socket for this specified
693 			 * address.  If this packet is a RST, we just drop it.
694 			 * If it is another packet, we send a RST.  Note that
695 			 * we do not send a RST reply to RSTs so that we do not
696 			 * continually send RSTs between two endpoints.
697 			 *
698 			 * Note that since this is a reply, dst is src and src
699 			 * is dst.
700 			 */
701 			if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0)
702 				pr_err("unable to send reset\n");
703 
704 			err = VMCI_ERROR_NOT_FOUND;
705 			goto out;
706 		}
707 	}
708 
709 	/* If the received packet type is beyond all types known to this
710 	 * implementation, reply with an invalid message.  Hopefully this will
711 	 * help when implementing backwards compatibility in the future.
712 	 */
713 	if (pkt->type >= VMCI_TRANSPORT_PACKET_TYPE_MAX) {
714 		vmci_transport_send_invalid_bh(&dst, &src);
715 		err = VMCI_ERROR_INVALID_ARGS;
716 		goto out;
717 	}
718 
719 	/* This handler is privileged when this module is running on the host.
720 	 * We will get datagram connect requests from all endpoints (even VMs
721 	 * that are in a restricted context). If we get one from a restricted
722 	 * context then the destination socket must be trusted.
723 	 *
724 	 * NOTE: We access the socket struct without holding the lock here.
725 	 * This is ok because the field we are interested is never modified
726 	 * outside of the create and destruct socket functions.
727 	 */
728 	vsk = vsock_sk(sk);
729 	if (!vmci_transport_allow_dgram(vsk, pkt->dg.src.context)) {
730 		err = VMCI_ERROR_NO_ACCESS;
731 		goto out;
732 	}
733 
734 	/* We do most everything in a work queue, but let's fast path the
735 	 * notification of reads and writes to help data transfer performance.
736 	 * We can only do this if there is no process context code executing
737 	 * for this socket since that may change the state.
738 	 */
739 	bh_lock_sock(sk);
740 
741 	if (!sock_owned_by_user(sk)) {
742 		/* The local context ID may be out of date, update it. */
743 		vsk->local_addr.svm_cid = dst.svm_cid;
744 
745 		if (sk->sk_state == TCP_ESTABLISHED)
746 			vmci_trans(vsk)->notify_ops->handle_notify_pkt(
747 					sk, pkt, true, &dst, &src,
748 					&bh_process_pkt);
749 	}
750 
751 	bh_unlock_sock(sk);
752 
753 	if (!bh_process_pkt) {
754 		struct vmci_transport_recv_pkt_info *recv_pkt_info;
755 
756 		recv_pkt_info = kmalloc(sizeof(*recv_pkt_info), GFP_ATOMIC);
757 		if (!recv_pkt_info) {
758 			if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0)
759 				pr_err("unable to send reset\n");
760 
761 			err = VMCI_ERROR_NO_MEM;
762 			goto out;
763 		}
764 
765 		recv_pkt_info->sk = sk;
766 		memcpy(&recv_pkt_info->pkt, pkt, sizeof(recv_pkt_info->pkt));
767 		INIT_WORK(&recv_pkt_info->work, vmci_transport_recv_pkt_work);
768 
769 		schedule_work(&recv_pkt_info->work);
770 		/* Clear sk so that the reference count incremented by one of
771 		 * the Find functions above is not decremented below.  We need
772 		 * that reference count for the packet handler we've scheduled
773 		 * to run.
774 		 */
775 		sk = NULL;
776 	}
777 
778 out:
779 	if (sk)
780 		sock_put(sk);
781 
782 	return err;
783 }
784 
785 static void vmci_transport_handle_detach(struct sock *sk)
786 {
787 	struct vsock_sock *vsk;
788 
789 	vsk = vsock_sk(sk);
790 	if (!vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)) {
791 		sock_set_flag(sk, SOCK_DONE);
792 
793 		/* On a detach the peer will not be sending or receiving
794 		 * anymore.
795 		 */
796 		vsk->peer_shutdown = SHUTDOWN_MASK;
797 
798 		/* We should not be sending anymore since the peer won't be
799 		 * there to receive, but we can still receive if there is data
800 		 * left in our consume queue.
801 		 */
802 		if (vsock_stream_has_data(vsk) <= 0) {
803 			sk->sk_state = TCP_CLOSE;
804 
805 			if (sk->sk_state == TCP_SYN_SENT) {
806 				/* The peer may detach from a queue pair while
807 				 * we are still in the connecting state, i.e.,
808 				 * if the peer VM is killed after attaching to
809 				 * a queue pair, but before we complete the
810 				 * handshake. In that case, we treat the detach
811 				 * event like a reset.
812 				 */
813 
814 				sk->sk_err = ECONNRESET;
815 				sk->sk_error_report(sk);
816 				return;
817 			}
818 		}
819 		sk->sk_state_change(sk);
820 	}
821 }
822 
823 static void vmci_transport_peer_detach_cb(u32 sub_id,
824 					  const struct vmci_event_data *e_data,
825 					  void *client_data)
826 {
827 	struct vmci_transport *trans = client_data;
828 	const struct vmci_event_payload_qp *e_payload;
829 
830 	e_payload = vmci_event_data_const_payload(e_data);
831 
832 	/* XXX This is lame, we should provide a way to lookup sockets by
833 	 * qp_handle.
834 	 */
835 	if (vmci_handle_is_invalid(e_payload->handle) ||
836 	    !vmci_handle_is_equal(trans->qp_handle, e_payload->handle))
837 		return;
838 
839 	/* We don't ask for delayed CBs when we subscribe to this event (we
840 	 * pass 0 as flags to vmci_event_subscribe()).  VMCI makes no
841 	 * guarantees in that case about what context we might be running in,
842 	 * so it could be BH or process, blockable or non-blockable.  So we
843 	 * need to account for all possible contexts here.
844 	 */
845 	spin_lock_bh(&trans->lock);
846 	if (!trans->sk)
847 		goto out;
848 
849 	/* Apart from here, trans->lock is only grabbed as part of sk destruct,
850 	 * where trans->sk isn't locked.
851 	 */
852 	bh_lock_sock(trans->sk);
853 
854 	vmci_transport_handle_detach(trans->sk);
855 
856 	bh_unlock_sock(trans->sk);
857  out:
858 	spin_unlock_bh(&trans->lock);
859 }
860 
861 static void vmci_transport_qp_resumed_cb(u32 sub_id,
862 					 const struct vmci_event_data *e_data,
863 					 void *client_data)
864 {
865 	vsock_for_each_connected_socket(vmci_transport_handle_detach);
866 }
867 
868 static void vmci_transport_recv_pkt_work(struct work_struct *work)
869 {
870 	struct vmci_transport_recv_pkt_info *recv_pkt_info;
871 	struct vmci_transport_packet *pkt;
872 	struct sock *sk;
873 
874 	recv_pkt_info =
875 		container_of(work, struct vmci_transport_recv_pkt_info, work);
876 	sk = recv_pkt_info->sk;
877 	pkt = &recv_pkt_info->pkt;
878 
879 	lock_sock(sk);
880 
881 	/* The local context ID may be out of date. */
882 	vsock_sk(sk)->local_addr.svm_cid = pkt->dg.dst.context;
883 
884 	switch (sk->sk_state) {
885 	case TCP_LISTEN:
886 		vmci_transport_recv_listen(sk, pkt);
887 		break;
888 	case TCP_SYN_SENT:
889 		/* Processing of pending connections for servers goes through
890 		 * the listening socket, so see vmci_transport_recv_listen()
891 		 * for that path.
892 		 */
893 		vmci_transport_recv_connecting_client(sk, pkt);
894 		break;
895 	case TCP_ESTABLISHED:
896 		vmci_transport_recv_connected(sk, pkt);
897 		break;
898 	default:
899 		/* Because this function does not run in the same context as
900 		 * vmci_transport_recv_stream_cb it is possible that the
901 		 * socket has closed. We need to let the other side know or it
902 		 * could be sitting in a connect and hang forever. Send a
903 		 * reset to prevent that.
904 		 */
905 		vmci_transport_send_reset(sk, pkt);
906 		break;
907 	}
908 
909 	release_sock(sk);
910 	kfree(recv_pkt_info);
911 	/* Release reference obtained in the stream callback when we fetched
912 	 * this socket out of the bound or connected list.
913 	 */
914 	sock_put(sk);
915 }
916 
917 static int vmci_transport_recv_listen(struct sock *sk,
918 				      struct vmci_transport_packet *pkt)
919 {
920 	struct sock *pending;
921 	struct vsock_sock *vpending;
922 	int err;
923 	u64 qp_size;
924 	bool old_request = false;
925 	bool old_pkt_proto = false;
926 
927 	err = 0;
928 
929 	/* Because we are in the listen state, we could be receiving a packet
930 	 * for ourself or any previous connection requests that we received.
931 	 * If it's the latter, we try to find a socket in our list of pending
932 	 * connections and, if we do, call the appropriate handler for the
933 	 * state that that socket is in.  Otherwise we try to service the
934 	 * connection request.
935 	 */
936 	pending = vmci_transport_get_pending(sk, pkt);
937 	if (pending) {
938 		lock_sock(pending);
939 
940 		/* The local context ID may be out of date. */
941 		vsock_sk(pending)->local_addr.svm_cid = pkt->dg.dst.context;
942 
943 		switch (pending->sk_state) {
944 		case TCP_SYN_SENT:
945 			err = vmci_transport_recv_connecting_server(sk,
946 								    pending,
947 								    pkt);
948 			break;
949 		default:
950 			vmci_transport_send_reset(pending, pkt);
951 			err = -EINVAL;
952 		}
953 
954 		if (err < 0)
955 			vsock_remove_pending(sk, pending);
956 
957 		release_sock(pending);
958 		vmci_transport_release_pending(pending);
959 
960 		return err;
961 	}
962 
963 	/* The listen state only accepts connection requests.  Reply with a
964 	 * reset unless we received a reset.
965 	 */
966 
967 	if (!(pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST ||
968 	      pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)) {
969 		vmci_transport_reply_reset(pkt);
970 		return -EINVAL;
971 	}
972 
973 	if (pkt->u.size == 0) {
974 		vmci_transport_reply_reset(pkt);
975 		return -EINVAL;
976 	}
977 
978 	/* If this socket can't accommodate this connection request, we send a
979 	 * reset.  Otherwise we create and initialize a child socket and reply
980 	 * with a connection negotiation.
981 	 */
982 	if (sk->sk_ack_backlog >= sk->sk_max_ack_backlog) {
983 		vmci_transport_reply_reset(pkt);
984 		return -ECONNREFUSED;
985 	}
986 
987 	pending = __vsock_create(sock_net(sk), NULL, sk, GFP_KERNEL,
988 				 sk->sk_type, 0);
989 	if (!pending) {
990 		vmci_transport_send_reset(sk, pkt);
991 		return -ENOMEM;
992 	}
993 
994 	vpending = vsock_sk(pending);
995 
996 	vsock_addr_init(&vpending->local_addr, pkt->dg.dst.context,
997 			pkt->dst_port);
998 	vsock_addr_init(&vpending->remote_addr, pkt->dg.src.context,
999 			pkt->src_port);
1000 
1001 	/* If the proposed size fits within our min/max, accept it. Otherwise
1002 	 * propose our own size.
1003 	 */
1004 	if (pkt->u.size >= vmci_trans(vpending)->queue_pair_min_size &&
1005 	    pkt->u.size <= vmci_trans(vpending)->queue_pair_max_size) {
1006 		qp_size = pkt->u.size;
1007 	} else {
1008 		qp_size = vmci_trans(vpending)->queue_pair_size;
1009 	}
1010 
1011 	/* Figure out if we are using old or new requests based on the
1012 	 * overrides pkt types sent by our peer.
1013 	 */
1014 	if (vmci_transport_old_proto_override(&old_pkt_proto)) {
1015 		old_request = old_pkt_proto;
1016 	} else {
1017 		if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST)
1018 			old_request = true;
1019 		else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)
1020 			old_request = false;
1021 
1022 	}
1023 
1024 	if (old_request) {
1025 		/* Handle a REQUEST (or override) */
1026 		u16 version = VSOCK_PROTO_INVALID;
1027 		if (vmci_transport_proto_to_notify_struct(
1028 			pending, &version, true))
1029 			err = vmci_transport_send_negotiate(pending, qp_size);
1030 		else
1031 			err = -EINVAL;
1032 
1033 	} else {
1034 		/* Handle a REQUEST2 (or override) */
1035 		int proto_int = pkt->proto;
1036 		int pos;
1037 		u16 active_proto_version = 0;
1038 
1039 		/* The list of possible protocols is the intersection of all
1040 		 * protocols the client supports ... plus all the protocols we
1041 		 * support.
1042 		 */
1043 		proto_int &= vmci_transport_new_proto_supported_versions();
1044 
1045 		/* We choose the highest possible protocol version and use that
1046 		 * one.
1047 		 */
1048 		pos = fls(proto_int);
1049 		if (pos) {
1050 			active_proto_version = (1 << (pos - 1));
1051 			if (vmci_transport_proto_to_notify_struct(
1052 				pending, &active_proto_version, false))
1053 				err = vmci_transport_send_negotiate2(pending,
1054 							qp_size,
1055 							active_proto_version);
1056 			else
1057 				err = -EINVAL;
1058 
1059 		} else {
1060 			err = -EINVAL;
1061 		}
1062 	}
1063 
1064 	if (err < 0) {
1065 		vmci_transport_send_reset(sk, pkt);
1066 		sock_put(pending);
1067 		err = vmci_transport_error_to_vsock_error(err);
1068 		goto out;
1069 	}
1070 
1071 	vsock_add_pending(sk, pending);
1072 	sk->sk_ack_backlog++;
1073 
1074 	pending->sk_state = TCP_SYN_SENT;
1075 	vmci_trans(vpending)->produce_size =
1076 		vmci_trans(vpending)->consume_size = qp_size;
1077 	vmci_trans(vpending)->queue_pair_size = qp_size;
1078 
1079 	vmci_trans(vpending)->notify_ops->process_request(pending);
1080 
1081 	/* We might never receive another message for this socket and it's not
1082 	 * connected to any process, so we have to ensure it gets cleaned up
1083 	 * ourself.  Our delayed work function will take care of that.  Note
1084 	 * that we do not ever cancel this function since we have few
1085 	 * guarantees about its state when calling cancel_delayed_work().
1086 	 * Instead we hold a reference on the socket for that function and make
1087 	 * it capable of handling cases where it needs to do nothing but
1088 	 * release that reference.
1089 	 */
1090 	vpending->listener = sk;
1091 	sock_hold(sk);
1092 	sock_hold(pending);
1093 	INIT_DELAYED_WORK(&vpending->dwork, vsock_pending_work);
1094 	schedule_delayed_work(&vpending->dwork, HZ);
1095 
1096 out:
1097 	return err;
1098 }
1099 
1100 static int
1101 vmci_transport_recv_connecting_server(struct sock *listener,
1102 				      struct sock *pending,
1103 				      struct vmci_transport_packet *pkt)
1104 {
1105 	struct vsock_sock *vpending;
1106 	struct vmci_handle handle;
1107 	struct vmci_qp *qpair;
1108 	bool is_local;
1109 	u32 flags;
1110 	u32 detach_sub_id;
1111 	int err;
1112 	int skerr;
1113 
1114 	vpending = vsock_sk(pending);
1115 	detach_sub_id = VMCI_INVALID_ID;
1116 
1117 	switch (pkt->type) {
1118 	case VMCI_TRANSPORT_PACKET_TYPE_OFFER:
1119 		if (vmci_handle_is_invalid(pkt->u.handle)) {
1120 			vmci_transport_send_reset(pending, pkt);
1121 			skerr = EPROTO;
1122 			err = -EINVAL;
1123 			goto destroy;
1124 		}
1125 		break;
1126 	default:
1127 		/* Close and cleanup the connection. */
1128 		vmci_transport_send_reset(pending, pkt);
1129 		skerr = EPROTO;
1130 		err = pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST ? 0 : -EINVAL;
1131 		goto destroy;
1132 	}
1133 
1134 	/* In order to complete the connection we need to attach to the offered
1135 	 * queue pair and send an attach notification.  We also subscribe to the
1136 	 * detach event so we know when our peer goes away, and we do that
1137 	 * before attaching so we don't miss an event.  If all this succeeds,
1138 	 * we update our state and wakeup anything waiting in accept() for a
1139 	 * connection.
1140 	 */
1141 
1142 	/* We don't care about attach since we ensure the other side has
1143 	 * attached by specifying the ATTACH_ONLY flag below.
1144 	 */
1145 	err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH,
1146 				   vmci_transport_peer_detach_cb,
1147 				   vmci_trans(vpending), &detach_sub_id);
1148 	if (err < VMCI_SUCCESS) {
1149 		vmci_transport_send_reset(pending, pkt);
1150 		err = vmci_transport_error_to_vsock_error(err);
1151 		skerr = -err;
1152 		goto destroy;
1153 	}
1154 
1155 	vmci_trans(vpending)->detach_sub_id = detach_sub_id;
1156 
1157 	/* Now attach to the queue pair the client created. */
1158 	handle = pkt->u.handle;
1159 
1160 	/* vpending->local_addr always has a context id so we do not need to
1161 	 * worry about VMADDR_CID_ANY in this case.
1162 	 */
1163 	is_local =
1164 	    vpending->remote_addr.svm_cid == vpending->local_addr.svm_cid;
1165 	flags = VMCI_QPFLAG_ATTACH_ONLY;
1166 	flags |= is_local ? VMCI_QPFLAG_LOCAL : 0;
1167 
1168 	err = vmci_transport_queue_pair_alloc(
1169 					&qpair,
1170 					&handle,
1171 					vmci_trans(vpending)->produce_size,
1172 					vmci_trans(vpending)->consume_size,
1173 					pkt->dg.src.context,
1174 					flags,
1175 					vmci_transport_is_trusted(
1176 						vpending,
1177 						vpending->remote_addr.svm_cid));
1178 	if (err < 0) {
1179 		vmci_transport_send_reset(pending, pkt);
1180 		skerr = -err;
1181 		goto destroy;
1182 	}
1183 
1184 	vmci_trans(vpending)->qp_handle = handle;
1185 	vmci_trans(vpending)->qpair = qpair;
1186 
1187 	/* When we send the attach message, we must be ready to handle incoming
1188 	 * control messages on the newly connected socket. So we move the
1189 	 * pending socket to the connected state before sending the attach
1190 	 * message. Otherwise, an incoming packet triggered by the attach being
1191 	 * received by the peer may be processed concurrently with what happens
1192 	 * below after sending the attach message, and that incoming packet
1193 	 * will find the listening socket instead of the (currently) pending
1194 	 * socket. Note that enqueueing the socket increments the reference
1195 	 * count, so even if a reset comes before the connection is accepted,
1196 	 * the socket will be valid until it is removed from the queue.
1197 	 *
1198 	 * If we fail sending the attach below, we remove the socket from the
1199 	 * connected list and move the socket to TCP_CLOSE before
1200 	 * releasing the lock, so a pending slow path processing of an incoming
1201 	 * packet will not see the socket in the connected state in that case.
1202 	 */
1203 	pending->sk_state = TCP_ESTABLISHED;
1204 
1205 	vsock_insert_connected(vpending);
1206 
1207 	/* Notify our peer of our attach. */
1208 	err = vmci_transport_send_attach(pending, handle);
1209 	if (err < 0) {
1210 		vsock_remove_connected(vpending);
1211 		pr_err("Could not send attach\n");
1212 		vmci_transport_send_reset(pending, pkt);
1213 		err = vmci_transport_error_to_vsock_error(err);
1214 		skerr = -err;
1215 		goto destroy;
1216 	}
1217 
1218 	/* We have a connection. Move the now connected socket from the
1219 	 * listener's pending list to the accept queue so callers of accept()
1220 	 * can find it.
1221 	 */
1222 	vsock_remove_pending(listener, pending);
1223 	vsock_enqueue_accept(listener, pending);
1224 
1225 	/* Callers of accept() will be be waiting on the listening socket, not
1226 	 * the pending socket.
1227 	 */
1228 	listener->sk_data_ready(listener);
1229 
1230 	return 0;
1231 
1232 destroy:
1233 	pending->sk_err = skerr;
1234 	pending->sk_state = TCP_CLOSE;
1235 	/* As long as we drop our reference, all necessary cleanup will handle
1236 	 * when the cleanup function drops its reference and our destruct
1237 	 * implementation is called.  Note that since the listen handler will
1238 	 * remove pending from the pending list upon our failure, the cleanup
1239 	 * function won't drop the additional reference, which is why we do it
1240 	 * here.
1241 	 */
1242 	sock_put(pending);
1243 
1244 	return err;
1245 }
1246 
1247 static int
1248 vmci_transport_recv_connecting_client(struct sock *sk,
1249 				      struct vmci_transport_packet *pkt)
1250 {
1251 	struct vsock_sock *vsk;
1252 	int err;
1253 	int skerr;
1254 
1255 	vsk = vsock_sk(sk);
1256 
1257 	switch (pkt->type) {
1258 	case VMCI_TRANSPORT_PACKET_TYPE_ATTACH:
1259 		if (vmci_handle_is_invalid(pkt->u.handle) ||
1260 		    !vmci_handle_is_equal(pkt->u.handle,
1261 					  vmci_trans(vsk)->qp_handle)) {
1262 			skerr = EPROTO;
1263 			err = -EINVAL;
1264 			goto destroy;
1265 		}
1266 
1267 		/* Signify the socket is connected and wakeup the waiter in
1268 		 * connect(). Also place the socket in the connected table for
1269 		 * accounting (it can already be found since it's in the bound
1270 		 * table).
1271 		 */
1272 		sk->sk_state = TCP_ESTABLISHED;
1273 		sk->sk_socket->state = SS_CONNECTED;
1274 		vsock_insert_connected(vsk);
1275 		sk->sk_state_change(sk);
1276 
1277 		break;
1278 	case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE:
1279 	case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2:
1280 		if (pkt->u.size == 0
1281 		    || pkt->dg.src.context != vsk->remote_addr.svm_cid
1282 		    || pkt->src_port != vsk->remote_addr.svm_port
1283 		    || !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)
1284 		    || vmci_trans(vsk)->qpair
1285 		    || vmci_trans(vsk)->produce_size != 0
1286 		    || vmci_trans(vsk)->consume_size != 0
1287 		    || vmci_trans(vsk)->detach_sub_id != VMCI_INVALID_ID) {
1288 			skerr = EPROTO;
1289 			err = -EINVAL;
1290 
1291 			goto destroy;
1292 		}
1293 
1294 		err = vmci_transport_recv_connecting_client_negotiate(sk, pkt);
1295 		if (err) {
1296 			skerr = -err;
1297 			goto destroy;
1298 		}
1299 
1300 		break;
1301 	case VMCI_TRANSPORT_PACKET_TYPE_INVALID:
1302 		err = vmci_transport_recv_connecting_client_invalid(sk, pkt);
1303 		if (err) {
1304 			skerr = -err;
1305 			goto destroy;
1306 		}
1307 
1308 		break;
1309 	case VMCI_TRANSPORT_PACKET_TYPE_RST:
1310 		/* Older versions of the linux code (WS 6.5 / ESX 4.0) used to
1311 		 * continue processing here after they sent an INVALID packet.
1312 		 * This meant that we got a RST after the INVALID. We ignore a
1313 		 * RST after an INVALID. The common code doesn't send the RST
1314 		 * ... so we can hang if an old version of the common code
1315 		 * fails between getting a REQUEST and sending an OFFER back.
1316 		 * Not much we can do about it... except hope that it doesn't
1317 		 * happen.
1318 		 */
1319 		if (vsk->ignore_connecting_rst) {
1320 			vsk->ignore_connecting_rst = false;
1321 		} else {
1322 			skerr = ECONNRESET;
1323 			err = 0;
1324 			goto destroy;
1325 		}
1326 
1327 		break;
1328 	default:
1329 		/* Close and cleanup the connection. */
1330 		skerr = EPROTO;
1331 		err = -EINVAL;
1332 		goto destroy;
1333 	}
1334 
1335 	return 0;
1336 
1337 destroy:
1338 	vmci_transport_send_reset(sk, pkt);
1339 
1340 	sk->sk_state = TCP_CLOSE;
1341 	sk->sk_err = skerr;
1342 	sk->sk_error_report(sk);
1343 	return err;
1344 }
1345 
1346 static int vmci_transport_recv_connecting_client_negotiate(
1347 					struct sock *sk,
1348 					struct vmci_transport_packet *pkt)
1349 {
1350 	int err;
1351 	struct vsock_sock *vsk;
1352 	struct vmci_handle handle;
1353 	struct vmci_qp *qpair;
1354 	u32 detach_sub_id;
1355 	bool is_local;
1356 	u32 flags;
1357 	bool old_proto = true;
1358 	bool old_pkt_proto;
1359 	u16 version;
1360 
1361 	vsk = vsock_sk(sk);
1362 	handle = VMCI_INVALID_HANDLE;
1363 	detach_sub_id = VMCI_INVALID_ID;
1364 
1365 	/* If we have gotten here then we should be past the point where old
1366 	 * linux vsock could have sent the bogus rst.
1367 	 */
1368 	vsk->sent_request = false;
1369 	vsk->ignore_connecting_rst = false;
1370 
1371 	/* Verify that we're OK with the proposed queue pair size */
1372 	if (pkt->u.size < vmci_trans(vsk)->queue_pair_min_size ||
1373 	    pkt->u.size > vmci_trans(vsk)->queue_pair_max_size) {
1374 		err = -EINVAL;
1375 		goto destroy;
1376 	}
1377 
1378 	/* At this point we know the CID the peer is using to talk to us. */
1379 
1380 	if (vsk->local_addr.svm_cid == VMADDR_CID_ANY)
1381 		vsk->local_addr.svm_cid = pkt->dg.dst.context;
1382 
1383 	/* Setup the notify ops to be the highest supported version that both
1384 	 * the server and the client support.
1385 	 */
1386 
1387 	if (vmci_transport_old_proto_override(&old_pkt_proto)) {
1388 		old_proto = old_pkt_proto;
1389 	} else {
1390 		if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE)
1391 			old_proto = true;
1392 		else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2)
1393 			old_proto = false;
1394 
1395 	}
1396 
1397 	if (old_proto)
1398 		version = VSOCK_PROTO_INVALID;
1399 	else
1400 		version = pkt->proto;
1401 
1402 	if (!vmci_transport_proto_to_notify_struct(sk, &version, old_proto)) {
1403 		err = -EINVAL;
1404 		goto destroy;
1405 	}
1406 
1407 	/* Subscribe to detach events first.
1408 	 *
1409 	 * XXX We attach once for each queue pair created for now so it is easy
1410 	 * to find the socket (it's provided), but later we should only
1411 	 * subscribe once and add a way to lookup sockets by queue pair handle.
1412 	 */
1413 	err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH,
1414 				   vmci_transport_peer_detach_cb,
1415 				   vmci_trans(vsk), &detach_sub_id);
1416 	if (err < VMCI_SUCCESS) {
1417 		err = vmci_transport_error_to_vsock_error(err);
1418 		goto destroy;
1419 	}
1420 
1421 	/* Make VMCI select the handle for us. */
1422 	handle = VMCI_INVALID_HANDLE;
1423 	is_local = vsk->remote_addr.svm_cid == vsk->local_addr.svm_cid;
1424 	flags = is_local ? VMCI_QPFLAG_LOCAL : 0;
1425 
1426 	err = vmci_transport_queue_pair_alloc(&qpair,
1427 					      &handle,
1428 					      pkt->u.size,
1429 					      pkt->u.size,
1430 					      vsk->remote_addr.svm_cid,
1431 					      flags,
1432 					      vmci_transport_is_trusted(
1433 						  vsk,
1434 						  vsk->
1435 						  remote_addr.svm_cid));
1436 	if (err < 0)
1437 		goto destroy;
1438 
1439 	err = vmci_transport_send_qp_offer(sk, handle);
1440 	if (err < 0) {
1441 		err = vmci_transport_error_to_vsock_error(err);
1442 		goto destroy;
1443 	}
1444 
1445 	vmci_trans(vsk)->qp_handle = handle;
1446 	vmci_trans(vsk)->qpair = qpair;
1447 
1448 	vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size =
1449 		pkt->u.size;
1450 
1451 	vmci_trans(vsk)->detach_sub_id = detach_sub_id;
1452 
1453 	vmci_trans(vsk)->notify_ops->process_negotiate(sk);
1454 
1455 	return 0;
1456 
1457 destroy:
1458 	if (detach_sub_id != VMCI_INVALID_ID)
1459 		vmci_event_unsubscribe(detach_sub_id);
1460 
1461 	if (!vmci_handle_is_invalid(handle))
1462 		vmci_qpair_detach(&qpair);
1463 
1464 	return err;
1465 }
1466 
1467 static int
1468 vmci_transport_recv_connecting_client_invalid(struct sock *sk,
1469 					      struct vmci_transport_packet *pkt)
1470 {
1471 	int err = 0;
1472 	struct vsock_sock *vsk = vsock_sk(sk);
1473 
1474 	if (vsk->sent_request) {
1475 		vsk->sent_request = false;
1476 		vsk->ignore_connecting_rst = true;
1477 
1478 		err = vmci_transport_send_conn_request(
1479 			sk, vmci_trans(vsk)->queue_pair_size);
1480 		if (err < 0)
1481 			err = vmci_transport_error_to_vsock_error(err);
1482 		else
1483 			err = 0;
1484 
1485 	}
1486 
1487 	return err;
1488 }
1489 
1490 static int vmci_transport_recv_connected(struct sock *sk,
1491 					 struct vmci_transport_packet *pkt)
1492 {
1493 	struct vsock_sock *vsk;
1494 	bool pkt_processed = false;
1495 
1496 	/* In cases where we are closing the connection, it's sufficient to
1497 	 * mark the state change (and maybe error) and wake up any waiting
1498 	 * threads. Since this is a connected socket, it's owned by a user
1499 	 * process and will be cleaned up when the failure is passed back on
1500 	 * the current or next system call.  Our system call implementations
1501 	 * must therefore check for error and state changes on entry and when
1502 	 * being awoken.
1503 	 */
1504 	switch (pkt->type) {
1505 	case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN:
1506 		if (pkt->u.mode) {
1507 			vsk = vsock_sk(sk);
1508 
1509 			vsk->peer_shutdown |= pkt->u.mode;
1510 			sk->sk_state_change(sk);
1511 		}
1512 		break;
1513 
1514 	case VMCI_TRANSPORT_PACKET_TYPE_RST:
1515 		vsk = vsock_sk(sk);
1516 		/* It is possible that we sent our peer a message (e.g a
1517 		 * WAITING_READ) right before we got notified that the peer had
1518 		 * detached. If that happens then we can get a RST pkt back
1519 		 * from our peer even though there is data available for us to
1520 		 * read. In that case, don't shutdown the socket completely but
1521 		 * instead allow the local client to finish reading data off
1522 		 * the queuepair. Always treat a RST pkt in connected mode like
1523 		 * a clean shutdown.
1524 		 */
1525 		sock_set_flag(sk, SOCK_DONE);
1526 		vsk->peer_shutdown = SHUTDOWN_MASK;
1527 		if (vsock_stream_has_data(vsk) <= 0)
1528 			sk->sk_state = TCP_CLOSING;
1529 
1530 		sk->sk_state_change(sk);
1531 		break;
1532 
1533 	default:
1534 		vsk = vsock_sk(sk);
1535 		vmci_trans(vsk)->notify_ops->handle_notify_pkt(
1536 				sk, pkt, false, NULL, NULL,
1537 				&pkt_processed);
1538 		if (!pkt_processed)
1539 			return -EINVAL;
1540 
1541 		break;
1542 	}
1543 
1544 	return 0;
1545 }
1546 
1547 static int vmci_transport_socket_init(struct vsock_sock *vsk,
1548 				      struct vsock_sock *psk)
1549 {
1550 	vsk->trans = kmalloc(sizeof(struct vmci_transport), GFP_KERNEL);
1551 	if (!vsk->trans)
1552 		return -ENOMEM;
1553 
1554 	vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE;
1555 	vmci_trans(vsk)->qp_handle = VMCI_INVALID_HANDLE;
1556 	vmci_trans(vsk)->qpair = NULL;
1557 	vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size = 0;
1558 	vmci_trans(vsk)->detach_sub_id = VMCI_INVALID_ID;
1559 	vmci_trans(vsk)->notify_ops = NULL;
1560 	INIT_LIST_HEAD(&vmci_trans(vsk)->elem);
1561 	vmci_trans(vsk)->sk = &vsk->sk;
1562 	spin_lock_init(&vmci_trans(vsk)->lock);
1563 	if (psk) {
1564 		vmci_trans(vsk)->queue_pair_size =
1565 			vmci_trans(psk)->queue_pair_size;
1566 		vmci_trans(vsk)->queue_pair_min_size =
1567 			vmci_trans(psk)->queue_pair_min_size;
1568 		vmci_trans(vsk)->queue_pair_max_size =
1569 			vmci_trans(psk)->queue_pair_max_size;
1570 	} else {
1571 		vmci_trans(vsk)->queue_pair_size =
1572 			VMCI_TRANSPORT_DEFAULT_QP_SIZE;
1573 		vmci_trans(vsk)->queue_pair_min_size =
1574 			 VMCI_TRANSPORT_DEFAULT_QP_SIZE_MIN;
1575 		vmci_trans(vsk)->queue_pair_max_size =
1576 			VMCI_TRANSPORT_DEFAULT_QP_SIZE_MAX;
1577 	}
1578 
1579 	return 0;
1580 }
1581 
1582 static void vmci_transport_free_resources(struct list_head *transport_list)
1583 {
1584 	while (!list_empty(transport_list)) {
1585 		struct vmci_transport *transport =
1586 		    list_first_entry(transport_list, struct vmci_transport,
1587 				     elem);
1588 		list_del(&transport->elem);
1589 
1590 		if (transport->detach_sub_id != VMCI_INVALID_ID) {
1591 			vmci_event_unsubscribe(transport->detach_sub_id);
1592 			transport->detach_sub_id = VMCI_INVALID_ID;
1593 		}
1594 
1595 		if (!vmci_handle_is_invalid(transport->qp_handle)) {
1596 			vmci_qpair_detach(&transport->qpair);
1597 			transport->qp_handle = VMCI_INVALID_HANDLE;
1598 			transport->produce_size = 0;
1599 			transport->consume_size = 0;
1600 		}
1601 
1602 		kfree(transport);
1603 	}
1604 }
1605 
1606 static void vmci_transport_cleanup(struct work_struct *work)
1607 {
1608 	LIST_HEAD(pending);
1609 
1610 	spin_lock_bh(&vmci_transport_cleanup_lock);
1611 	list_replace_init(&vmci_transport_cleanup_list, &pending);
1612 	spin_unlock_bh(&vmci_transport_cleanup_lock);
1613 	vmci_transport_free_resources(&pending);
1614 }
1615 
1616 static void vmci_transport_destruct(struct vsock_sock *vsk)
1617 {
1618 	/* Ensure that the detach callback doesn't use the sk/vsk
1619 	 * we are about to destruct.
1620 	 */
1621 	spin_lock_bh(&vmci_trans(vsk)->lock);
1622 	vmci_trans(vsk)->sk = NULL;
1623 	spin_unlock_bh(&vmci_trans(vsk)->lock);
1624 
1625 	if (vmci_trans(vsk)->notify_ops)
1626 		vmci_trans(vsk)->notify_ops->socket_destruct(vsk);
1627 
1628 	spin_lock_bh(&vmci_transport_cleanup_lock);
1629 	list_add(&vmci_trans(vsk)->elem, &vmci_transport_cleanup_list);
1630 	spin_unlock_bh(&vmci_transport_cleanup_lock);
1631 	schedule_work(&vmci_transport_cleanup_work);
1632 
1633 	vsk->trans = NULL;
1634 }
1635 
1636 static void vmci_transport_release(struct vsock_sock *vsk)
1637 {
1638 	vsock_remove_sock(vsk);
1639 
1640 	if (!vmci_handle_is_invalid(vmci_trans(vsk)->dg_handle)) {
1641 		vmci_datagram_destroy_handle(vmci_trans(vsk)->dg_handle);
1642 		vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE;
1643 	}
1644 }
1645 
1646 static int vmci_transport_dgram_bind(struct vsock_sock *vsk,
1647 				     struct sockaddr_vm *addr)
1648 {
1649 	u32 port;
1650 	u32 flags;
1651 	int err;
1652 
1653 	/* VMCI will select a resource ID for us if we provide
1654 	 * VMCI_INVALID_ID.
1655 	 */
1656 	port = addr->svm_port == VMADDR_PORT_ANY ?
1657 			VMCI_INVALID_ID : addr->svm_port;
1658 
1659 	if (port <= LAST_RESERVED_PORT && !capable(CAP_NET_BIND_SERVICE))
1660 		return -EACCES;
1661 
1662 	flags = addr->svm_cid == VMADDR_CID_ANY ?
1663 				VMCI_FLAG_ANYCID_DG_HND : 0;
1664 
1665 	err = vmci_transport_datagram_create_hnd(port, flags,
1666 						 vmci_transport_recv_dgram_cb,
1667 						 &vsk->sk,
1668 						 &vmci_trans(vsk)->dg_handle);
1669 	if (err < VMCI_SUCCESS)
1670 		return vmci_transport_error_to_vsock_error(err);
1671 	vsock_addr_init(&vsk->local_addr, addr->svm_cid,
1672 			vmci_trans(vsk)->dg_handle.resource);
1673 
1674 	return 0;
1675 }
1676 
1677 static int vmci_transport_dgram_enqueue(
1678 	struct vsock_sock *vsk,
1679 	struct sockaddr_vm *remote_addr,
1680 	struct msghdr *msg,
1681 	size_t len)
1682 {
1683 	int err;
1684 	struct vmci_datagram *dg;
1685 
1686 	if (len > VMCI_MAX_DG_PAYLOAD_SIZE)
1687 		return -EMSGSIZE;
1688 
1689 	if (!vmci_transport_allow_dgram(vsk, remote_addr->svm_cid))
1690 		return -EPERM;
1691 
1692 	/* Allocate a buffer for the user's message and our packet header. */
1693 	dg = kmalloc(len + sizeof(*dg), GFP_KERNEL);
1694 	if (!dg)
1695 		return -ENOMEM;
1696 
1697 	memcpy_from_msg(VMCI_DG_PAYLOAD(dg), msg, len);
1698 
1699 	dg->dst = vmci_make_handle(remote_addr->svm_cid,
1700 				   remote_addr->svm_port);
1701 	dg->src = vmci_make_handle(vsk->local_addr.svm_cid,
1702 				   vsk->local_addr.svm_port);
1703 	dg->payload_size = len;
1704 
1705 	err = vmci_datagram_send(dg);
1706 	kfree(dg);
1707 	if (err < 0)
1708 		return vmci_transport_error_to_vsock_error(err);
1709 
1710 	return err - sizeof(*dg);
1711 }
1712 
1713 static int vmci_transport_dgram_dequeue(struct vsock_sock *vsk,
1714 					struct msghdr *msg, size_t len,
1715 					int flags)
1716 {
1717 	int err;
1718 	int noblock;
1719 	struct vmci_datagram *dg;
1720 	size_t payload_len;
1721 	struct sk_buff *skb;
1722 
1723 	noblock = flags & MSG_DONTWAIT;
1724 
1725 	if (flags & MSG_OOB || flags & MSG_ERRQUEUE)
1726 		return -EOPNOTSUPP;
1727 
1728 	/* Retrieve the head sk_buff from the socket's receive queue. */
1729 	err = 0;
1730 	skb = skb_recv_datagram(&vsk->sk, flags, noblock, &err);
1731 	if (!skb)
1732 		return err;
1733 
1734 	dg = (struct vmci_datagram *)skb->data;
1735 	if (!dg)
1736 		/* err is 0, meaning we read zero bytes. */
1737 		goto out;
1738 
1739 	payload_len = dg->payload_size;
1740 	/* Ensure the sk_buff matches the payload size claimed in the packet. */
1741 	if (payload_len != skb->len - sizeof(*dg)) {
1742 		err = -EINVAL;
1743 		goto out;
1744 	}
1745 
1746 	if (payload_len > len) {
1747 		payload_len = len;
1748 		msg->msg_flags |= MSG_TRUNC;
1749 	}
1750 
1751 	/* Place the datagram payload in the user's iovec. */
1752 	err = skb_copy_datagram_msg(skb, sizeof(*dg), msg, payload_len);
1753 	if (err)
1754 		goto out;
1755 
1756 	if (msg->msg_name) {
1757 		/* Provide the address of the sender. */
1758 		DECLARE_SOCKADDR(struct sockaddr_vm *, vm_addr, msg->msg_name);
1759 		vsock_addr_init(vm_addr, dg->src.context, dg->src.resource);
1760 		msg->msg_namelen = sizeof(*vm_addr);
1761 	}
1762 	err = payload_len;
1763 
1764 out:
1765 	skb_free_datagram(&vsk->sk, skb);
1766 	return err;
1767 }
1768 
1769 static bool vmci_transport_dgram_allow(u32 cid, u32 port)
1770 {
1771 	if (cid == VMADDR_CID_HYPERVISOR) {
1772 		/* Registrations of PBRPC Servers do not modify VMX/Hypervisor
1773 		 * state and are allowed.
1774 		 */
1775 		return port == VMCI_UNITY_PBRPC_REGISTER;
1776 	}
1777 
1778 	return true;
1779 }
1780 
1781 static int vmci_transport_connect(struct vsock_sock *vsk)
1782 {
1783 	int err;
1784 	bool old_pkt_proto = false;
1785 	struct sock *sk = &vsk->sk;
1786 
1787 	if (vmci_transport_old_proto_override(&old_pkt_proto) &&
1788 		old_pkt_proto) {
1789 		err = vmci_transport_send_conn_request(
1790 			sk, vmci_trans(vsk)->queue_pair_size);
1791 		if (err < 0) {
1792 			sk->sk_state = TCP_CLOSE;
1793 			return err;
1794 		}
1795 	} else {
1796 		int supported_proto_versions =
1797 			vmci_transport_new_proto_supported_versions();
1798 		err = vmci_transport_send_conn_request2(
1799 				sk, vmci_trans(vsk)->queue_pair_size,
1800 				supported_proto_versions);
1801 		if (err < 0) {
1802 			sk->sk_state = TCP_CLOSE;
1803 			return err;
1804 		}
1805 
1806 		vsk->sent_request = true;
1807 	}
1808 
1809 	return err;
1810 }
1811 
1812 static ssize_t vmci_transport_stream_dequeue(
1813 	struct vsock_sock *vsk,
1814 	struct msghdr *msg,
1815 	size_t len,
1816 	int flags)
1817 {
1818 	if (flags & MSG_PEEK)
1819 		return vmci_qpair_peekv(vmci_trans(vsk)->qpair, msg, len, 0);
1820 	else
1821 		return vmci_qpair_dequev(vmci_trans(vsk)->qpair, msg, len, 0);
1822 }
1823 
1824 static ssize_t vmci_transport_stream_enqueue(
1825 	struct vsock_sock *vsk,
1826 	struct msghdr *msg,
1827 	size_t len)
1828 {
1829 	return vmci_qpair_enquev(vmci_trans(vsk)->qpair, msg, len, 0);
1830 }
1831 
1832 static s64 vmci_transport_stream_has_data(struct vsock_sock *vsk)
1833 {
1834 	return vmci_qpair_consume_buf_ready(vmci_trans(vsk)->qpair);
1835 }
1836 
1837 static s64 vmci_transport_stream_has_space(struct vsock_sock *vsk)
1838 {
1839 	return vmci_qpair_produce_free_space(vmci_trans(vsk)->qpair);
1840 }
1841 
1842 static u64 vmci_transport_stream_rcvhiwat(struct vsock_sock *vsk)
1843 {
1844 	return vmci_trans(vsk)->consume_size;
1845 }
1846 
1847 static bool vmci_transport_stream_is_active(struct vsock_sock *vsk)
1848 {
1849 	return !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle);
1850 }
1851 
1852 static u64 vmci_transport_get_buffer_size(struct vsock_sock *vsk)
1853 {
1854 	return vmci_trans(vsk)->queue_pair_size;
1855 }
1856 
1857 static u64 vmci_transport_get_min_buffer_size(struct vsock_sock *vsk)
1858 {
1859 	return vmci_trans(vsk)->queue_pair_min_size;
1860 }
1861 
1862 static u64 vmci_transport_get_max_buffer_size(struct vsock_sock *vsk)
1863 {
1864 	return vmci_trans(vsk)->queue_pair_max_size;
1865 }
1866 
1867 static void vmci_transport_set_buffer_size(struct vsock_sock *vsk, u64 val)
1868 {
1869 	if (val < vmci_trans(vsk)->queue_pair_min_size)
1870 		vmci_trans(vsk)->queue_pair_min_size = val;
1871 	if (val > vmci_trans(vsk)->queue_pair_max_size)
1872 		vmci_trans(vsk)->queue_pair_max_size = val;
1873 	vmci_trans(vsk)->queue_pair_size = val;
1874 }
1875 
1876 static void vmci_transport_set_min_buffer_size(struct vsock_sock *vsk,
1877 					       u64 val)
1878 {
1879 	if (val > vmci_trans(vsk)->queue_pair_size)
1880 		vmci_trans(vsk)->queue_pair_size = val;
1881 	vmci_trans(vsk)->queue_pair_min_size = val;
1882 }
1883 
1884 static void vmci_transport_set_max_buffer_size(struct vsock_sock *vsk,
1885 					       u64 val)
1886 {
1887 	if (val < vmci_trans(vsk)->queue_pair_size)
1888 		vmci_trans(vsk)->queue_pair_size = val;
1889 	vmci_trans(vsk)->queue_pair_max_size = val;
1890 }
1891 
1892 static int vmci_transport_notify_poll_in(
1893 	struct vsock_sock *vsk,
1894 	size_t target,
1895 	bool *data_ready_now)
1896 {
1897 	return vmci_trans(vsk)->notify_ops->poll_in(
1898 			&vsk->sk, target, data_ready_now);
1899 }
1900 
1901 static int vmci_transport_notify_poll_out(
1902 	struct vsock_sock *vsk,
1903 	size_t target,
1904 	bool *space_available_now)
1905 {
1906 	return vmci_trans(vsk)->notify_ops->poll_out(
1907 			&vsk->sk, target, space_available_now);
1908 }
1909 
1910 static int vmci_transport_notify_recv_init(
1911 	struct vsock_sock *vsk,
1912 	size_t target,
1913 	struct vsock_transport_recv_notify_data *data)
1914 {
1915 	return vmci_trans(vsk)->notify_ops->recv_init(
1916 			&vsk->sk, target,
1917 			(struct vmci_transport_recv_notify_data *)data);
1918 }
1919 
1920 static int vmci_transport_notify_recv_pre_block(
1921 	struct vsock_sock *vsk,
1922 	size_t target,
1923 	struct vsock_transport_recv_notify_data *data)
1924 {
1925 	return vmci_trans(vsk)->notify_ops->recv_pre_block(
1926 			&vsk->sk, target,
1927 			(struct vmci_transport_recv_notify_data *)data);
1928 }
1929 
1930 static int vmci_transport_notify_recv_pre_dequeue(
1931 	struct vsock_sock *vsk,
1932 	size_t target,
1933 	struct vsock_transport_recv_notify_data *data)
1934 {
1935 	return vmci_trans(vsk)->notify_ops->recv_pre_dequeue(
1936 			&vsk->sk, target,
1937 			(struct vmci_transport_recv_notify_data *)data);
1938 }
1939 
1940 static int vmci_transport_notify_recv_post_dequeue(
1941 	struct vsock_sock *vsk,
1942 	size_t target,
1943 	ssize_t copied,
1944 	bool data_read,
1945 	struct vsock_transport_recv_notify_data *data)
1946 {
1947 	return vmci_trans(vsk)->notify_ops->recv_post_dequeue(
1948 			&vsk->sk, target, copied, data_read,
1949 			(struct vmci_transport_recv_notify_data *)data);
1950 }
1951 
1952 static int vmci_transport_notify_send_init(
1953 	struct vsock_sock *vsk,
1954 	struct vsock_transport_send_notify_data *data)
1955 {
1956 	return vmci_trans(vsk)->notify_ops->send_init(
1957 			&vsk->sk,
1958 			(struct vmci_transport_send_notify_data *)data);
1959 }
1960 
1961 static int vmci_transport_notify_send_pre_block(
1962 	struct vsock_sock *vsk,
1963 	struct vsock_transport_send_notify_data *data)
1964 {
1965 	return vmci_trans(vsk)->notify_ops->send_pre_block(
1966 			&vsk->sk,
1967 			(struct vmci_transport_send_notify_data *)data);
1968 }
1969 
1970 static int vmci_transport_notify_send_pre_enqueue(
1971 	struct vsock_sock *vsk,
1972 	struct vsock_transport_send_notify_data *data)
1973 {
1974 	return vmci_trans(vsk)->notify_ops->send_pre_enqueue(
1975 			&vsk->sk,
1976 			(struct vmci_transport_send_notify_data *)data);
1977 }
1978 
1979 static int vmci_transport_notify_send_post_enqueue(
1980 	struct vsock_sock *vsk,
1981 	ssize_t written,
1982 	struct vsock_transport_send_notify_data *data)
1983 {
1984 	return vmci_trans(vsk)->notify_ops->send_post_enqueue(
1985 			&vsk->sk, written,
1986 			(struct vmci_transport_send_notify_data *)data);
1987 }
1988 
1989 static bool vmci_transport_old_proto_override(bool *old_pkt_proto)
1990 {
1991 	if (PROTOCOL_OVERRIDE != -1) {
1992 		if (PROTOCOL_OVERRIDE == 0)
1993 			*old_pkt_proto = true;
1994 		else
1995 			*old_pkt_proto = false;
1996 
1997 		pr_info("Proto override in use\n");
1998 		return true;
1999 	}
2000 
2001 	return false;
2002 }
2003 
2004 static bool vmci_transport_proto_to_notify_struct(struct sock *sk,
2005 						  u16 *proto,
2006 						  bool old_pkt_proto)
2007 {
2008 	struct vsock_sock *vsk = vsock_sk(sk);
2009 
2010 	if (old_pkt_proto) {
2011 		if (*proto != VSOCK_PROTO_INVALID) {
2012 			pr_err("Can't set both an old and new protocol\n");
2013 			return false;
2014 		}
2015 		vmci_trans(vsk)->notify_ops = &vmci_transport_notify_pkt_ops;
2016 		goto exit;
2017 	}
2018 
2019 	switch (*proto) {
2020 	case VSOCK_PROTO_PKT_ON_NOTIFY:
2021 		vmci_trans(vsk)->notify_ops =
2022 			&vmci_transport_notify_pkt_q_state_ops;
2023 		break;
2024 	default:
2025 		pr_err("Unknown notify protocol version\n");
2026 		return false;
2027 	}
2028 
2029 exit:
2030 	vmci_trans(vsk)->notify_ops->socket_init(sk);
2031 	return true;
2032 }
2033 
2034 static u16 vmci_transport_new_proto_supported_versions(void)
2035 {
2036 	if (PROTOCOL_OVERRIDE != -1)
2037 		return PROTOCOL_OVERRIDE;
2038 
2039 	return VSOCK_PROTO_ALL_SUPPORTED;
2040 }
2041 
2042 static u32 vmci_transport_get_local_cid(void)
2043 {
2044 	return vmci_get_context_id();
2045 }
2046 
2047 static const struct vsock_transport vmci_transport = {
2048 	.init = vmci_transport_socket_init,
2049 	.destruct = vmci_transport_destruct,
2050 	.release = vmci_transport_release,
2051 	.connect = vmci_transport_connect,
2052 	.dgram_bind = vmci_transport_dgram_bind,
2053 	.dgram_dequeue = vmci_transport_dgram_dequeue,
2054 	.dgram_enqueue = vmci_transport_dgram_enqueue,
2055 	.dgram_allow = vmci_transport_dgram_allow,
2056 	.stream_dequeue = vmci_transport_stream_dequeue,
2057 	.stream_enqueue = vmci_transport_stream_enqueue,
2058 	.stream_has_data = vmci_transport_stream_has_data,
2059 	.stream_has_space = vmci_transport_stream_has_space,
2060 	.stream_rcvhiwat = vmci_transport_stream_rcvhiwat,
2061 	.stream_is_active = vmci_transport_stream_is_active,
2062 	.stream_allow = vmci_transport_stream_allow,
2063 	.notify_poll_in = vmci_transport_notify_poll_in,
2064 	.notify_poll_out = vmci_transport_notify_poll_out,
2065 	.notify_recv_init = vmci_transport_notify_recv_init,
2066 	.notify_recv_pre_block = vmci_transport_notify_recv_pre_block,
2067 	.notify_recv_pre_dequeue = vmci_transport_notify_recv_pre_dequeue,
2068 	.notify_recv_post_dequeue = vmci_transport_notify_recv_post_dequeue,
2069 	.notify_send_init = vmci_transport_notify_send_init,
2070 	.notify_send_pre_block = vmci_transport_notify_send_pre_block,
2071 	.notify_send_pre_enqueue = vmci_transport_notify_send_pre_enqueue,
2072 	.notify_send_post_enqueue = vmci_transport_notify_send_post_enqueue,
2073 	.shutdown = vmci_transport_shutdown,
2074 	.set_buffer_size = vmci_transport_set_buffer_size,
2075 	.set_min_buffer_size = vmci_transport_set_min_buffer_size,
2076 	.set_max_buffer_size = vmci_transport_set_max_buffer_size,
2077 	.get_buffer_size = vmci_transport_get_buffer_size,
2078 	.get_min_buffer_size = vmci_transport_get_min_buffer_size,
2079 	.get_max_buffer_size = vmci_transport_get_max_buffer_size,
2080 	.get_local_cid = vmci_transport_get_local_cid,
2081 };
2082 
2083 static int __init vmci_transport_init(void)
2084 {
2085 	int err;
2086 
2087 	/* Create the datagram handle that we will use to send and receive all
2088 	 * VSocket control messages for this context.
2089 	 */
2090 	err = vmci_transport_datagram_create_hnd(VMCI_TRANSPORT_PACKET_RID,
2091 						 VMCI_FLAG_ANYCID_DG_HND,
2092 						 vmci_transport_recv_stream_cb,
2093 						 NULL,
2094 						 &vmci_transport_stream_handle);
2095 	if (err < VMCI_SUCCESS) {
2096 		pr_err("Unable to create datagram handle. (%d)\n", err);
2097 		return vmci_transport_error_to_vsock_error(err);
2098 	}
2099 
2100 	err = vmci_event_subscribe(VMCI_EVENT_QP_RESUMED,
2101 				   vmci_transport_qp_resumed_cb,
2102 				   NULL, &vmci_transport_qp_resumed_sub_id);
2103 	if (err < VMCI_SUCCESS) {
2104 		pr_err("Unable to subscribe to resumed event. (%d)\n", err);
2105 		err = vmci_transport_error_to_vsock_error(err);
2106 		vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
2107 		goto err_destroy_stream_handle;
2108 	}
2109 
2110 	err = vsock_core_init(&vmci_transport);
2111 	if (err < 0)
2112 		goto err_unsubscribe;
2113 
2114 	return 0;
2115 
2116 err_unsubscribe:
2117 	vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id);
2118 err_destroy_stream_handle:
2119 	vmci_datagram_destroy_handle(vmci_transport_stream_handle);
2120 	return err;
2121 }
2122 module_init(vmci_transport_init);
2123 
2124 static void __exit vmci_transport_exit(void)
2125 {
2126 	cancel_work_sync(&vmci_transport_cleanup_work);
2127 	vmci_transport_free_resources(&vmci_transport_cleanup_list);
2128 
2129 	if (!vmci_handle_is_invalid(vmci_transport_stream_handle)) {
2130 		if (vmci_datagram_destroy_handle(
2131 			vmci_transport_stream_handle) != VMCI_SUCCESS)
2132 			pr_err("Couldn't destroy datagram handle\n");
2133 		vmci_transport_stream_handle = VMCI_INVALID_HANDLE;
2134 	}
2135 
2136 	if (vmci_transport_qp_resumed_sub_id != VMCI_INVALID_ID) {
2137 		vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id);
2138 		vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
2139 	}
2140 
2141 	vsock_core_exit();
2142 }
2143 module_exit(vmci_transport_exit);
2144 
2145 MODULE_AUTHOR("VMware, Inc.");
2146 MODULE_DESCRIPTION("VMCI transport for Virtual Sockets");
2147 MODULE_VERSION("1.0.4.0-k");
2148 MODULE_LICENSE("GPL v2");
2149 MODULE_ALIAS("vmware_vsock");
2150 MODULE_ALIAS_NETPROTO(PF_VSOCK);
2151