1 /*
2  * VMware vSockets Driver
3  *
4  * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published by the Free
8  * Software Foundation version 2 and no later version.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  */
15 
16 #include <linux/types.h>
17 #include <linux/bitops.h>
18 #include <linux/cred.h>
19 #include <linux/init.h>
20 #include <linux/io.h>
21 #include <linux/kernel.h>
22 #include <linux/kmod.h>
23 #include <linux/list.h>
24 #include <linux/miscdevice.h>
25 #include <linux/module.h>
26 #include <linux/mutex.h>
27 #include <linux/net.h>
28 #include <linux/poll.h>
29 #include <linux/skbuff.h>
30 #include <linux/smp.h>
31 #include <linux/socket.h>
32 #include <linux/stddef.h>
33 #include <linux/unistd.h>
34 #include <linux/wait.h>
35 #include <linux/workqueue.h>
36 #include <net/sock.h>
37 #include <net/af_vsock.h>
38 
39 #include "vmci_transport_notify.h"
40 
41 static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg);
42 static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg);
43 static void vmci_transport_peer_attach_cb(u32 sub_id,
44 					  const struct vmci_event_data *ed,
45 					  void *client_data);
46 static void vmci_transport_peer_detach_cb(u32 sub_id,
47 					  const struct vmci_event_data *ed,
48 					  void *client_data);
49 static void vmci_transport_recv_pkt_work(struct work_struct *work);
50 static int vmci_transport_recv_listen(struct sock *sk,
51 				      struct vmci_transport_packet *pkt);
52 static int vmci_transport_recv_connecting_server(
53 					struct sock *sk,
54 					struct sock *pending,
55 					struct vmci_transport_packet *pkt);
56 static int vmci_transport_recv_connecting_client(
57 					struct sock *sk,
58 					struct vmci_transport_packet *pkt);
59 static int vmci_transport_recv_connecting_client_negotiate(
60 					struct sock *sk,
61 					struct vmci_transport_packet *pkt);
62 static int vmci_transport_recv_connecting_client_invalid(
63 					struct sock *sk,
64 					struct vmci_transport_packet *pkt);
65 static int vmci_transport_recv_connected(struct sock *sk,
66 					 struct vmci_transport_packet *pkt);
67 static bool vmci_transport_old_proto_override(bool *old_pkt_proto);
68 static u16 vmci_transport_new_proto_supported_versions(void);
69 static bool vmci_transport_proto_to_notify_struct(struct sock *sk, u16 *proto,
70 						  bool old_pkt_proto);
71 
72 struct vmci_transport_recv_pkt_info {
73 	struct work_struct work;
74 	struct sock *sk;
75 	struct vmci_transport_packet pkt;
76 };
77 
78 static struct vmci_handle vmci_transport_stream_handle = { VMCI_INVALID_ID,
79 							   VMCI_INVALID_ID };
80 static u32 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
81 
82 static int PROTOCOL_OVERRIDE = -1;
83 
84 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE_MIN   128
85 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE       262144
86 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE_MAX   262144
87 
88 /* The default peer timeout indicates how long we will wait for a peer response
89  * to a control message.
90  */
91 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
92 
93 #define SS_LISTEN 255
94 
95 /* Helper function to convert from a VMCI error code to a VSock error code. */
96 
97 static s32 vmci_transport_error_to_vsock_error(s32 vmci_error)
98 {
99 	int err;
100 
101 	switch (vmci_error) {
102 	case VMCI_ERROR_NO_MEM:
103 		err = ENOMEM;
104 		break;
105 	case VMCI_ERROR_DUPLICATE_ENTRY:
106 	case VMCI_ERROR_ALREADY_EXISTS:
107 		err = EADDRINUSE;
108 		break;
109 	case VMCI_ERROR_NO_ACCESS:
110 		err = EPERM;
111 		break;
112 	case VMCI_ERROR_NO_RESOURCES:
113 		err = ENOBUFS;
114 		break;
115 	case VMCI_ERROR_INVALID_RESOURCE:
116 		err = EHOSTUNREACH;
117 		break;
118 	case VMCI_ERROR_INVALID_ARGS:
119 	default:
120 		err = EINVAL;
121 	}
122 
123 	return err > 0 ? -err : err;
124 }
125 
126 static u32 vmci_transport_peer_rid(u32 peer_cid)
127 {
128 	if (VMADDR_CID_HYPERVISOR == peer_cid)
129 		return VMCI_TRANSPORT_HYPERVISOR_PACKET_RID;
130 
131 	return VMCI_TRANSPORT_PACKET_RID;
132 }
133 
134 static inline void
135 vmci_transport_packet_init(struct vmci_transport_packet *pkt,
136 			   struct sockaddr_vm *src,
137 			   struct sockaddr_vm *dst,
138 			   u8 type,
139 			   u64 size,
140 			   u64 mode,
141 			   struct vmci_transport_waiting_info *wait,
142 			   u16 proto,
143 			   struct vmci_handle handle)
144 {
145 	/* We register the stream control handler as an any cid handle so we
146 	 * must always send from a source address of VMADDR_CID_ANY
147 	 */
148 	pkt->dg.src = vmci_make_handle(VMADDR_CID_ANY,
149 				       VMCI_TRANSPORT_PACKET_RID);
150 	pkt->dg.dst = vmci_make_handle(dst->svm_cid,
151 				       vmci_transport_peer_rid(dst->svm_cid));
152 	pkt->dg.payload_size = sizeof(*pkt) - sizeof(pkt->dg);
153 	pkt->version = VMCI_TRANSPORT_PACKET_VERSION;
154 	pkt->type = type;
155 	pkt->src_port = src->svm_port;
156 	pkt->dst_port = dst->svm_port;
157 	memset(&pkt->proto, 0, sizeof(pkt->proto));
158 	memset(&pkt->_reserved2, 0, sizeof(pkt->_reserved2));
159 
160 	switch (pkt->type) {
161 	case VMCI_TRANSPORT_PACKET_TYPE_INVALID:
162 		pkt->u.size = 0;
163 		break;
164 
165 	case VMCI_TRANSPORT_PACKET_TYPE_REQUEST:
166 	case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE:
167 		pkt->u.size = size;
168 		break;
169 
170 	case VMCI_TRANSPORT_PACKET_TYPE_OFFER:
171 	case VMCI_TRANSPORT_PACKET_TYPE_ATTACH:
172 		pkt->u.handle = handle;
173 		break;
174 
175 	case VMCI_TRANSPORT_PACKET_TYPE_WROTE:
176 	case VMCI_TRANSPORT_PACKET_TYPE_READ:
177 	case VMCI_TRANSPORT_PACKET_TYPE_RST:
178 		pkt->u.size = 0;
179 		break;
180 
181 	case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN:
182 		pkt->u.mode = mode;
183 		break;
184 
185 	case VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ:
186 	case VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE:
187 		memcpy(&pkt->u.wait, wait, sizeof(pkt->u.wait));
188 		break;
189 
190 	case VMCI_TRANSPORT_PACKET_TYPE_REQUEST2:
191 	case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2:
192 		pkt->u.size = size;
193 		pkt->proto = proto;
194 		break;
195 	}
196 }
197 
198 static inline void
199 vmci_transport_packet_get_addresses(struct vmci_transport_packet *pkt,
200 				    struct sockaddr_vm *local,
201 				    struct sockaddr_vm *remote)
202 {
203 	vsock_addr_init(local, pkt->dg.dst.context, pkt->dst_port);
204 	vsock_addr_init(remote, pkt->dg.src.context, pkt->src_port);
205 }
206 
207 static int
208 __vmci_transport_send_control_pkt(struct vmci_transport_packet *pkt,
209 				  struct sockaddr_vm *src,
210 				  struct sockaddr_vm *dst,
211 				  enum vmci_transport_packet_type type,
212 				  u64 size,
213 				  u64 mode,
214 				  struct vmci_transport_waiting_info *wait,
215 				  u16 proto,
216 				  struct vmci_handle handle,
217 				  bool convert_error)
218 {
219 	int err;
220 
221 	vmci_transport_packet_init(pkt, src, dst, type, size, mode, wait,
222 				   proto, handle);
223 	err = vmci_datagram_send(&pkt->dg);
224 	if (convert_error && (err < 0))
225 		return vmci_transport_error_to_vsock_error(err);
226 
227 	return err;
228 }
229 
230 static int
231 vmci_transport_reply_control_pkt_fast(struct vmci_transport_packet *pkt,
232 				      enum vmci_transport_packet_type type,
233 				      u64 size,
234 				      u64 mode,
235 				      struct vmci_transport_waiting_info *wait,
236 				      struct vmci_handle handle)
237 {
238 	struct vmci_transport_packet reply;
239 	struct sockaddr_vm src, dst;
240 
241 	if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST) {
242 		return 0;
243 	} else {
244 		vmci_transport_packet_get_addresses(pkt, &src, &dst);
245 		return __vmci_transport_send_control_pkt(&reply, &src, &dst,
246 							 type,
247 							 size, mode, wait,
248 							 VSOCK_PROTO_INVALID,
249 							 handle, true);
250 	}
251 }
252 
253 static int
254 vmci_transport_send_control_pkt_bh(struct sockaddr_vm *src,
255 				   struct sockaddr_vm *dst,
256 				   enum vmci_transport_packet_type type,
257 				   u64 size,
258 				   u64 mode,
259 				   struct vmci_transport_waiting_info *wait,
260 				   struct vmci_handle handle)
261 {
262 	/* Note that it is safe to use a single packet across all CPUs since
263 	 * two tasklets of the same type are guaranteed to not ever run
264 	 * simultaneously. If that ever changes, or VMCI stops using tasklets,
265 	 * we can use per-cpu packets.
266 	 */
267 	static struct vmci_transport_packet pkt;
268 
269 	return __vmci_transport_send_control_pkt(&pkt, src, dst, type,
270 						 size, mode, wait,
271 						 VSOCK_PROTO_INVALID, handle,
272 						 false);
273 }
274 
275 static int
276 vmci_transport_send_control_pkt(struct sock *sk,
277 				enum vmci_transport_packet_type type,
278 				u64 size,
279 				u64 mode,
280 				struct vmci_transport_waiting_info *wait,
281 				u16 proto,
282 				struct vmci_handle handle)
283 {
284 	struct vmci_transport_packet *pkt;
285 	struct vsock_sock *vsk;
286 	int err;
287 
288 	vsk = vsock_sk(sk);
289 
290 	if (!vsock_addr_bound(&vsk->local_addr))
291 		return -EINVAL;
292 
293 	if (!vsock_addr_bound(&vsk->remote_addr))
294 		return -EINVAL;
295 
296 	pkt = kmalloc(sizeof(*pkt), GFP_KERNEL);
297 	if (!pkt)
298 		return -ENOMEM;
299 
300 	err = __vmci_transport_send_control_pkt(pkt, &vsk->local_addr,
301 						&vsk->remote_addr, type, size,
302 						mode, wait, proto, handle,
303 						true);
304 	kfree(pkt);
305 
306 	return err;
307 }
308 
309 static int vmci_transport_send_reset_bh(struct sockaddr_vm *dst,
310 					struct sockaddr_vm *src,
311 					struct vmci_transport_packet *pkt)
312 {
313 	if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST)
314 		return 0;
315 	return vmci_transport_send_control_pkt_bh(
316 					dst, src,
317 					VMCI_TRANSPORT_PACKET_TYPE_RST, 0,
318 					0, NULL, VMCI_INVALID_HANDLE);
319 }
320 
321 static int vmci_transport_send_reset(struct sock *sk,
322 				     struct vmci_transport_packet *pkt)
323 {
324 	if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST)
325 		return 0;
326 	return vmci_transport_send_control_pkt(sk,
327 					VMCI_TRANSPORT_PACKET_TYPE_RST,
328 					0, 0, NULL, VSOCK_PROTO_INVALID,
329 					VMCI_INVALID_HANDLE);
330 }
331 
332 static int vmci_transport_send_negotiate(struct sock *sk, size_t size)
333 {
334 	return vmci_transport_send_control_pkt(
335 					sk,
336 					VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE,
337 					size, 0, NULL,
338 					VSOCK_PROTO_INVALID,
339 					VMCI_INVALID_HANDLE);
340 }
341 
342 static int vmci_transport_send_negotiate2(struct sock *sk, size_t size,
343 					  u16 version)
344 {
345 	return vmci_transport_send_control_pkt(
346 					sk,
347 					VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2,
348 					size, 0, NULL, version,
349 					VMCI_INVALID_HANDLE);
350 }
351 
352 static int vmci_transport_send_qp_offer(struct sock *sk,
353 					struct vmci_handle handle)
354 {
355 	return vmci_transport_send_control_pkt(
356 					sk, VMCI_TRANSPORT_PACKET_TYPE_OFFER, 0,
357 					0, NULL,
358 					VSOCK_PROTO_INVALID, handle);
359 }
360 
361 static int vmci_transport_send_attach(struct sock *sk,
362 				      struct vmci_handle handle)
363 {
364 	return vmci_transport_send_control_pkt(
365 					sk, VMCI_TRANSPORT_PACKET_TYPE_ATTACH,
366 					0, 0, NULL, VSOCK_PROTO_INVALID,
367 					handle);
368 }
369 
370 static int vmci_transport_reply_reset(struct vmci_transport_packet *pkt)
371 {
372 	return vmci_transport_reply_control_pkt_fast(
373 						pkt,
374 						VMCI_TRANSPORT_PACKET_TYPE_RST,
375 						0, 0, NULL,
376 						VMCI_INVALID_HANDLE);
377 }
378 
379 static int vmci_transport_send_invalid_bh(struct sockaddr_vm *dst,
380 					  struct sockaddr_vm *src)
381 {
382 	return vmci_transport_send_control_pkt_bh(
383 					dst, src,
384 					VMCI_TRANSPORT_PACKET_TYPE_INVALID,
385 					0, 0, NULL, VMCI_INVALID_HANDLE);
386 }
387 
388 int vmci_transport_send_wrote_bh(struct sockaddr_vm *dst,
389 				 struct sockaddr_vm *src)
390 {
391 	return vmci_transport_send_control_pkt_bh(
392 					dst, src,
393 					VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0,
394 					0, NULL, VMCI_INVALID_HANDLE);
395 }
396 
397 int vmci_transport_send_read_bh(struct sockaddr_vm *dst,
398 				struct sockaddr_vm *src)
399 {
400 	return vmci_transport_send_control_pkt_bh(
401 					dst, src,
402 					VMCI_TRANSPORT_PACKET_TYPE_READ, 0,
403 					0, NULL, VMCI_INVALID_HANDLE);
404 }
405 
406 int vmci_transport_send_wrote(struct sock *sk)
407 {
408 	return vmci_transport_send_control_pkt(
409 					sk, VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0,
410 					0, NULL, VSOCK_PROTO_INVALID,
411 					VMCI_INVALID_HANDLE);
412 }
413 
414 int vmci_transport_send_read(struct sock *sk)
415 {
416 	return vmci_transport_send_control_pkt(
417 					sk, VMCI_TRANSPORT_PACKET_TYPE_READ, 0,
418 					0, NULL, VSOCK_PROTO_INVALID,
419 					VMCI_INVALID_HANDLE);
420 }
421 
422 int vmci_transport_send_waiting_write(struct sock *sk,
423 				      struct vmci_transport_waiting_info *wait)
424 {
425 	return vmci_transport_send_control_pkt(
426 				sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE,
427 				0, 0, wait, VSOCK_PROTO_INVALID,
428 				VMCI_INVALID_HANDLE);
429 }
430 
431 int vmci_transport_send_waiting_read(struct sock *sk,
432 				     struct vmci_transport_waiting_info *wait)
433 {
434 	return vmci_transport_send_control_pkt(
435 				sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ,
436 				0, 0, wait, VSOCK_PROTO_INVALID,
437 				VMCI_INVALID_HANDLE);
438 }
439 
440 static int vmci_transport_shutdown(struct vsock_sock *vsk, int mode)
441 {
442 	return vmci_transport_send_control_pkt(
443 					&vsk->sk,
444 					VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN,
445 					0, mode, NULL,
446 					VSOCK_PROTO_INVALID,
447 					VMCI_INVALID_HANDLE);
448 }
449 
450 static int vmci_transport_send_conn_request(struct sock *sk, size_t size)
451 {
452 	return vmci_transport_send_control_pkt(sk,
453 					VMCI_TRANSPORT_PACKET_TYPE_REQUEST,
454 					size, 0, NULL,
455 					VSOCK_PROTO_INVALID,
456 					VMCI_INVALID_HANDLE);
457 }
458 
459 static int vmci_transport_send_conn_request2(struct sock *sk, size_t size,
460 					     u16 version)
461 {
462 	return vmci_transport_send_control_pkt(
463 					sk, VMCI_TRANSPORT_PACKET_TYPE_REQUEST2,
464 					size, 0, NULL, version,
465 					VMCI_INVALID_HANDLE);
466 }
467 
468 static struct sock *vmci_transport_get_pending(
469 					struct sock *listener,
470 					struct vmci_transport_packet *pkt)
471 {
472 	struct vsock_sock *vlistener;
473 	struct vsock_sock *vpending;
474 	struct sock *pending;
475 	struct sockaddr_vm src;
476 
477 	vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port);
478 
479 	vlistener = vsock_sk(listener);
480 
481 	list_for_each_entry(vpending, &vlistener->pending_links,
482 			    pending_links) {
483 		if (vsock_addr_equals_addr(&src, &vpending->remote_addr) &&
484 		    pkt->dst_port == vpending->local_addr.svm_port) {
485 			pending = sk_vsock(vpending);
486 			sock_hold(pending);
487 			goto found;
488 		}
489 	}
490 
491 	pending = NULL;
492 found:
493 	return pending;
494 
495 }
496 
497 static void vmci_transport_release_pending(struct sock *pending)
498 {
499 	sock_put(pending);
500 }
501 
502 /* We allow two kinds of sockets to communicate with a restricted VM: 1)
503  * trusted sockets 2) sockets from applications running as the same user as the
504  * VM (this is only true for the host side and only when using hosted products)
505  */
506 
507 static bool vmci_transport_is_trusted(struct vsock_sock *vsock, u32 peer_cid)
508 {
509 	return vsock->trusted ||
510 	       vmci_is_context_owner(peer_cid, vsock->owner->uid);
511 }
512 
513 /* We allow sending datagrams to and receiving datagrams from a restricted VM
514  * only if it is trusted as described in vmci_transport_is_trusted.
515  */
516 
517 static bool vmci_transport_allow_dgram(struct vsock_sock *vsock, u32 peer_cid)
518 {
519 	if (VMADDR_CID_HYPERVISOR == peer_cid)
520 		return true;
521 
522 	if (vsock->cached_peer != peer_cid) {
523 		vsock->cached_peer = peer_cid;
524 		if (!vmci_transport_is_trusted(vsock, peer_cid) &&
525 		    (vmci_context_get_priv_flags(peer_cid) &
526 		     VMCI_PRIVILEGE_FLAG_RESTRICTED)) {
527 			vsock->cached_peer_allow_dgram = false;
528 		} else {
529 			vsock->cached_peer_allow_dgram = true;
530 		}
531 	}
532 
533 	return vsock->cached_peer_allow_dgram;
534 }
535 
536 static int
537 vmci_transport_queue_pair_alloc(struct vmci_qp **qpair,
538 				struct vmci_handle *handle,
539 				u64 produce_size,
540 				u64 consume_size,
541 				u32 peer, u32 flags, bool trusted)
542 {
543 	int err = 0;
544 
545 	if (trusted) {
546 		/* Try to allocate our queue pair as trusted. This will only
547 		 * work if vsock is running in the host.
548 		 */
549 
550 		err = vmci_qpair_alloc(qpair, handle, produce_size,
551 				       consume_size,
552 				       peer, flags,
553 				       VMCI_PRIVILEGE_FLAG_TRUSTED);
554 		if (err != VMCI_ERROR_NO_ACCESS)
555 			goto out;
556 
557 	}
558 
559 	err = vmci_qpair_alloc(qpair, handle, produce_size, consume_size,
560 			       peer, flags, VMCI_NO_PRIVILEGE_FLAGS);
561 out:
562 	if (err < 0) {
563 		pr_err("Could not attach to queue pair with %d\n",
564 		       err);
565 		err = vmci_transport_error_to_vsock_error(err);
566 	}
567 
568 	return err;
569 }
570 
571 static int
572 vmci_transport_datagram_create_hnd(u32 resource_id,
573 				   u32 flags,
574 				   vmci_datagram_recv_cb recv_cb,
575 				   void *client_data,
576 				   struct vmci_handle *out_handle)
577 {
578 	int err = 0;
579 
580 	/* Try to allocate our datagram handler as trusted. This will only work
581 	 * if vsock is running in the host.
582 	 */
583 
584 	err = vmci_datagram_create_handle_priv(resource_id, flags,
585 					       VMCI_PRIVILEGE_FLAG_TRUSTED,
586 					       recv_cb,
587 					       client_data, out_handle);
588 
589 	if (err == VMCI_ERROR_NO_ACCESS)
590 		err = vmci_datagram_create_handle(resource_id, flags,
591 						  recv_cb, client_data,
592 						  out_handle);
593 
594 	return err;
595 }
596 
597 /* This is invoked as part of a tasklet that's scheduled when the VMCI
598  * interrupt fires.  This is run in bottom-half context and if it ever needs to
599  * sleep it should defer that work to a work queue.
600  */
601 
602 static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg)
603 {
604 	struct sock *sk;
605 	size_t size;
606 	struct sk_buff *skb;
607 	struct vsock_sock *vsk;
608 
609 	sk = (struct sock *)data;
610 
611 	/* This handler is privileged when this module is running on the host.
612 	 * We will get datagrams from all endpoints (even VMs that are in a
613 	 * restricted context). If we get one from a restricted context then
614 	 * the destination socket must be trusted.
615 	 *
616 	 * NOTE: We access the socket struct without holding the lock here.
617 	 * This is ok because the field we are interested is never modified
618 	 * outside of the create and destruct socket functions.
619 	 */
620 	vsk = vsock_sk(sk);
621 	if (!vmci_transport_allow_dgram(vsk, dg->src.context))
622 		return VMCI_ERROR_NO_ACCESS;
623 
624 	size = VMCI_DG_SIZE(dg);
625 
626 	/* Attach the packet to the socket's receive queue as an sk_buff. */
627 	skb = alloc_skb(size, GFP_ATOMIC);
628 	if (!skb)
629 		return VMCI_ERROR_NO_MEM;
630 
631 	/* sk_receive_skb() will do a sock_put(), so hold here. */
632 	sock_hold(sk);
633 	skb_put(skb, size);
634 	memcpy(skb->data, dg, size);
635 	sk_receive_skb(sk, skb, 0);
636 
637 	return VMCI_SUCCESS;
638 }
639 
640 static bool vmci_transport_stream_allow(u32 cid, u32 port)
641 {
642 	static const u32 non_socket_contexts[] = {
643 		VMADDR_CID_RESERVED,
644 	};
645 	int i;
646 
647 	BUILD_BUG_ON(sizeof(cid) != sizeof(*non_socket_contexts));
648 
649 	for (i = 0; i < ARRAY_SIZE(non_socket_contexts); i++) {
650 		if (cid == non_socket_contexts[i])
651 			return false;
652 	}
653 
654 	return true;
655 }
656 
657 /* This is invoked as part of a tasklet that's scheduled when the VMCI
658  * interrupt fires.  This is run in bottom-half context but it defers most of
659  * its work to the packet handling work queue.
660  */
661 
662 static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg)
663 {
664 	struct sock *sk;
665 	struct sockaddr_vm dst;
666 	struct sockaddr_vm src;
667 	struct vmci_transport_packet *pkt;
668 	struct vsock_sock *vsk;
669 	bool bh_process_pkt;
670 	int err;
671 
672 	sk = NULL;
673 	err = VMCI_SUCCESS;
674 	bh_process_pkt = false;
675 
676 	/* Ignore incoming packets from contexts without sockets, or resources
677 	 * that aren't vsock implementations.
678 	 */
679 
680 	if (!vmci_transport_stream_allow(dg->src.context, -1)
681 	    || vmci_transport_peer_rid(dg->src.context) != dg->src.resource)
682 		return VMCI_ERROR_NO_ACCESS;
683 
684 	if (VMCI_DG_SIZE(dg) < sizeof(*pkt))
685 		/* Drop datagrams that do not contain full VSock packets. */
686 		return VMCI_ERROR_INVALID_ARGS;
687 
688 	pkt = (struct vmci_transport_packet *)dg;
689 
690 	/* Find the socket that should handle this packet.  First we look for a
691 	 * connected socket and if there is none we look for a socket bound to
692 	 * the destintation address.
693 	 */
694 	vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port);
695 	vsock_addr_init(&dst, pkt->dg.dst.context, pkt->dst_port);
696 
697 	sk = vsock_find_connected_socket(&src, &dst);
698 	if (!sk) {
699 		sk = vsock_find_bound_socket(&dst);
700 		if (!sk) {
701 			/* We could not find a socket for this specified
702 			 * address.  If this packet is a RST, we just drop it.
703 			 * If it is another packet, we send a RST.  Note that
704 			 * we do not send a RST reply to RSTs so that we do not
705 			 * continually send RSTs between two endpoints.
706 			 *
707 			 * Note that since this is a reply, dst is src and src
708 			 * is dst.
709 			 */
710 			if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0)
711 				pr_err("unable to send reset\n");
712 
713 			err = VMCI_ERROR_NOT_FOUND;
714 			goto out;
715 		}
716 	}
717 
718 	/* If the received packet type is beyond all types known to this
719 	 * implementation, reply with an invalid message.  Hopefully this will
720 	 * help when implementing backwards compatibility in the future.
721 	 */
722 	if (pkt->type >= VMCI_TRANSPORT_PACKET_TYPE_MAX) {
723 		vmci_transport_send_invalid_bh(&dst, &src);
724 		err = VMCI_ERROR_INVALID_ARGS;
725 		goto out;
726 	}
727 
728 	/* This handler is privileged when this module is running on the host.
729 	 * We will get datagram connect requests from all endpoints (even VMs
730 	 * that are in a restricted context). If we get one from a restricted
731 	 * context then the destination socket must be trusted.
732 	 *
733 	 * NOTE: We access the socket struct without holding the lock here.
734 	 * This is ok because the field we are interested is never modified
735 	 * outside of the create and destruct socket functions.
736 	 */
737 	vsk = vsock_sk(sk);
738 	if (!vmci_transport_allow_dgram(vsk, pkt->dg.src.context)) {
739 		err = VMCI_ERROR_NO_ACCESS;
740 		goto out;
741 	}
742 
743 	/* We do most everything in a work queue, but let's fast path the
744 	 * notification of reads and writes to help data transfer performance.
745 	 * We can only do this if there is no process context code executing
746 	 * for this socket since that may change the state.
747 	 */
748 	bh_lock_sock(sk);
749 
750 	if (!sock_owned_by_user(sk)) {
751 		/* The local context ID may be out of date, update it. */
752 		vsk->local_addr.svm_cid = dst.svm_cid;
753 
754 		if (sk->sk_state == SS_CONNECTED)
755 			vmci_trans(vsk)->notify_ops->handle_notify_pkt(
756 					sk, pkt, true, &dst, &src,
757 					&bh_process_pkt);
758 	}
759 
760 	bh_unlock_sock(sk);
761 
762 	if (!bh_process_pkt) {
763 		struct vmci_transport_recv_pkt_info *recv_pkt_info;
764 
765 		recv_pkt_info = kmalloc(sizeof(*recv_pkt_info), GFP_ATOMIC);
766 		if (!recv_pkt_info) {
767 			if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0)
768 				pr_err("unable to send reset\n");
769 
770 			err = VMCI_ERROR_NO_MEM;
771 			goto out;
772 		}
773 
774 		recv_pkt_info->sk = sk;
775 		memcpy(&recv_pkt_info->pkt, pkt, sizeof(recv_pkt_info->pkt));
776 		INIT_WORK(&recv_pkt_info->work, vmci_transport_recv_pkt_work);
777 
778 		schedule_work(&recv_pkt_info->work);
779 		/* Clear sk so that the reference count incremented by one of
780 		 * the Find functions above is not decremented below.  We need
781 		 * that reference count for the packet handler we've scheduled
782 		 * to run.
783 		 */
784 		sk = NULL;
785 	}
786 
787 out:
788 	if (sk)
789 		sock_put(sk);
790 
791 	return err;
792 }
793 
794 static void vmci_transport_peer_attach_cb(u32 sub_id,
795 					  const struct vmci_event_data *e_data,
796 					  void *client_data)
797 {
798 	struct sock *sk = client_data;
799 	const struct vmci_event_payload_qp *e_payload;
800 	struct vsock_sock *vsk;
801 
802 	e_payload = vmci_event_data_const_payload(e_data);
803 
804 	vsk = vsock_sk(sk);
805 
806 	/* We don't ask for delayed CBs when we subscribe to this event (we
807 	 * pass 0 as flags to vmci_event_subscribe()).  VMCI makes no
808 	 * guarantees in that case about what context we might be running in,
809 	 * so it could be BH or process, blockable or non-blockable.  So we
810 	 * need to account for all possible contexts here.
811 	 */
812 	local_bh_disable();
813 	bh_lock_sock(sk);
814 
815 	/* XXX This is lame, we should provide a way to lookup sockets by
816 	 * qp_handle.
817 	 */
818 	if (vmci_handle_is_equal(vmci_trans(vsk)->qp_handle,
819 				 e_payload->handle)) {
820 		/* XXX This doesn't do anything, but in the future we may want
821 		 * to set a flag here to verify the attach really did occur and
822 		 * we weren't just sent a datagram claiming it was.
823 		 */
824 		goto out;
825 	}
826 
827 out:
828 	bh_unlock_sock(sk);
829 	local_bh_enable();
830 }
831 
832 static void vmci_transport_handle_detach(struct sock *sk)
833 {
834 	struct vsock_sock *vsk;
835 
836 	vsk = vsock_sk(sk);
837 	if (!vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)) {
838 		sock_set_flag(sk, SOCK_DONE);
839 
840 		/* On a detach the peer will not be sending or receiving
841 		 * anymore.
842 		 */
843 		vsk->peer_shutdown = SHUTDOWN_MASK;
844 
845 		/* We should not be sending anymore since the peer won't be
846 		 * there to receive, but we can still receive if there is data
847 		 * left in our consume queue.
848 		 */
849 		if (vsock_stream_has_data(vsk) <= 0) {
850 			if (sk->sk_state == SS_CONNECTING) {
851 				/* The peer may detach from a queue pair while
852 				 * we are still in the connecting state, i.e.,
853 				 * if the peer VM is killed after attaching to
854 				 * a queue pair, but before we complete the
855 				 * handshake. In that case, we treat the detach
856 				 * event like a reset.
857 				 */
858 
859 				sk->sk_state = SS_UNCONNECTED;
860 				sk->sk_err = ECONNRESET;
861 				sk->sk_error_report(sk);
862 				return;
863 			}
864 			sk->sk_state = SS_UNCONNECTED;
865 		}
866 		sk->sk_state_change(sk);
867 	}
868 }
869 
870 static void vmci_transport_peer_detach_cb(u32 sub_id,
871 					  const struct vmci_event_data *e_data,
872 					  void *client_data)
873 {
874 	struct sock *sk = client_data;
875 	const struct vmci_event_payload_qp *e_payload;
876 	struct vsock_sock *vsk;
877 
878 	e_payload = vmci_event_data_const_payload(e_data);
879 	vsk = vsock_sk(sk);
880 	if (vmci_handle_is_invalid(e_payload->handle))
881 		return;
882 
883 	/* Same rules for locking as for peer_attach_cb(). */
884 	local_bh_disable();
885 	bh_lock_sock(sk);
886 
887 	/* XXX This is lame, we should provide a way to lookup sockets by
888 	 * qp_handle.
889 	 */
890 	if (vmci_handle_is_equal(vmci_trans(vsk)->qp_handle,
891 				 e_payload->handle))
892 		vmci_transport_handle_detach(sk);
893 
894 	bh_unlock_sock(sk);
895 	local_bh_enable();
896 }
897 
898 static void vmci_transport_qp_resumed_cb(u32 sub_id,
899 					 const struct vmci_event_data *e_data,
900 					 void *client_data)
901 {
902 	vsock_for_each_connected_socket(vmci_transport_handle_detach);
903 }
904 
905 static void vmci_transport_recv_pkt_work(struct work_struct *work)
906 {
907 	struct vmci_transport_recv_pkt_info *recv_pkt_info;
908 	struct vmci_transport_packet *pkt;
909 	struct sock *sk;
910 
911 	recv_pkt_info =
912 		container_of(work, struct vmci_transport_recv_pkt_info, work);
913 	sk = recv_pkt_info->sk;
914 	pkt = &recv_pkt_info->pkt;
915 
916 	lock_sock(sk);
917 
918 	/* The local context ID may be out of date. */
919 	vsock_sk(sk)->local_addr.svm_cid = pkt->dg.dst.context;
920 
921 	switch (sk->sk_state) {
922 	case SS_LISTEN:
923 		vmci_transport_recv_listen(sk, pkt);
924 		break;
925 	case SS_CONNECTING:
926 		/* Processing of pending connections for servers goes through
927 		 * the listening socket, so see vmci_transport_recv_listen()
928 		 * for that path.
929 		 */
930 		vmci_transport_recv_connecting_client(sk, pkt);
931 		break;
932 	case SS_CONNECTED:
933 		vmci_transport_recv_connected(sk, pkt);
934 		break;
935 	default:
936 		/* Because this function does not run in the same context as
937 		 * vmci_transport_recv_stream_cb it is possible that the
938 		 * socket has closed. We need to let the other side know or it
939 		 * could be sitting in a connect and hang forever. Send a
940 		 * reset to prevent that.
941 		 */
942 		vmci_transport_send_reset(sk, pkt);
943 		break;
944 	}
945 
946 	release_sock(sk);
947 	kfree(recv_pkt_info);
948 	/* Release reference obtained in the stream callback when we fetched
949 	 * this socket out of the bound or connected list.
950 	 */
951 	sock_put(sk);
952 }
953 
954 static int vmci_transport_recv_listen(struct sock *sk,
955 				      struct vmci_transport_packet *pkt)
956 {
957 	struct sock *pending;
958 	struct vsock_sock *vpending;
959 	int err;
960 	u64 qp_size;
961 	bool old_request = false;
962 	bool old_pkt_proto = false;
963 
964 	err = 0;
965 
966 	/* Because we are in the listen state, we could be receiving a packet
967 	 * for ourself or any previous connection requests that we received.
968 	 * If it's the latter, we try to find a socket in our list of pending
969 	 * connections and, if we do, call the appropriate handler for the
970 	 * state that that socket is in.  Otherwise we try to service the
971 	 * connection request.
972 	 */
973 	pending = vmci_transport_get_pending(sk, pkt);
974 	if (pending) {
975 		lock_sock(pending);
976 
977 		/* The local context ID may be out of date. */
978 		vsock_sk(pending)->local_addr.svm_cid = pkt->dg.dst.context;
979 
980 		switch (pending->sk_state) {
981 		case SS_CONNECTING:
982 			err = vmci_transport_recv_connecting_server(sk,
983 								    pending,
984 								    pkt);
985 			break;
986 		default:
987 			vmci_transport_send_reset(pending, pkt);
988 			err = -EINVAL;
989 		}
990 
991 		if (err < 0)
992 			vsock_remove_pending(sk, pending);
993 
994 		release_sock(pending);
995 		vmci_transport_release_pending(pending);
996 
997 		return err;
998 	}
999 
1000 	/* The listen state only accepts connection requests.  Reply with a
1001 	 * reset unless we received a reset.
1002 	 */
1003 
1004 	if (!(pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST ||
1005 	      pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)) {
1006 		vmci_transport_reply_reset(pkt);
1007 		return -EINVAL;
1008 	}
1009 
1010 	if (pkt->u.size == 0) {
1011 		vmci_transport_reply_reset(pkt);
1012 		return -EINVAL;
1013 	}
1014 
1015 	/* If this socket can't accommodate this connection request, we send a
1016 	 * reset.  Otherwise we create and initialize a child socket and reply
1017 	 * with a connection negotiation.
1018 	 */
1019 	if (sk->sk_ack_backlog >= sk->sk_max_ack_backlog) {
1020 		vmci_transport_reply_reset(pkt);
1021 		return -ECONNREFUSED;
1022 	}
1023 
1024 	pending = __vsock_create(sock_net(sk), NULL, sk, GFP_KERNEL,
1025 				 sk->sk_type);
1026 	if (!pending) {
1027 		vmci_transport_send_reset(sk, pkt);
1028 		return -ENOMEM;
1029 	}
1030 
1031 	vpending = vsock_sk(pending);
1032 
1033 	vsock_addr_init(&vpending->local_addr, pkt->dg.dst.context,
1034 			pkt->dst_port);
1035 	vsock_addr_init(&vpending->remote_addr, pkt->dg.src.context,
1036 			pkt->src_port);
1037 
1038 	/* If the proposed size fits within our min/max, accept it. Otherwise
1039 	 * propose our own size.
1040 	 */
1041 	if (pkt->u.size >= vmci_trans(vpending)->queue_pair_min_size &&
1042 	    pkt->u.size <= vmci_trans(vpending)->queue_pair_max_size) {
1043 		qp_size = pkt->u.size;
1044 	} else {
1045 		qp_size = vmci_trans(vpending)->queue_pair_size;
1046 	}
1047 
1048 	/* Figure out if we are using old or new requests based on the
1049 	 * overrides pkt types sent by our peer.
1050 	 */
1051 	if (vmci_transport_old_proto_override(&old_pkt_proto)) {
1052 		old_request = old_pkt_proto;
1053 	} else {
1054 		if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST)
1055 			old_request = true;
1056 		else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)
1057 			old_request = false;
1058 
1059 	}
1060 
1061 	if (old_request) {
1062 		/* Handle a REQUEST (or override) */
1063 		u16 version = VSOCK_PROTO_INVALID;
1064 		if (vmci_transport_proto_to_notify_struct(
1065 			pending, &version, true))
1066 			err = vmci_transport_send_negotiate(pending, qp_size);
1067 		else
1068 			err = -EINVAL;
1069 
1070 	} else {
1071 		/* Handle a REQUEST2 (or override) */
1072 		int proto_int = pkt->proto;
1073 		int pos;
1074 		u16 active_proto_version = 0;
1075 
1076 		/* The list of possible protocols is the intersection of all
1077 		 * protocols the client supports ... plus all the protocols we
1078 		 * support.
1079 		 */
1080 		proto_int &= vmci_transport_new_proto_supported_versions();
1081 
1082 		/* We choose the highest possible protocol version and use that
1083 		 * one.
1084 		 */
1085 		pos = fls(proto_int);
1086 		if (pos) {
1087 			active_proto_version = (1 << (pos - 1));
1088 			if (vmci_transport_proto_to_notify_struct(
1089 				pending, &active_proto_version, false))
1090 				err = vmci_transport_send_negotiate2(pending,
1091 							qp_size,
1092 							active_proto_version);
1093 			else
1094 				err = -EINVAL;
1095 
1096 		} else {
1097 			err = -EINVAL;
1098 		}
1099 	}
1100 
1101 	if (err < 0) {
1102 		vmci_transport_send_reset(sk, pkt);
1103 		sock_put(pending);
1104 		err = vmci_transport_error_to_vsock_error(err);
1105 		goto out;
1106 	}
1107 
1108 	vsock_add_pending(sk, pending);
1109 	sk->sk_ack_backlog++;
1110 
1111 	pending->sk_state = SS_CONNECTING;
1112 	vmci_trans(vpending)->produce_size =
1113 		vmci_trans(vpending)->consume_size = qp_size;
1114 	vmci_trans(vpending)->queue_pair_size = qp_size;
1115 
1116 	vmci_trans(vpending)->notify_ops->process_request(pending);
1117 
1118 	/* We might never receive another message for this socket and it's not
1119 	 * connected to any process, so we have to ensure it gets cleaned up
1120 	 * ourself.  Our delayed work function will take care of that.  Note
1121 	 * that we do not ever cancel this function since we have few
1122 	 * guarantees about its state when calling cancel_delayed_work().
1123 	 * Instead we hold a reference on the socket for that function and make
1124 	 * it capable of handling cases where it needs to do nothing but
1125 	 * release that reference.
1126 	 */
1127 	vpending->listener = sk;
1128 	sock_hold(sk);
1129 	sock_hold(pending);
1130 	INIT_DELAYED_WORK(&vpending->dwork, vsock_pending_work);
1131 	schedule_delayed_work(&vpending->dwork, HZ);
1132 
1133 out:
1134 	return err;
1135 }
1136 
1137 static int
1138 vmci_transport_recv_connecting_server(struct sock *listener,
1139 				      struct sock *pending,
1140 				      struct vmci_transport_packet *pkt)
1141 {
1142 	struct vsock_sock *vpending;
1143 	struct vmci_handle handle;
1144 	struct vmci_qp *qpair;
1145 	bool is_local;
1146 	u32 flags;
1147 	u32 detach_sub_id;
1148 	int err;
1149 	int skerr;
1150 
1151 	vpending = vsock_sk(pending);
1152 	detach_sub_id = VMCI_INVALID_ID;
1153 
1154 	switch (pkt->type) {
1155 	case VMCI_TRANSPORT_PACKET_TYPE_OFFER:
1156 		if (vmci_handle_is_invalid(pkt->u.handle)) {
1157 			vmci_transport_send_reset(pending, pkt);
1158 			skerr = EPROTO;
1159 			err = -EINVAL;
1160 			goto destroy;
1161 		}
1162 		break;
1163 	default:
1164 		/* Close and cleanup the connection. */
1165 		vmci_transport_send_reset(pending, pkt);
1166 		skerr = EPROTO;
1167 		err = pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST ? 0 : -EINVAL;
1168 		goto destroy;
1169 	}
1170 
1171 	/* In order to complete the connection we need to attach to the offered
1172 	 * queue pair and send an attach notification.  We also subscribe to the
1173 	 * detach event so we know when our peer goes away, and we do that
1174 	 * before attaching so we don't miss an event.  If all this succeeds,
1175 	 * we update our state and wakeup anything waiting in accept() for a
1176 	 * connection.
1177 	 */
1178 
1179 	/* We don't care about attach since we ensure the other side has
1180 	 * attached by specifying the ATTACH_ONLY flag below.
1181 	 */
1182 	err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH,
1183 				   vmci_transport_peer_detach_cb,
1184 				   pending, &detach_sub_id);
1185 	if (err < VMCI_SUCCESS) {
1186 		vmci_transport_send_reset(pending, pkt);
1187 		err = vmci_transport_error_to_vsock_error(err);
1188 		skerr = -err;
1189 		goto destroy;
1190 	}
1191 
1192 	vmci_trans(vpending)->detach_sub_id = detach_sub_id;
1193 
1194 	/* Now attach to the queue pair the client created. */
1195 	handle = pkt->u.handle;
1196 
1197 	/* vpending->local_addr always has a context id so we do not need to
1198 	 * worry about VMADDR_CID_ANY in this case.
1199 	 */
1200 	is_local =
1201 	    vpending->remote_addr.svm_cid == vpending->local_addr.svm_cid;
1202 	flags = VMCI_QPFLAG_ATTACH_ONLY;
1203 	flags |= is_local ? VMCI_QPFLAG_LOCAL : 0;
1204 
1205 	err = vmci_transport_queue_pair_alloc(
1206 					&qpair,
1207 					&handle,
1208 					vmci_trans(vpending)->produce_size,
1209 					vmci_trans(vpending)->consume_size,
1210 					pkt->dg.src.context,
1211 					flags,
1212 					vmci_transport_is_trusted(
1213 						vpending,
1214 						vpending->remote_addr.svm_cid));
1215 	if (err < 0) {
1216 		vmci_transport_send_reset(pending, pkt);
1217 		skerr = -err;
1218 		goto destroy;
1219 	}
1220 
1221 	vmci_trans(vpending)->qp_handle = handle;
1222 	vmci_trans(vpending)->qpair = qpair;
1223 
1224 	/* When we send the attach message, we must be ready to handle incoming
1225 	 * control messages on the newly connected socket. So we move the
1226 	 * pending socket to the connected state before sending the attach
1227 	 * message. Otherwise, an incoming packet triggered by the attach being
1228 	 * received by the peer may be processed concurrently with what happens
1229 	 * below after sending the attach message, and that incoming packet
1230 	 * will find the listening socket instead of the (currently) pending
1231 	 * socket. Note that enqueueing the socket increments the reference
1232 	 * count, so even if a reset comes before the connection is accepted,
1233 	 * the socket will be valid until it is removed from the queue.
1234 	 *
1235 	 * If we fail sending the attach below, we remove the socket from the
1236 	 * connected list and move the socket to SS_UNCONNECTED before
1237 	 * releasing the lock, so a pending slow path processing of an incoming
1238 	 * packet will not see the socket in the connected state in that case.
1239 	 */
1240 	pending->sk_state = SS_CONNECTED;
1241 
1242 	vsock_insert_connected(vpending);
1243 
1244 	/* Notify our peer of our attach. */
1245 	err = vmci_transport_send_attach(pending, handle);
1246 	if (err < 0) {
1247 		vsock_remove_connected(vpending);
1248 		pr_err("Could not send attach\n");
1249 		vmci_transport_send_reset(pending, pkt);
1250 		err = vmci_transport_error_to_vsock_error(err);
1251 		skerr = -err;
1252 		goto destroy;
1253 	}
1254 
1255 	/* We have a connection. Move the now connected socket from the
1256 	 * listener's pending list to the accept queue so callers of accept()
1257 	 * can find it.
1258 	 */
1259 	vsock_remove_pending(listener, pending);
1260 	vsock_enqueue_accept(listener, pending);
1261 
1262 	/* Callers of accept() will be be waiting on the listening socket, not
1263 	 * the pending socket.
1264 	 */
1265 	listener->sk_state_change(listener);
1266 
1267 	return 0;
1268 
1269 destroy:
1270 	pending->sk_err = skerr;
1271 	pending->sk_state = SS_UNCONNECTED;
1272 	/* As long as we drop our reference, all necessary cleanup will handle
1273 	 * when the cleanup function drops its reference and our destruct
1274 	 * implementation is called.  Note that since the listen handler will
1275 	 * remove pending from the pending list upon our failure, the cleanup
1276 	 * function won't drop the additional reference, which is why we do it
1277 	 * here.
1278 	 */
1279 	sock_put(pending);
1280 
1281 	return err;
1282 }
1283 
1284 static int
1285 vmci_transport_recv_connecting_client(struct sock *sk,
1286 				      struct vmci_transport_packet *pkt)
1287 {
1288 	struct vsock_sock *vsk;
1289 	int err;
1290 	int skerr;
1291 
1292 	vsk = vsock_sk(sk);
1293 
1294 	switch (pkt->type) {
1295 	case VMCI_TRANSPORT_PACKET_TYPE_ATTACH:
1296 		if (vmci_handle_is_invalid(pkt->u.handle) ||
1297 		    !vmci_handle_is_equal(pkt->u.handle,
1298 					  vmci_trans(vsk)->qp_handle)) {
1299 			skerr = EPROTO;
1300 			err = -EINVAL;
1301 			goto destroy;
1302 		}
1303 
1304 		/* Signify the socket is connected and wakeup the waiter in
1305 		 * connect(). Also place the socket in the connected table for
1306 		 * accounting (it can already be found since it's in the bound
1307 		 * table).
1308 		 */
1309 		sk->sk_state = SS_CONNECTED;
1310 		sk->sk_socket->state = SS_CONNECTED;
1311 		vsock_insert_connected(vsk);
1312 		sk->sk_state_change(sk);
1313 
1314 		break;
1315 	case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE:
1316 	case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2:
1317 		if (pkt->u.size == 0
1318 		    || pkt->dg.src.context != vsk->remote_addr.svm_cid
1319 		    || pkt->src_port != vsk->remote_addr.svm_port
1320 		    || !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)
1321 		    || vmci_trans(vsk)->qpair
1322 		    || vmci_trans(vsk)->produce_size != 0
1323 		    || vmci_trans(vsk)->consume_size != 0
1324 		    || vmci_trans(vsk)->attach_sub_id != VMCI_INVALID_ID
1325 		    || vmci_trans(vsk)->detach_sub_id != VMCI_INVALID_ID) {
1326 			skerr = EPROTO;
1327 			err = -EINVAL;
1328 
1329 			goto destroy;
1330 		}
1331 
1332 		err = vmci_transport_recv_connecting_client_negotiate(sk, pkt);
1333 		if (err) {
1334 			skerr = -err;
1335 			goto destroy;
1336 		}
1337 
1338 		break;
1339 	case VMCI_TRANSPORT_PACKET_TYPE_INVALID:
1340 		err = vmci_transport_recv_connecting_client_invalid(sk, pkt);
1341 		if (err) {
1342 			skerr = -err;
1343 			goto destroy;
1344 		}
1345 
1346 		break;
1347 	case VMCI_TRANSPORT_PACKET_TYPE_RST:
1348 		/* Older versions of the linux code (WS 6.5 / ESX 4.0) used to
1349 		 * continue processing here after they sent an INVALID packet.
1350 		 * This meant that we got a RST after the INVALID. We ignore a
1351 		 * RST after an INVALID. The common code doesn't send the RST
1352 		 * ... so we can hang if an old version of the common code
1353 		 * fails between getting a REQUEST and sending an OFFER back.
1354 		 * Not much we can do about it... except hope that it doesn't
1355 		 * happen.
1356 		 */
1357 		if (vsk->ignore_connecting_rst) {
1358 			vsk->ignore_connecting_rst = false;
1359 		} else {
1360 			skerr = ECONNRESET;
1361 			err = 0;
1362 			goto destroy;
1363 		}
1364 
1365 		break;
1366 	default:
1367 		/* Close and cleanup the connection. */
1368 		skerr = EPROTO;
1369 		err = -EINVAL;
1370 		goto destroy;
1371 	}
1372 
1373 	return 0;
1374 
1375 destroy:
1376 	vmci_transport_send_reset(sk, pkt);
1377 
1378 	sk->sk_state = SS_UNCONNECTED;
1379 	sk->sk_err = skerr;
1380 	sk->sk_error_report(sk);
1381 	return err;
1382 }
1383 
1384 static int vmci_transport_recv_connecting_client_negotiate(
1385 					struct sock *sk,
1386 					struct vmci_transport_packet *pkt)
1387 {
1388 	int err;
1389 	struct vsock_sock *vsk;
1390 	struct vmci_handle handle;
1391 	struct vmci_qp *qpair;
1392 	u32 attach_sub_id;
1393 	u32 detach_sub_id;
1394 	bool is_local;
1395 	u32 flags;
1396 	bool old_proto = true;
1397 	bool old_pkt_proto;
1398 	u16 version;
1399 
1400 	vsk = vsock_sk(sk);
1401 	handle = VMCI_INVALID_HANDLE;
1402 	attach_sub_id = VMCI_INVALID_ID;
1403 	detach_sub_id = VMCI_INVALID_ID;
1404 
1405 	/* If we have gotten here then we should be past the point where old
1406 	 * linux vsock could have sent the bogus rst.
1407 	 */
1408 	vsk->sent_request = false;
1409 	vsk->ignore_connecting_rst = false;
1410 
1411 	/* Verify that we're OK with the proposed queue pair size */
1412 	if (pkt->u.size < vmci_trans(vsk)->queue_pair_min_size ||
1413 	    pkt->u.size > vmci_trans(vsk)->queue_pair_max_size) {
1414 		err = -EINVAL;
1415 		goto destroy;
1416 	}
1417 
1418 	/* At this point we know the CID the peer is using to talk to us. */
1419 
1420 	if (vsk->local_addr.svm_cid == VMADDR_CID_ANY)
1421 		vsk->local_addr.svm_cid = pkt->dg.dst.context;
1422 
1423 	/* Setup the notify ops to be the highest supported version that both
1424 	 * the server and the client support.
1425 	 */
1426 
1427 	if (vmci_transport_old_proto_override(&old_pkt_proto)) {
1428 		old_proto = old_pkt_proto;
1429 	} else {
1430 		if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE)
1431 			old_proto = true;
1432 		else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2)
1433 			old_proto = false;
1434 
1435 	}
1436 
1437 	if (old_proto)
1438 		version = VSOCK_PROTO_INVALID;
1439 	else
1440 		version = pkt->proto;
1441 
1442 	if (!vmci_transport_proto_to_notify_struct(sk, &version, old_proto)) {
1443 		err = -EINVAL;
1444 		goto destroy;
1445 	}
1446 
1447 	/* Subscribe to attach and detach events first.
1448 	 *
1449 	 * XXX We attach once for each queue pair created for now so it is easy
1450 	 * to find the socket (it's provided), but later we should only
1451 	 * subscribe once and add a way to lookup sockets by queue pair handle.
1452 	 */
1453 	err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_ATTACH,
1454 				   vmci_transport_peer_attach_cb,
1455 				   sk, &attach_sub_id);
1456 	if (err < VMCI_SUCCESS) {
1457 		err = vmci_transport_error_to_vsock_error(err);
1458 		goto destroy;
1459 	}
1460 
1461 	err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH,
1462 				   vmci_transport_peer_detach_cb,
1463 				   sk, &detach_sub_id);
1464 	if (err < VMCI_SUCCESS) {
1465 		err = vmci_transport_error_to_vsock_error(err);
1466 		goto destroy;
1467 	}
1468 
1469 	/* Make VMCI select the handle for us. */
1470 	handle = VMCI_INVALID_HANDLE;
1471 	is_local = vsk->remote_addr.svm_cid == vsk->local_addr.svm_cid;
1472 	flags = is_local ? VMCI_QPFLAG_LOCAL : 0;
1473 
1474 	err = vmci_transport_queue_pair_alloc(&qpair,
1475 					      &handle,
1476 					      pkt->u.size,
1477 					      pkt->u.size,
1478 					      vsk->remote_addr.svm_cid,
1479 					      flags,
1480 					      vmci_transport_is_trusted(
1481 						  vsk,
1482 						  vsk->
1483 						  remote_addr.svm_cid));
1484 	if (err < 0)
1485 		goto destroy;
1486 
1487 	err = vmci_transport_send_qp_offer(sk, handle);
1488 	if (err < 0) {
1489 		err = vmci_transport_error_to_vsock_error(err);
1490 		goto destroy;
1491 	}
1492 
1493 	vmci_trans(vsk)->qp_handle = handle;
1494 	vmci_trans(vsk)->qpair = qpair;
1495 
1496 	vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size =
1497 		pkt->u.size;
1498 
1499 	vmci_trans(vsk)->attach_sub_id = attach_sub_id;
1500 	vmci_trans(vsk)->detach_sub_id = detach_sub_id;
1501 
1502 	vmci_trans(vsk)->notify_ops->process_negotiate(sk);
1503 
1504 	return 0;
1505 
1506 destroy:
1507 	if (attach_sub_id != VMCI_INVALID_ID)
1508 		vmci_event_unsubscribe(attach_sub_id);
1509 
1510 	if (detach_sub_id != VMCI_INVALID_ID)
1511 		vmci_event_unsubscribe(detach_sub_id);
1512 
1513 	if (!vmci_handle_is_invalid(handle))
1514 		vmci_qpair_detach(&qpair);
1515 
1516 	return err;
1517 }
1518 
1519 static int
1520 vmci_transport_recv_connecting_client_invalid(struct sock *sk,
1521 					      struct vmci_transport_packet *pkt)
1522 {
1523 	int err = 0;
1524 	struct vsock_sock *vsk = vsock_sk(sk);
1525 
1526 	if (vsk->sent_request) {
1527 		vsk->sent_request = false;
1528 		vsk->ignore_connecting_rst = true;
1529 
1530 		err = vmci_transport_send_conn_request(
1531 			sk, vmci_trans(vsk)->queue_pair_size);
1532 		if (err < 0)
1533 			err = vmci_transport_error_to_vsock_error(err);
1534 		else
1535 			err = 0;
1536 
1537 	}
1538 
1539 	return err;
1540 }
1541 
1542 static int vmci_transport_recv_connected(struct sock *sk,
1543 					 struct vmci_transport_packet *pkt)
1544 {
1545 	struct vsock_sock *vsk;
1546 	bool pkt_processed = false;
1547 
1548 	/* In cases where we are closing the connection, it's sufficient to
1549 	 * mark the state change (and maybe error) and wake up any waiting
1550 	 * threads. Since this is a connected socket, it's owned by a user
1551 	 * process and will be cleaned up when the failure is passed back on
1552 	 * the current or next system call.  Our system call implementations
1553 	 * must therefore check for error and state changes on entry and when
1554 	 * being awoken.
1555 	 */
1556 	switch (pkt->type) {
1557 	case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN:
1558 		if (pkt->u.mode) {
1559 			vsk = vsock_sk(sk);
1560 
1561 			vsk->peer_shutdown |= pkt->u.mode;
1562 			sk->sk_state_change(sk);
1563 		}
1564 		break;
1565 
1566 	case VMCI_TRANSPORT_PACKET_TYPE_RST:
1567 		vsk = vsock_sk(sk);
1568 		/* It is possible that we sent our peer a message (e.g a
1569 		 * WAITING_READ) right before we got notified that the peer had
1570 		 * detached. If that happens then we can get a RST pkt back
1571 		 * from our peer even though there is data available for us to
1572 		 * read. In that case, don't shutdown the socket completely but
1573 		 * instead allow the local client to finish reading data off
1574 		 * the queuepair. Always treat a RST pkt in connected mode like
1575 		 * a clean shutdown.
1576 		 */
1577 		sock_set_flag(sk, SOCK_DONE);
1578 		vsk->peer_shutdown = SHUTDOWN_MASK;
1579 		if (vsock_stream_has_data(vsk) <= 0)
1580 			sk->sk_state = SS_DISCONNECTING;
1581 
1582 		sk->sk_state_change(sk);
1583 		break;
1584 
1585 	default:
1586 		vsk = vsock_sk(sk);
1587 		vmci_trans(vsk)->notify_ops->handle_notify_pkt(
1588 				sk, pkt, false, NULL, NULL,
1589 				&pkt_processed);
1590 		if (!pkt_processed)
1591 			return -EINVAL;
1592 
1593 		break;
1594 	}
1595 
1596 	return 0;
1597 }
1598 
1599 static int vmci_transport_socket_init(struct vsock_sock *vsk,
1600 				      struct vsock_sock *psk)
1601 {
1602 	vsk->trans = kmalloc(sizeof(struct vmci_transport), GFP_KERNEL);
1603 	if (!vsk->trans)
1604 		return -ENOMEM;
1605 
1606 	vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE;
1607 	vmci_trans(vsk)->qp_handle = VMCI_INVALID_HANDLE;
1608 	vmci_trans(vsk)->qpair = NULL;
1609 	vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size = 0;
1610 	vmci_trans(vsk)->attach_sub_id = vmci_trans(vsk)->detach_sub_id =
1611 		VMCI_INVALID_ID;
1612 	vmci_trans(vsk)->notify_ops = NULL;
1613 	if (psk) {
1614 		vmci_trans(vsk)->queue_pair_size =
1615 			vmci_trans(psk)->queue_pair_size;
1616 		vmci_trans(vsk)->queue_pair_min_size =
1617 			vmci_trans(psk)->queue_pair_min_size;
1618 		vmci_trans(vsk)->queue_pair_max_size =
1619 			vmci_trans(psk)->queue_pair_max_size;
1620 	} else {
1621 		vmci_trans(vsk)->queue_pair_size =
1622 			VMCI_TRANSPORT_DEFAULT_QP_SIZE;
1623 		vmci_trans(vsk)->queue_pair_min_size =
1624 			 VMCI_TRANSPORT_DEFAULT_QP_SIZE_MIN;
1625 		vmci_trans(vsk)->queue_pair_max_size =
1626 			VMCI_TRANSPORT_DEFAULT_QP_SIZE_MAX;
1627 	}
1628 
1629 	return 0;
1630 }
1631 
1632 static void vmci_transport_destruct(struct vsock_sock *vsk)
1633 {
1634 	if (vmci_trans(vsk)->attach_sub_id != VMCI_INVALID_ID) {
1635 		vmci_event_unsubscribe(vmci_trans(vsk)->attach_sub_id);
1636 		vmci_trans(vsk)->attach_sub_id = VMCI_INVALID_ID;
1637 	}
1638 
1639 	if (vmci_trans(vsk)->detach_sub_id != VMCI_INVALID_ID) {
1640 		vmci_event_unsubscribe(vmci_trans(vsk)->detach_sub_id);
1641 		vmci_trans(vsk)->detach_sub_id = VMCI_INVALID_ID;
1642 	}
1643 
1644 	if (!vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)) {
1645 		vmci_qpair_detach(&vmci_trans(vsk)->qpair);
1646 		vmci_trans(vsk)->qp_handle = VMCI_INVALID_HANDLE;
1647 		vmci_trans(vsk)->produce_size = 0;
1648 		vmci_trans(vsk)->consume_size = 0;
1649 	}
1650 
1651 	if (vmci_trans(vsk)->notify_ops)
1652 		vmci_trans(vsk)->notify_ops->socket_destruct(vsk);
1653 
1654 	kfree(vsk->trans);
1655 	vsk->trans = NULL;
1656 }
1657 
1658 static void vmci_transport_release(struct vsock_sock *vsk)
1659 {
1660 	if (!vmci_handle_is_invalid(vmci_trans(vsk)->dg_handle)) {
1661 		vmci_datagram_destroy_handle(vmci_trans(vsk)->dg_handle);
1662 		vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE;
1663 	}
1664 }
1665 
1666 static int vmci_transport_dgram_bind(struct vsock_sock *vsk,
1667 				     struct sockaddr_vm *addr)
1668 {
1669 	u32 port;
1670 	u32 flags;
1671 	int err;
1672 
1673 	/* VMCI will select a resource ID for us if we provide
1674 	 * VMCI_INVALID_ID.
1675 	 */
1676 	port = addr->svm_port == VMADDR_PORT_ANY ?
1677 			VMCI_INVALID_ID : addr->svm_port;
1678 
1679 	if (port <= LAST_RESERVED_PORT && !capable(CAP_NET_BIND_SERVICE))
1680 		return -EACCES;
1681 
1682 	flags = addr->svm_cid == VMADDR_CID_ANY ?
1683 				VMCI_FLAG_ANYCID_DG_HND : 0;
1684 
1685 	err = vmci_transport_datagram_create_hnd(port, flags,
1686 						 vmci_transport_recv_dgram_cb,
1687 						 &vsk->sk,
1688 						 &vmci_trans(vsk)->dg_handle);
1689 	if (err < VMCI_SUCCESS)
1690 		return vmci_transport_error_to_vsock_error(err);
1691 	vsock_addr_init(&vsk->local_addr, addr->svm_cid,
1692 			vmci_trans(vsk)->dg_handle.resource);
1693 
1694 	return 0;
1695 }
1696 
1697 static int vmci_transport_dgram_enqueue(
1698 	struct vsock_sock *vsk,
1699 	struct sockaddr_vm *remote_addr,
1700 	struct msghdr *msg,
1701 	size_t len)
1702 {
1703 	int err;
1704 	struct vmci_datagram *dg;
1705 
1706 	if (len > VMCI_MAX_DG_PAYLOAD_SIZE)
1707 		return -EMSGSIZE;
1708 
1709 	if (!vmci_transport_allow_dgram(vsk, remote_addr->svm_cid))
1710 		return -EPERM;
1711 
1712 	/* Allocate a buffer for the user's message and our packet header. */
1713 	dg = kmalloc(len + sizeof(*dg), GFP_KERNEL);
1714 	if (!dg)
1715 		return -ENOMEM;
1716 
1717 	memcpy_from_msg(VMCI_DG_PAYLOAD(dg), msg, len);
1718 
1719 	dg->dst = vmci_make_handle(remote_addr->svm_cid,
1720 				   remote_addr->svm_port);
1721 	dg->src = vmci_make_handle(vsk->local_addr.svm_cid,
1722 				   vsk->local_addr.svm_port);
1723 	dg->payload_size = len;
1724 
1725 	err = vmci_datagram_send(dg);
1726 	kfree(dg);
1727 	if (err < 0)
1728 		return vmci_transport_error_to_vsock_error(err);
1729 
1730 	return err - sizeof(*dg);
1731 }
1732 
1733 static int vmci_transport_dgram_dequeue(struct vsock_sock *vsk,
1734 					struct msghdr *msg, size_t len,
1735 					int flags)
1736 {
1737 	int err;
1738 	int noblock;
1739 	struct vmci_datagram *dg;
1740 	size_t payload_len;
1741 	struct sk_buff *skb;
1742 
1743 	noblock = flags & MSG_DONTWAIT;
1744 
1745 	if (flags & MSG_OOB || flags & MSG_ERRQUEUE)
1746 		return -EOPNOTSUPP;
1747 
1748 	/* Retrieve the head sk_buff from the socket's receive queue. */
1749 	err = 0;
1750 	skb = skb_recv_datagram(&vsk->sk, flags, noblock, &err);
1751 	if (err)
1752 		return err;
1753 
1754 	if (!skb)
1755 		return -EAGAIN;
1756 
1757 	dg = (struct vmci_datagram *)skb->data;
1758 	if (!dg)
1759 		/* err is 0, meaning we read zero bytes. */
1760 		goto out;
1761 
1762 	payload_len = dg->payload_size;
1763 	/* Ensure the sk_buff matches the payload size claimed in the packet. */
1764 	if (payload_len != skb->len - sizeof(*dg)) {
1765 		err = -EINVAL;
1766 		goto out;
1767 	}
1768 
1769 	if (payload_len > len) {
1770 		payload_len = len;
1771 		msg->msg_flags |= MSG_TRUNC;
1772 	}
1773 
1774 	/* Place the datagram payload in the user's iovec. */
1775 	err = skb_copy_datagram_msg(skb, sizeof(*dg), msg, payload_len);
1776 	if (err)
1777 		goto out;
1778 
1779 	if (msg->msg_name) {
1780 		/* Provide the address of the sender. */
1781 		DECLARE_SOCKADDR(struct sockaddr_vm *, vm_addr, msg->msg_name);
1782 		vsock_addr_init(vm_addr, dg->src.context, dg->src.resource);
1783 		msg->msg_namelen = sizeof(*vm_addr);
1784 	}
1785 	err = payload_len;
1786 
1787 out:
1788 	skb_free_datagram(&vsk->sk, skb);
1789 	return err;
1790 }
1791 
1792 static bool vmci_transport_dgram_allow(u32 cid, u32 port)
1793 {
1794 	if (cid == VMADDR_CID_HYPERVISOR) {
1795 		/* Registrations of PBRPC Servers do not modify VMX/Hypervisor
1796 		 * state and are allowed.
1797 		 */
1798 		return port == VMCI_UNITY_PBRPC_REGISTER;
1799 	}
1800 
1801 	return true;
1802 }
1803 
1804 static int vmci_transport_connect(struct vsock_sock *vsk)
1805 {
1806 	int err;
1807 	bool old_pkt_proto = false;
1808 	struct sock *sk = &vsk->sk;
1809 
1810 	if (vmci_transport_old_proto_override(&old_pkt_proto) &&
1811 		old_pkt_proto) {
1812 		err = vmci_transport_send_conn_request(
1813 			sk, vmci_trans(vsk)->queue_pair_size);
1814 		if (err < 0) {
1815 			sk->sk_state = SS_UNCONNECTED;
1816 			return err;
1817 		}
1818 	} else {
1819 		int supported_proto_versions =
1820 			vmci_transport_new_proto_supported_versions();
1821 		err = vmci_transport_send_conn_request2(
1822 				sk, vmci_trans(vsk)->queue_pair_size,
1823 				supported_proto_versions);
1824 		if (err < 0) {
1825 			sk->sk_state = SS_UNCONNECTED;
1826 			return err;
1827 		}
1828 
1829 		vsk->sent_request = true;
1830 	}
1831 
1832 	return err;
1833 }
1834 
1835 static ssize_t vmci_transport_stream_dequeue(
1836 	struct vsock_sock *vsk,
1837 	struct msghdr *msg,
1838 	size_t len,
1839 	int flags)
1840 {
1841 	if (flags & MSG_PEEK)
1842 		return vmci_qpair_peekv(vmci_trans(vsk)->qpair, msg, len, 0);
1843 	else
1844 		return vmci_qpair_dequev(vmci_trans(vsk)->qpair, msg, len, 0);
1845 }
1846 
1847 static ssize_t vmci_transport_stream_enqueue(
1848 	struct vsock_sock *vsk,
1849 	struct msghdr *msg,
1850 	size_t len)
1851 {
1852 	return vmci_qpair_enquev(vmci_trans(vsk)->qpair, msg, len, 0);
1853 }
1854 
1855 static s64 vmci_transport_stream_has_data(struct vsock_sock *vsk)
1856 {
1857 	return vmci_qpair_consume_buf_ready(vmci_trans(vsk)->qpair);
1858 }
1859 
1860 static s64 vmci_transport_stream_has_space(struct vsock_sock *vsk)
1861 {
1862 	return vmci_qpair_produce_free_space(vmci_trans(vsk)->qpair);
1863 }
1864 
1865 static u64 vmci_transport_stream_rcvhiwat(struct vsock_sock *vsk)
1866 {
1867 	return vmci_trans(vsk)->consume_size;
1868 }
1869 
1870 static bool vmci_transport_stream_is_active(struct vsock_sock *vsk)
1871 {
1872 	return !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle);
1873 }
1874 
1875 static u64 vmci_transport_get_buffer_size(struct vsock_sock *vsk)
1876 {
1877 	return vmci_trans(vsk)->queue_pair_size;
1878 }
1879 
1880 static u64 vmci_transport_get_min_buffer_size(struct vsock_sock *vsk)
1881 {
1882 	return vmci_trans(vsk)->queue_pair_min_size;
1883 }
1884 
1885 static u64 vmci_transport_get_max_buffer_size(struct vsock_sock *vsk)
1886 {
1887 	return vmci_trans(vsk)->queue_pair_max_size;
1888 }
1889 
1890 static void vmci_transport_set_buffer_size(struct vsock_sock *vsk, u64 val)
1891 {
1892 	if (val < vmci_trans(vsk)->queue_pair_min_size)
1893 		vmci_trans(vsk)->queue_pair_min_size = val;
1894 	if (val > vmci_trans(vsk)->queue_pair_max_size)
1895 		vmci_trans(vsk)->queue_pair_max_size = val;
1896 	vmci_trans(vsk)->queue_pair_size = val;
1897 }
1898 
1899 static void vmci_transport_set_min_buffer_size(struct vsock_sock *vsk,
1900 					       u64 val)
1901 {
1902 	if (val > vmci_trans(vsk)->queue_pair_size)
1903 		vmci_trans(vsk)->queue_pair_size = val;
1904 	vmci_trans(vsk)->queue_pair_min_size = val;
1905 }
1906 
1907 static void vmci_transport_set_max_buffer_size(struct vsock_sock *vsk,
1908 					       u64 val)
1909 {
1910 	if (val < vmci_trans(vsk)->queue_pair_size)
1911 		vmci_trans(vsk)->queue_pair_size = val;
1912 	vmci_trans(vsk)->queue_pair_max_size = val;
1913 }
1914 
1915 static int vmci_transport_notify_poll_in(
1916 	struct vsock_sock *vsk,
1917 	size_t target,
1918 	bool *data_ready_now)
1919 {
1920 	return vmci_trans(vsk)->notify_ops->poll_in(
1921 			&vsk->sk, target, data_ready_now);
1922 }
1923 
1924 static int vmci_transport_notify_poll_out(
1925 	struct vsock_sock *vsk,
1926 	size_t target,
1927 	bool *space_available_now)
1928 {
1929 	return vmci_trans(vsk)->notify_ops->poll_out(
1930 			&vsk->sk, target, space_available_now);
1931 }
1932 
1933 static int vmci_transport_notify_recv_init(
1934 	struct vsock_sock *vsk,
1935 	size_t target,
1936 	struct vsock_transport_recv_notify_data *data)
1937 {
1938 	return vmci_trans(vsk)->notify_ops->recv_init(
1939 			&vsk->sk, target,
1940 			(struct vmci_transport_recv_notify_data *)data);
1941 }
1942 
1943 static int vmci_transport_notify_recv_pre_block(
1944 	struct vsock_sock *vsk,
1945 	size_t target,
1946 	struct vsock_transport_recv_notify_data *data)
1947 {
1948 	return vmci_trans(vsk)->notify_ops->recv_pre_block(
1949 			&vsk->sk, target,
1950 			(struct vmci_transport_recv_notify_data *)data);
1951 }
1952 
1953 static int vmci_transport_notify_recv_pre_dequeue(
1954 	struct vsock_sock *vsk,
1955 	size_t target,
1956 	struct vsock_transport_recv_notify_data *data)
1957 {
1958 	return vmci_trans(vsk)->notify_ops->recv_pre_dequeue(
1959 			&vsk->sk, target,
1960 			(struct vmci_transport_recv_notify_data *)data);
1961 }
1962 
1963 static int vmci_transport_notify_recv_post_dequeue(
1964 	struct vsock_sock *vsk,
1965 	size_t target,
1966 	ssize_t copied,
1967 	bool data_read,
1968 	struct vsock_transport_recv_notify_data *data)
1969 {
1970 	return vmci_trans(vsk)->notify_ops->recv_post_dequeue(
1971 			&vsk->sk, target, copied, data_read,
1972 			(struct vmci_transport_recv_notify_data *)data);
1973 }
1974 
1975 static int vmci_transport_notify_send_init(
1976 	struct vsock_sock *vsk,
1977 	struct vsock_transport_send_notify_data *data)
1978 {
1979 	return vmci_trans(vsk)->notify_ops->send_init(
1980 			&vsk->sk,
1981 			(struct vmci_transport_send_notify_data *)data);
1982 }
1983 
1984 static int vmci_transport_notify_send_pre_block(
1985 	struct vsock_sock *vsk,
1986 	struct vsock_transport_send_notify_data *data)
1987 {
1988 	return vmci_trans(vsk)->notify_ops->send_pre_block(
1989 			&vsk->sk,
1990 			(struct vmci_transport_send_notify_data *)data);
1991 }
1992 
1993 static int vmci_transport_notify_send_pre_enqueue(
1994 	struct vsock_sock *vsk,
1995 	struct vsock_transport_send_notify_data *data)
1996 {
1997 	return vmci_trans(vsk)->notify_ops->send_pre_enqueue(
1998 			&vsk->sk,
1999 			(struct vmci_transport_send_notify_data *)data);
2000 }
2001 
2002 static int vmci_transport_notify_send_post_enqueue(
2003 	struct vsock_sock *vsk,
2004 	ssize_t written,
2005 	struct vsock_transport_send_notify_data *data)
2006 {
2007 	return vmci_trans(vsk)->notify_ops->send_post_enqueue(
2008 			&vsk->sk, written,
2009 			(struct vmci_transport_send_notify_data *)data);
2010 }
2011 
2012 static bool vmci_transport_old_proto_override(bool *old_pkt_proto)
2013 {
2014 	if (PROTOCOL_OVERRIDE != -1) {
2015 		if (PROTOCOL_OVERRIDE == 0)
2016 			*old_pkt_proto = true;
2017 		else
2018 			*old_pkt_proto = false;
2019 
2020 		pr_info("Proto override in use\n");
2021 		return true;
2022 	}
2023 
2024 	return false;
2025 }
2026 
2027 static bool vmci_transport_proto_to_notify_struct(struct sock *sk,
2028 						  u16 *proto,
2029 						  bool old_pkt_proto)
2030 {
2031 	struct vsock_sock *vsk = vsock_sk(sk);
2032 
2033 	if (old_pkt_proto) {
2034 		if (*proto != VSOCK_PROTO_INVALID) {
2035 			pr_err("Can't set both an old and new protocol\n");
2036 			return false;
2037 		}
2038 		vmci_trans(vsk)->notify_ops = &vmci_transport_notify_pkt_ops;
2039 		goto exit;
2040 	}
2041 
2042 	switch (*proto) {
2043 	case VSOCK_PROTO_PKT_ON_NOTIFY:
2044 		vmci_trans(vsk)->notify_ops =
2045 			&vmci_transport_notify_pkt_q_state_ops;
2046 		break;
2047 	default:
2048 		pr_err("Unknown notify protocol version\n");
2049 		return false;
2050 	}
2051 
2052 exit:
2053 	vmci_trans(vsk)->notify_ops->socket_init(sk);
2054 	return true;
2055 }
2056 
2057 static u16 vmci_transport_new_proto_supported_versions(void)
2058 {
2059 	if (PROTOCOL_OVERRIDE != -1)
2060 		return PROTOCOL_OVERRIDE;
2061 
2062 	return VSOCK_PROTO_ALL_SUPPORTED;
2063 }
2064 
2065 static u32 vmci_transport_get_local_cid(void)
2066 {
2067 	return vmci_get_context_id();
2068 }
2069 
2070 static struct vsock_transport vmci_transport = {
2071 	.init = vmci_transport_socket_init,
2072 	.destruct = vmci_transport_destruct,
2073 	.release = vmci_transport_release,
2074 	.connect = vmci_transport_connect,
2075 	.dgram_bind = vmci_transport_dgram_bind,
2076 	.dgram_dequeue = vmci_transport_dgram_dequeue,
2077 	.dgram_enqueue = vmci_transport_dgram_enqueue,
2078 	.dgram_allow = vmci_transport_dgram_allow,
2079 	.stream_dequeue = vmci_transport_stream_dequeue,
2080 	.stream_enqueue = vmci_transport_stream_enqueue,
2081 	.stream_has_data = vmci_transport_stream_has_data,
2082 	.stream_has_space = vmci_transport_stream_has_space,
2083 	.stream_rcvhiwat = vmci_transport_stream_rcvhiwat,
2084 	.stream_is_active = vmci_transport_stream_is_active,
2085 	.stream_allow = vmci_transport_stream_allow,
2086 	.notify_poll_in = vmci_transport_notify_poll_in,
2087 	.notify_poll_out = vmci_transport_notify_poll_out,
2088 	.notify_recv_init = vmci_transport_notify_recv_init,
2089 	.notify_recv_pre_block = vmci_transport_notify_recv_pre_block,
2090 	.notify_recv_pre_dequeue = vmci_transport_notify_recv_pre_dequeue,
2091 	.notify_recv_post_dequeue = vmci_transport_notify_recv_post_dequeue,
2092 	.notify_send_init = vmci_transport_notify_send_init,
2093 	.notify_send_pre_block = vmci_transport_notify_send_pre_block,
2094 	.notify_send_pre_enqueue = vmci_transport_notify_send_pre_enqueue,
2095 	.notify_send_post_enqueue = vmci_transport_notify_send_post_enqueue,
2096 	.shutdown = vmci_transport_shutdown,
2097 	.set_buffer_size = vmci_transport_set_buffer_size,
2098 	.set_min_buffer_size = vmci_transport_set_min_buffer_size,
2099 	.set_max_buffer_size = vmci_transport_set_max_buffer_size,
2100 	.get_buffer_size = vmci_transport_get_buffer_size,
2101 	.get_min_buffer_size = vmci_transport_get_min_buffer_size,
2102 	.get_max_buffer_size = vmci_transport_get_max_buffer_size,
2103 	.get_local_cid = vmci_transport_get_local_cid,
2104 };
2105 
2106 static int __init vmci_transport_init(void)
2107 {
2108 	int err;
2109 
2110 	/* Create the datagram handle that we will use to send and receive all
2111 	 * VSocket control messages for this context.
2112 	 */
2113 	err = vmci_transport_datagram_create_hnd(VMCI_TRANSPORT_PACKET_RID,
2114 						 VMCI_FLAG_ANYCID_DG_HND,
2115 						 vmci_transport_recv_stream_cb,
2116 						 NULL,
2117 						 &vmci_transport_stream_handle);
2118 	if (err < VMCI_SUCCESS) {
2119 		pr_err("Unable to create datagram handle. (%d)\n", err);
2120 		return vmci_transport_error_to_vsock_error(err);
2121 	}
2122 
2123 	err = vmci_event_subscribe(VMCI_EVENT_QP_RESUMED,
2124 				   vmci_transport_qp_resumed_cb,
2125 				   NULL, &vmci_transport_qp_resumed_sub_id);
2126 	if (err < VMCI_SUCCESS) {
2127 		pr_err("Unable to subscribe to resumed event. (%d)\n", err);
2128 		err = vmci_transport_error_to_vsock_error(err);
2129 		vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
2130 		goto err_destroy_stream_handle;
2131 	}
2132 
2133 	err = vsock_core_init(&vmci_transport);
2134 	if (err < 0)
2135 		goto err_unsubscribe;
2136 
2137 	return 0;
2138 
2139 err_unsubscribe:
2140 	vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id);
2141 err_destroy_stream_handle:
2142 	vmci_datagram_destroy_handle(vmci_transport_stream_handle);
2143 	return err;
2144 }
2145 module_init(vmci_transport_init);
2146 
2147 static void __exit vmci_transport_exit(void)
2148 {
2149 	if (!vmci_handle_is_invalid(vmci_transport_stream_handle)) {
2150 		if (vmci_datagram_destroy_handle(
2151 			vmci_transport_stream_handle) != VMCI_SUCCESS)
2152 			pr_err("Couldn't destroy datagram handle\n");
2153 		vmci_transport_stream_handle = VMCI_INVALID_HANDLE;
2154 	}
2155 
2156 	if (vmci_transport_qp_resumed_sub_id != VMCI_INVALID_ID) {
2157 		vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id);
2158 		vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
2159 	}
2160 
2161 	vsock_core_exit();
2162 }
2163 module_exit(vmci_transport_exit);
2164 
2165 MODULE_AUTHOR("VMware, Inc.");
2166 MODULE_DESCRIPTION("VMCI transport for Virtual Sockets");
2167 MODULE_LICENSE("GPL v2");
2168 MODULE_ALIAS("vmware_vsock");
2169 MODULE_ALIAS_NETPROTO(PF_VSOCK);
2170