1 /*
2  * VMware vSockets Driver
3  *
4  * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published by the Free
8  * Software Foundation version 2 and no later version.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  */
15 
16 #include <linux/types.h>
17 #include <linux/bitops.h>
18 #include <linux/cred.h>
19 #include <linux/init.h>
20 #include <linux/io.h>
21 #include <linux/kernel.h>
22 #include <linux/kmod.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/net.h>
27 #include <linux/poll.h>
28 #include <linux/skbuff.h>
29 #include <linux/smp.h>
30 #include <linux/socket.h>
31 #include <linux/stddef.h>
32 #include <linux/unistd.h>
33 #include <linux/wait.h>
34 #include <linux/workqueue.h>
35 #include <net/sock.h>
36 #include <net/af_vsock.h>
37 
38 #include "vmci_transport_notify.h"
39 
40 static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg);
41 static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg);
42 static void vmci_transport_peer_detach_cb(u32 sub_id,
43 					  const struct vmci_event_data *ed,
44 					  void *client_data);
45 static void vmci_transport_recv_pkt_work(struct work_struct *work);
46 static void vmci_transport_cleanup(struct work_struct *work);
47 static int vmci_transport_recv_listen(struct sock *sk,
48 				      struct vmci_transport_packet *pkt);
49 static int vmci_transport_recv_connecting_server(
50 					struct sock *sk,
51 					struct sock *pending,
52 					struct vmci_transport_packet *pkt);
53 static int vmci_transport_recv_connecting_client(
54 					struct sock *sk,
55 					struct vmci_transport_packet *pkt);
56 static int vmci_transport_recv_connecting_client_negotiate(
57 					struct sock *sk,
58 					struct vmci_transport_packet *pkt);
59 static int vmci_transport_recv_connecting_client_invalid(
60 					struct sock *sk,
61 					struct vmci_transport_packet *pkt);
62 static int vmci_transport_recv_connected(struct sock *sk,
63 					 struct vmci_transport_packet *pkt);
64 static bool vmci_transport_old_proto_override(bool *old_pkt_proto);
65 static u16 vmci_transport_new_proto_supported_versions(void);
66 static bool vmci_transport_proto_to_notify_struct(struct sock *sk, u16 *proto,
67 						  bool old_pkt_proto);
68 
69 struct vmci_transport_recv_pkt_info {
70 	struct work_struct work;
71 	struct sock *sk;
72 	struct vmci_transport_packet pkt;
73 };
74 
75 static LIST_HEAD(vmci_transport_cleanup_list);
76 static DEFINE_SPINLOCK(vmci_transport_cleanup_lock);
77 static DECLARE_WORK(vmci_transport_cleanup_work, vmci_transport_cleanup);
78 
79 static struct vmci_handle vmci_transport_stream_handle = { VMCI_INVALID_ID,
80 							   VMCI_INVALID_ID };
81 static u32 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
82 
83 static int PROTOCOL_OVERRIDE = -1;
84 
85 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE_MIN   128
86 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE       262144
87 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE_MAX   262144
88 
89 /* The default peer timeout indicates how long we will wait for a peer response
90  * to a control message.
91  */
92 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
93 
94 /* Helper function to convert from a VMCI error code to a VSock error code. */
95 
96 static s32 vmci_transport_error_to_vsock_error(s32 vmci_error)
97 {
98 	switch (vmci_error) {
99 	case VMCI_ERROR_NO_MEM:
100 		return -ENOMEM;
101 	case VMCI_ERROR_DUPLICATE_ENTRY:
102 	case VMCI_ERROR_ALREADY_EXISTS:
103 		return -EADDRINUSE;
104 	case VMCI_ERROR_NO_ACCESS:
105 		return -EPERM;
106 	case VMCI_ERROR_NO_RESOURCES:
107 		return -ENOBUFS;
108 	case VMCI_ERROR_INVALID_RESOURCE:
109 		return -EHOSTUNREACH;
110 	case VMCI_ERROR_INVALID_ARGS:
111 	default:
112 		break;
113 	}
114 	return -EINVAL;
115 }
116 
117 static u32 vmci_transport_peer_rid(u32 peer_cid)
118 {
119 	if (VMADDR_CID_HYPERVISOR == peer_cid)
120 		return VMCI_TRANSPORT_HYPERVISOR_PACKET_RID;
121 
122 	return VMCI_TRANSPORT_PACKET_RID;
123 }
124 
125 static inline void
126 vmci_transport_packet_init(struct vmci_transport_packet *pkt,
127 			   struct sockaddr_vm *src,
128 			   struct sockaddr_vm *dst,
129 			   u8 type,
130 			   u64 size,
131 			   u64 mode,
132 			   struct vmci_transport_waiting_info *wait,
133 			   u16 proto,
134 			   struct vmci_handle handle)
135 {
136 	/* We register the stream control handler as an any cid handle so we
137 	 * must always send from a source address of VMADDR_CID_ANY
138 	 */
139 	pkt->dg.src = vmci_make_handle(VMADDR_CID_ANY,
140 				       VMCI_TRANSPORT_PACKET_RID);
141 	pkt->dg.dst = vmci_make_handle(dst->svm_cid,
142 				       vmci_transport_peer_rid(dst->svm_cid));
143 	pkt->dg.payload_size = sizeof(*pkt) - sizeof(pkt->dg);
144 	pkt->version = VMCI_TRANSPORT_PACKET_VERSION;
145 	pkt->type = type;
146 	pkt->src_port = src->svm_port;
147 	pkt->dst_port = dst->svm_port;
148 	memset(&pkt->proto, 0, sizeof(pkt->proto));
149 	memset(&pkt->_reserved2, 0, sizeof(pkt->_reserved2));
150 
151 	switch (pkt->type) {
152 	case VMCI_TRANSPORT_PACKET_TYPE_INVALID:
153 		pkt->u.size = 0;
154 		break;
155 
156 	case VMCI_TRANSPORT_PACKET_TYPE_REQUEST:
157 	case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE:
158 		pkt->u.size = size;
159 		break;
160 
161 	case VMCI_TRANSPORT_PACKET_TYPE_OFFER:
162 	case VMCI_TRANSPORT_PACKET_TYPE_ATTACH:
163 		pkt->u.handle = handle;
164 		break;
165 
166 	case VMCI_TRANSPORT_PACKET_TYPE_WROTE:
167 	case VMCI_TRANSPORT_PACKET_TYPE_READ:
168 	case VMCI_TRANSPORT_PACKET_TYPE_RST:
169 		pkt->u.size = 0;
170 		break;
171 
172 	case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN:
173 		pkt->u.mode = mode;
174 		break;
175 
176 	case VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ:
177 	case VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE:
178 		memcpy(&pkt->u.wait, wait, sizeof(pkt->u.wait));
179 		break;
180 
181 	case VMCI_TRANSPORT_PACKET_TYPE_REQUEST2:
182 	case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2:
183 		pkt->u.size = size;
184 		pkt->proto = proto;
185 		break;
186 	}
187 }
188 
189 static inline void
190 vmci_transport_packet_get_addresses(struct vmci_transport_packet *pkt,
191 				    struct sockaddr_vm *local,
192 				    struct sockaddr_vm *remote)
193 {
194 	vsock_addr_init(local, pkt->dg.dst.context, pkt->dst_port);
195 	vsock_addr_init(remote, pkt->dg.src.context, pkt->src_port);
196 }
197 
198 static int
199 __vmci_transport_send_control_pkt(struct vmci_transport_packet *pkt,
200 				  struct sockaddr_vm *src,
201 				  struct sockaddr_vm *dst,
202 				  enum vmci_transport_packet_type type,
203 				  u64 size,
204 				  u64 mode,
205 				  struct vmci_transport_waiting_info *wait,
206 				  u16 proto,
207 				  struct vmci_handle handle,
208 				  bool convert_error)
209 {
210 	int err;
211 
212 	vmci_transport_packet_init(pkt, src, dst, type, size, mode, wait,
213 				   proto, handle);
214 	err = vmci_datagram_send(&pkt->dg);
215 	if (convert_error && (err < 0))
216 		return vmci_transport_error_to_vsock_error(err);
217 
218 	return err;
219 }
220 
221 static int
222 vmci_transport_reply_control_pkt_fast(struct vmci_transport_packet *pkt,
223 				      enum vmci_transport_packet_type type,
224 				      u64 size,
225 				      u64 mode,
226 				      struct vmci_transport_waiting_info *wait,
227 				      struct vmci_handle handle)
228 {
229 	struct vmci_transport_packet reply;
230 	struct sockaddr_vm src, dst;
231 
232 	if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST) {
233 		return 0;
234 	} else {
235 		vmci_transport_packet_get_addresses(pkt, &src, &dst);
236 		return __vmci_transport_send_control_pkt(&reply, &src, &dst,
237 							 type,
238 							 size, mode, wait,
239 							 VSOCK_PROTO_INVALID,
240 							 handle, true);
241 	}
242 }
243 
244 static int
245 vmci_transport_send_control_pkt_bh(struct sockaddr_vm *src,
246 				   struct sockaddr_vm *dst,
247 				   enum vmci_transport_packet_type type,
248 				   u64 size,
249 				   u64 mode,
250 				   struct vmci_transport_waiting_info *wait,
251 				   struct vmci_handle handle)
252 {
253 	/* Note that it is safe to use a single packet across all CPUs since
254 	 * two tasklets of the same type are guaranteed to not ever run
255 	 * simultaneously. If that ever changes, or VMCI stops using tasklets,
256 	 * we can use per-cpu packets.
257 	 */
258 	static struct vmci_transport_packet pkt;
259 
260 	return __vmci_transport_send_control_pkt(&pkt, src, dst, type,
261 						 size, mode, wait,
262 						 VSOCK_PROTO_INVALID, handle,
263 						 false);
264 }
265 
266 static int
267 vmci_transport_alloc_send_control_pkt(struct sockaddr_vm *src,
268 				      struct sockaddr_vm *dst,
269 				      enum vmci_transport_packet_type type,
270 				      u64 size,
271 				      u64 mode,
272 				      struct vmci_transport_waiting_info *wait,
273 				      u16 proto,
274 				      struct vmci_handle handle)
275 {
276 	struct vmci_transport_packet *pkt;
277 	int err;
278 
279 	pkt = kmalloc(sizeof(*pkt), GFP_KERNEL);
280 	if (!pkt)
281 		return -ENOMEM;
282 
283 	err = __vmci_transport_send_control_pkt(pkt, src, dst, type, size,
284 						mode, wait, proto, handle,
285 						true);
286 	kfree(pkt);
287 
288 	return err;
289 }
290 
291 static int
292 vmci_transport_send_control_pkt(struct sock *sk,
293 				enum vmci_transport_packet_type type,
294 				u64 size,
295 				u64 mode,
296 				struct vmci_transport_waiting_info *wait,
297 				u16 proto,
298 				struct vmci_handle handle)
299 {
300 	struct vsock_sock *vsk;
301 
302 	vsk = vsock_sk(sk);
303 
304 	if (!vsock_addr_bound(&vsk->local_addr))
305 		return -EINVAL;
306 
307 	if (!vsock_addr_bound(&vsk->remote_addr))
308 		return -EINVAL;
309 
310 	return vmci_transport_alloc_send_control_pkt(&vsk->local_addr,
311 						     &vsk->remote_addr,
312 						     type, size, mode,
313 						     wait, proto, handle);
314 }
315 
316 static int vmci_transport_send_reset_bh(struct sockaddr_vm *dst,
317 					struct sockaddr_vm *src,
318 					struct vmci_transport_packet *pkt)
319 {
320 	if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST)
321 		return 0;
322 	return vmci_transport_send_control_pkt_bh(
323 					dst, src,
324 					VMCI_TRANSPORT_PACKET_TYPE_RST, 0,
325 					0, NULL, VMCI_INVALID_HANDLE);
326 }
327 
328 static int vmci_transport_send_reset(struct sock *sk,
329 				     struct vmci_transport_packet *pkt)
330 {
331 	struct sockaddr_vm *dst_ptr;
332 	struct sockaddr_vm dst;
333 	struct vsock_sock *vsk;
334 
335 	if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST)
336 		return 0;
337 
338 	vsk = vsock_sk(sk);
339 
340 	if (!vsock_addr_bound(&vsk->local_addr))
341 		return -EINVAL;
342 
343 	if (vsock_addr_bound(&vsk->remote_addr)) {
344 		dst_ptr = &vsk->remote_addr;
345 	} else {
346 		vsock_addr_init(&dst, pkt->dg.src.context,
347 				pkt->src_port);
348 		dst_ptr = &dst;
349 	}
350 	return vmci_transport_alloc_send_control_pkt(&vsk->local_addr, dst_ptr,
351 					     VMCI_TRANSPORT_PACKET_TYPE_RST,
352 					     0, 0, NULL, VSOCK_PROTO_INVALID,
353 					     VMCI_INVALID_HANDLE);
354 }
355 
356 static int vmci_transport_send_negotiate(struct sock *sk, size_t size)
357 {
358 	return vmci_transport_send_control_pkt(
359 					sk,
360 					VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE,
361 					size, 0, NULL,
362 					VSOCK_PROTO_INVALID,
363 					VMCI_INVALID_HANDLE);
364 }
365 
366 static int vmci_transport_send_negotiate2(struct sock *sk, size_t size,
367 					  u16 version)
368 {
369 	return vmci_transport_send_control_pkt(
370 					sk,
371 					VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2,
372 					size, 0, NULL, version,
373 					VMCI_INVALID_HANDLE);
374 }
375 
376 static int vmci_transport_send_qp_offer(struct sock *sk,
377 					struct vmci_handle handle)
378 {
379 	return vmci_transport_send_control_pkt(
380 					sk, VMCI_TRANSPORT_PACKET_TYPE_OFFER, 0,
381 					0, NULL,
382 					VSOCK_PROTO_INVALID, handle);
383 }
384 
385 static int vmci_transport_send_attach(struct sock *sk,
386 				      struct vmci_handle handle)
387 {
388 	return vmci_transport_send_control_pkt(
389 					sk, VMCI_TRANSPORT_PACKET_TYPE_ATTACH,
390 					0, 0, NULL, VSOCK_PROTO_INVALID,
391 					handle);
392 }
393 
394 static int vmci_transport_reply_reset(struct vmci_transport_packet *pkt)
395 {
396 	return vmci_transport_reply_control_pkt_fast(
397 						pkt,
398 						VMCI_TRANSPORT_PACKET_TYPE_RST,
399 						0, 0, NULL,
400 						VMCI_INVALID_HANDLE);
401 }
402 
403 static int vmci_transport_send_invalid_bh(struct sockaddr_vm *dst,
404 					  struct sockaddr_vm *src)
405 {
406 	return vmci_transport_send_control_pkt_bh(
407 					dst, src,
408 					VMCI_TRANSPORT_PACKET_TYPE_INVALID,
409 					0, 0, NULL, VMCI_INVALID_HANDLE);
410 }
411 
412 int vmci_transport_send_wrote_bh(struct sockaddr_vm *dst,
413 				 struct sockaddr_vm *src)
414 {
415 	return vmci_transport_send_control_pkt_bh(
416 					dst, src,
417 					VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0,
418 					0, NULL, VMCI_INVALID_HANDLE);
419 }
420 
421 int vmci_transport_send_read_bh(struct sockaddr_vm *dst,
422 				struct sockaddr_vm *src)
423 {
424 	return vmci_transport_send_control_pkt_bh(
425 					dst, src,
426 					VMCI_TRANSPORT_PACKET_TYPE_READ, 0,
427 					0, NULL, VMCI_INVALID_HANDLE);
428 }
429 
430 int vmci_transport_send_wrote(struct sock *sk)
431 {
432 	return vmci_transport_send_control_pkt(
433 					sk, VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0,
434 					0, NULL, VSOCK_PROTO_INVALID,
435 					VMCI_INVALID_HANDLE);
436 }
437 
438 int vmci_transport_send_read(struct sock *sk)
439 {
440 	return vmci_transport_send_control_pkt(
441 					sk, VMCI_TRANSPORT_PACKET_TYPE_READ, 0,
442 					0, NULL, VSOCK_PROTO_INVALID,
443 					VMCI_INVALID_HANDLE);
444 }
445 
446 int vmci_transport_send_waiting_write(struct sock *sk,
447 				      struct vmci_transport_waiting_info *wait)
448 {
449 	return vmci_transport_send_control_pkt(
450 				sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE,
451 				0, 0, wait, VSOCK_PROTO_INVALID,
452 				VMCI_INVALID_HANDLE);
453 }
454 
455 int vmci_transport_send_waiting_read(struct sock *sk,
456 				     struct vmci_transport_waiting_info *wait)
457 {
458 	return vmci_transport_send_control_pkt(
459 				sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ,
460 				0, 0, wait, VSOCK_PROTO_INVALID,
461 				VMCI_INVALID_HANDLE);
462 }
463 
464 static int vmci_transport_shutdown(struct vsock_sock *vsk, int mode)
465 {
466 	return vmci_transport_send_control_pkt(
467 					&vsk->sk,
468 					VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN,
469 					0, mode, NULL,
470 					VSOCK_PROTO_INVALID,
471 					VMCI_INVALID_HANDLE);
472 }
473 
474 static int vmci_transport_send_conn_request(struct sock *sk, size_t size)
475 {
476 	return vmci_transport_send_control_pkt(sk,
477 					VMCI_TRANSPORT_PACKET_TYPE_REQUEST,
478 					size, 0, NULL,
479 					VSOCK_PROTO_INVALID,
480 					VMCI_INVALID_HANDLE);
481 }
482 
483 static int vmci_transport_send_conn_request2(struct sock *sk, size_t size,
484 					     u16 version)
485 {
486 	return vmci_transport_send_control_pkt(
487 					sk, VMCI_TRANSPORT_PACKET_TYPE_REQUEST2,
488 					size, 0, NULL, version,
489 					VMCI_INVALID_HANDLE);
490 }
491 
492 static struct sock *vmci_transport_get_pending(
493 					struct sock *listener,
494 					struct vmci_transport_packet *pkt)
495 {
496 	struct vsock_sock *vlistener;
497 	struct vsock_sock *vpending;
498 	struct sock *pending;
499 	struct sockaddr_vm src;
500 
501 	vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port);
502 
503 	vlistener = vsock_sk(listener);
504 
505 	list_for_each_entry(vpending, &vlistener->pending_links,
506 			    pending_links) {
507 		if (vsock_addr_equals_addr(&src, &vpending->remote_addr) &&
508 		    pkt->dst_port == vpending->local_addr.svm_port) {
509 			pending = sk_vsock(vpending);
510 			sock_hold(pending);
511 			goto found;
512 		}
513 	}
514 
515 	pending = NULL;
516 found:
517 	return pending;
518 
519 }
520 
521 static void vmci_transport_release_pending(struct sock *pending)
522 {
523 	sock_put(pending);
524 }
525 
526 /* We allow two kinds of sockets to communicate with a restricted VM: 1)
527  * trusted sockets 2) sockets from applications running as the same user as the
528  * VM (this is only true for the host side and only when using hosted products)
529  */
530 
531 static bool vmci_transport_is_trusted(struct vsock_sock *vsock, u32 peer_cid)
532 {
533 	return vsock->trusted ||
534 	       vmci_is_context_owner(peer_cid, vsock->owner->uid);
535 }
536 
537 /* We allow sending datagrams to and receiving datagrams from a restricted VM
538  * only if it is trusted as described in vmci_transport_is_trusted.
539  */
540 
541 static bool vmci_transport_allow_dgram(struct vsock_sock *vsock, u32 peer_cid)
542 {
543 	if (VMADDR_CID_HYPERVISOR == peer_cid)
544 		return true;
545 
546 	if (vsock->cached_peer != peer_cid) {
547 		vsock->cached_peer = peer_cid;
548 		if (!vmci_transport_is_trusted(vsock, peer_cid) &&
549 		    (vmci_context_get_priv_flags(peer_cid) &
550 		     VMCI_PRIVILEGE_FLAG_RESTRICTED)) {
551 			vsock->cached_peer_allow_dgram = false;
552 		} else {
553 			vsock->cached_peer_allow_dgram = true;
554 		}
555 	}
556 
557 	return vsock->cached_peer_allow_dgram;
558 }
559 
560 static int
561 vmci_transport_queue_pair_alloc(struct vmci_qp **qpair,
562 				struct vmci_handle *handle,
563 				u64 produce_size,
564 				u64 consume_size,
565 				u32 peer, u32 flags, bool trusted)
566 {
567 	int err = 0;
568 
569 	if (trusted) {
570 		/* Try to allocate our queue pair as trusted. This will only
571 		 * work if vsock is running in the host.
572 		 */
573 
574 		err = vmci_qpair_alloc(qpair, handle, produce_size,
575 				       consume_size,
576 				       peer, flags,
577 				       VMCI_PRIVILEGE_FLAG_TRUSTED);
578 		if (err != VMCI_ERROR_NO_ACCESS)
579 			goto out;
580 
581 	}
582 
583 	err = vmci_qpair_alloc(qpair, handle, produce_size, consume_size,
584 			       peer, flags, VMCI_NO_PRIVILEGE_FLAGS);
585 out:
586 	if (err < 0) {
587 		pr_err("Could not attach to queue pair with %d\n",
588 		       err);
589 		err = vmci_transport_error_to_vsock_error(err);
590 	}
591 
592 	return err;
593 }
594 
595 static int
596 vmci_transport_datagram_create_hnd(u32 resource_id,
597 				   u32 flags,
598 				   vmci_datagram_recv_cb recv_cb,
599 				   void *client_data,
600 				   struct vmci_handle *out_handle)
601 {
602 	int err = 0;
603 
604 	/* Try to allocate our datagram handler as trusted. This will only work
605 	 * if vsock is running in the host.
606 	 */
607 
608 	err = vmci_datagram_create_handle_priv(resource_id, flags,
609 					       VMCI_PRIVILEGE_FLAG_TRUSTED,
610 					       recv_cb,
611 					       client_data, out_handle);
612 
613 	if (err == VMCI_ERROR_NO_ACCESS)
614 		err = vmci_datagram_create_handle(resource_id, flags,
615 						  recv_cb, client_data,
616 						  out_handle);
617 
618 	return err;
619 }
620 
621 /* This is invoked as part of a tasklet that's scheduled when the VMCI
622  * interrupt fires.  This is run in bottom-half context and if it ever needs to
623  * sleep it should defer that work to a work queue.
624  */
625 
626 static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg)
627 {
628 	struct sock *sk;
629 	size_t size;
630 	struct sk_buff *skb;
631 	struct vsock_sock *vsk;
632 
633 	sk = (struct sock *)data;
634 
635 	/* This handler is privileged when this module is running on the host.
636 	 * We will get datagrams from all endpoints (even VMs that are in a
637 	 * restricted context). If we get one from a restricted context then
638 	 * the destination socket must be trusted.
639 	 *
640 	 * NOTE: We access the socket struct without holding the lock here.
641 	 * This is ok because the field we are interested is never modified
642 	 * outside of the create and destruct socket functions.
643 	 */
644 	vsk = vsock_sk(sk);
645 	if (!vmci_transport_allow_dgram(vsk, dg->src.context))
646 		return VMCI_ERROR_NO_ACCESS;
647 
648 	size = VMCI_DG_SIZE(dg);
649 
650 	/* Attach the packet to the socket's receive queue as an sk_buff. */
651 	skb = alloc_skb(size, GFP_ATOMIC);
652 	if (!skb)
653 		return VMCI_ERROR_NO_MEM;
654 
655 	/* sk_receive_skb() will do a sock_put(), so hold here. */
656 	sock_hold(sk);
657 	skb_put(skb, size);
658 	memcpy(skb->data, dg, size);
659 	sk_receive_skb(sk, skb, 0);
660 
661 	return VMCI_SUCCESS;
662 }
663 
664 static bool vmci_transport_stream_allow(u32 cid, u32 port)
665 {
666 	static const u32 non_socket_contexts[] = {
667 		VMADDR_CID_RESERVED,
668 	};
669 	int i;
670 
671 	BUILD_BUG_ON(sizeof(cid) != sizeof(*non_socket_contexts));
672 
673 	for (i = 0; i < ARRAY_SIZE(non_socket_contexts); i++) {
674 		if (cid == non_socket_contexts[i])
675 			return false;
676 	}
677 
678 	return true;
679 }
680 
681 /* This is invoked as part of a tasklet that's scheduled when the VMCI
682  * interrupt fires.  This is run in bottom-half context but it defers most of
683  * its work to the packet handling work queue.
684  */
685 
686 static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg)
687 {
688 	struct sock *sk;
689 	struct sockaddr_vm dst;
690 	struct sockaddr_vm src;
691 	struct vmci_transport_packet *pkt;
692 	struct vsock_sock *vsk;
693 	bool bh_process_pkt;
694 	int err;
695 
696 	sk = NULL;
697 	err = VMCI_SUCCESS;
698 	bh_process_pkt = false;
699 
700 	/* Ignore incoming packets from contexts without sockets, or resources
701 	 * that aren't vsock implementations.
702 	 */
703 
704 	if (!vmci_transport_stream_allow(dg->src.context, -1)
705 	    || vmci_transport_peer_rid(dg->src.context) != dg->src.resource)
706 		return VMCI_ERROR_NO_ACCESS;
707 
708 	if (VMCI_DG_SIZE(dg) < sizeof(*pkt))
709 		/* Drop datagrams that do not contain full VSock packets. */
710 		return VMCI_ERROR_INVALID_ARGS;
711 
712 	pkt = (struct vmci_transport_packet *)dg;
713 
714 	/* Find the socket that should handle this packet.  First we look for a
715 	 * connected socket and if there is none we look for a socket bound to
716 	 * the destintation address.
717 	 */
718 	vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port);
719 	vsock_addr_init(&dst, pkt->dg.dst.context, pkt->dst_port);
720 
721 	sk = vsock_find_connected_socket(&src, &dst);
722 	if (!sk) {
723 		sk = vsock_find_bound_socket(&dst);
724 		if (!sk) {
725 			/* We could not find a socket for this specified
726 			 * address.  If this packet is a RST, we just drop it.
727 			 * If it is another packet, we send a RST.  Note that
728 			 * we do not send a RST reply to RSTs so that we do not
729 			 * continually send RSTs between two endpoints.
730 			 *
731 			 * Note that since this is a reply, dst is src and src
732 			 * is dst.
733 			 */
734 			if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0)
735 				pr_err("unable to send reset\n");
736 
737 			err = VMCI_ERROR_NOT_FOUND;
738 			goto out;
739 		}
740 	}
741 
742 	/* If the received packet type is beyond all types known to this
743 	 * implementation, reply with an invalid message.  Hopefully this will
744 	 * help when implementing backwards compatibility in the future.
745 	 */
746 	if (pkt->type >= VMCI_TRANSPORT_PACKET_TYPE_MAX) {
747 		vmci_transport_send_invalid_bh(&dst, &src);
748 		err = VMCI_ERROR_INVALID_ARGS;
749 		goto out;
750 	}
751 
752 	/* This handler is privileged when this module is running on the host.
753 	 * We will get datagram connect requests from all endpoints (even VMs
754 	 * that are in a restricted context). If we get one from a restricted
755 	 * context then the destination socket must be trusted.
756 	 *
757 	 * NOTE: We access the socket struct without holding the lock here.
758 	 * This is ok because the field we are interested is never modified
759 	 * outside of the create and destruct socket functions.
760 	 */
761 	vsk = vsock_sk(sk);
762 	if (!vmci_transport_allow_dgram(vsk, pkt->dg.src.context)) {
763 		err = VMCI_ERROR_NO_ACCESS;
764 		goto out;
765 	}
766 
767 	/* We do most everything in a work queue, but let's fast path the
768 	 * notification of reads and writes to help data transfer performance.
769 	 * We can only do this if there is no process context code executing
770 	 * for this socket since that may change the state.
771 	 */
772 	bh_lock_sock(sk);
773 
774 	if (!sock_owned_by_user(sk)) {
775 		/* The local context ID may be out of date, update it. */
776 		vsk->local_addr.svm_cid = dst.svm_cid;
777 
778 		if (sk->sk_state == TCP_ESTABLISHED)
779 			vmci_trans(vsk)->notify_ops->handle_notify_pkt(
780 					sk, pkt, true, &dst, &src,
781 					&bh_process_pkt);
782 	}
783 
784 	bh_unlock_sock(sk);
785 
786 	if (!bh_process_pkt) {
787 		struct vmci_transport_recv_pkt_info *recv_pkt_info;
788 
789 		recv_pkt_info = kmalloc(sizeof(*recv_pkt_info), GFP_ATOMIC);
790 		if (!recv_pkt_info) {
791 			if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0)
792 				pr_err("unable to send reset\n");
793 
794 			err = VMCI_ERROR_NO_MEM;
795 			goto out;
796 		}
797 
798 		recv_pkt_info->sk = sk;
799 		memcpy(&recv_pkt_info->pkt, pkt, sizeof(recv_pkt_info->pkt));
800 		INIT_WORK(&recv_pkt_info->work, vmci_transport_recv_pkt_work);
801 
802 		schedule_work(&recv_pkt_info->work);
803 		/* Clear sk so that the reference count incremented by one of
804 		 * the Find functions above is not decremented below.  We need
805 		 * that reference count for the packet handler we've scheduled
806 		 * to run.
807 		 */
808 		sk = NULL;
809 	}
810 
811 out:
812 	if (sk)
813 		sock_put(sk);
814 
815 	return err;
816 }
817 
818 static void vmci_transport_handle_detach(struct sock *sk)
819 {
820 	struct vsock_sock *vsk;
821 
822 	vsk = vsock_sk(sk);
823 	if (!vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)) {
824 		sock_set_flag(sk, SOCK_DONE);
825 
826 		/* On a detach the peer will not be sending or receiving
827 		 * anymore.
828 		 */
829 		vsk->peer_shutdown = SHUTDOWN_MASK;
830 
831 		/* We should not be sending anymore since the peer won't be
832 		 * there to receive, but we can still receive if there is data
833 		 * left in our consume queue. If the local endpoint is a host,
834 		 * we can't call vsock_stream_has_data, since that may block,
835 		 * but a host endpoint can't read data once the VM has
836 		 * detached, so there is no available data in that case.
837 		 */
838 		if (vsk->local_addr.svm_cid == VMADDR_CID_HOST ||
839 		    vsock_stream_has_data(vsk) <= 0) {
840 			if (sk->sk_state == TCP_SYN_SENT) {
841 				/* The peer may detach from a queue pair while
842 				 * we are still in the connecting state, i.e.,
843 				 * if the peer VM is killed after attaching to
844 				 * a queue pair, but before we complete the
845 				 * handshake. In that case, we treat the detach
846 				 * event like a reset.
847 				 */
848 
849 				sk->sk_state = TCP_CLOSE;
850 				sk->sk_err = ECONNRESET;
851 				sk->sk_error_report(sk);
852 				return;
853 			}
854 			sk->sk_state = TCP_CLOSE;
855 		}
856 		sk->sk_state_change(sk);
857 	}
858 }
859 
860 static void vmci_transport_peer_detach_cb(u32 sub_id,
861 					  const struct vmci_event_data *e_data,
862 					  void *client_data)
863 {
864 	struct vmci_transport *trans = client_data;
865 	const struct vmci_event_payload_qp *e_payload;
866 
867 	e_payload = vmci_event_data_const_payload(e_data);
868 
869 	/* XXX This is lame, we should provide a way to lookup sockets by
870 	 * qp_handle.
871 	 */
872 	if (vmci_handle_is_invalid(e_payload->handle) ||
873 	    !vmci_handle_is_equal(trans->qp_handle, e_payload->handle))
874 		return;
875 
876 	/* We don't ask for delayed CBs when we subscribe to this event (we
877 	 * pass 0 as flags to vmci_event_subscribe()).  VMCI makes no
878 	 * guarantees in that case about what context we might be running in,
879 	 * so it could be BH or process, blockable or non-blockable.  So we
880 	 * need to account for all possible contexts here.
881 	 */
882 	spin_lock_bh(&trans->lock);
883 	if (!trans->sk)
884 		goto out;
885 
886 	/* Apart from here, trans->lock is only grabbed as part of sk destruct,
887 	 * where trans->sk isn't locked.
888 	 */
889 	bh_lock_sock(trans->sk);
890 
891 	vmci_transport_handle_detach(trans->sk);
892 
893 	bh_unlock_sock(trans->sk);
894  out:
895 	spin_unlock_bh(&trans->lock);
896 }
897 
898 static void vmci_transport_qp_resumed_cb(u32 sub_id,
899 					 const struct vmci_event_data *e_data,
900 					 void *client_data)
901 {
902 	vsock_for_each_connected_socket(vmci_transport_handle_detach);
903 }
904 
905 static void vmci_transport_recv_pkt_work(struct work_struct *work)
906 {
907 	struct vmci_transport_recv_pkt_info *recv_pkt_info;
908 	struct vmci_transport_packet *pkt;
909 	struct sock *sk;
910 
911 	recv_pkt_info =
912 		container_of(work, struct vmci_transport_recv_pkt_info, work);
913 	sk = recv_pkt_info->sk;
914 	pkt = &recv_pkt_info->pkt;
915 
916 	lock_sock(sk);
917 
918 	/* The local context ID may be out of date. */
919 	vsock_sk(sk)->local_addr.svm_cid = pkt->dg.dst.context;
920 
921 	switch (sk->sk_state) {
922 	case TCP_LISTEN:
923 		vmci_transport_recv_listen(sk, pkt);
924 		break;
925 	case TCP_SYN_SENT:
926 		/* Processing of pending connections for servers goes through
927 		 * the listening socket, so see vmci_transport_recv_listen()
928 		 * for that path.
929 		 */
930 		vmci_transport_recv_connecting_client(sk, pkt);
931 		break;
932 	case TCP_ESTABLISHED:
933 		vmci_transport_recv_connected(sk, pkt);
934 		break;
935 	default:
936 		/* Because this function does not run in the same context as
937 		 * vmci_transport_recv_stream_cb it is possible that the
938 		 * socket has closed. We need to let the other side know or it
939 		 * could be sitting in a connect and hang forever. Send a
940 		 * reset to prevent that.
941 		 */
942 		vmci_transport_send_reset(sk, pkt);
943 		break;
944 	}
945 
946 	release_sock(sk);
947 	kfree(recv_pkt_info);
948 	/* Release reference obtained in the stream callback when we fetched
949 	 * this socket out of the bound or connected list.
950 	 */
951 	sock_put(sk);
952 }
953 
954 static int vmci_transport_recv_listen(struct sock *sk,
955 				      struct vmci_transport_packet *pkt)
956 {
957 	struct sock *pending;
958 	struct vsock_sock *vpending;
959 	int err;
960 	u64 qp_size;
961 	bool old_request = false;
962 	bool old_pkt_proto = false;
963 
964 	err = 0;
965 
966 	/* Because we are in the listen state, we could be receiving a packet
967 	 * for ourself or any previous connection requests that we received.
968 	 * If it's the latter, we try to find a socket in our list of pending
969 	 * connections and, if we do, call the appropriate handler for the
970 	 * state that that socket is in.  Otherwise we try to service the
971 	 * connection request.
972 	 */
973 	pending = vmci_transport_get_pending(sk, pkt);
974 	if (pending) {
975 		lock_sock(pending);
976 
977 		/* The local context ID may be out of date. */
978 		vsock_sk(pending)->local_addr.svm_cid = pkt->dg.dst.context;
979 
980 		switch (pending->sk_state) {
981 		case TCP_SYN_SENT:
982 			err = vmci_transport_recv_connecting_server(sk,
983 								    pending,
984 								    pkt);
985 			break;
986 		default:
987 			vmci_transport_send_reset(pending, pkt);
988 			err = -EINVAL;
989 		}
990 
991 		if (err < 0)
992 			vsock_remove_pending(sk, pending);
993 
994 		release_sock(pending);
995 		vmci_transport_release_pending(pending);
996 
997 		return err;
998 	}
999 
1000 	/* The listen state only accepts connection requests.  Reply with a
1001 	 * reset unless we received a reset.
1002 	 */
1003 
1004 	if (!(pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST ||
1005 	      pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)) {
1006 		vmci_transport_reply_reset(pkt);
1007 		return -EINVAL;
1008 	}
1009 
1010 	if (pkt->u.size == 0) {
1011 		vmci_transport_reply_reset(pkt);
1012 		return -EINVAL;
1013 	}
1014 
1015 	/* If this socket can't accommodate this connection request, we send a
1016 	 * reset.  Otherwise we create and initialize a child socket and reply
1017 	 * with a connection negotiation.
1018 	 */
1019 	if (sk->sk_ack_backlog >= sk->sk_max_ack_backlog) {
1020 		vmci_transport_reply_reset(pkt);
1021 		return -ECONNREFUSED;
1022 	}
1023 
1024 	pending = __vsock_create(sock_net(sk), NULL, sk, GFP_KERNEL,
1025 				 sk->sk_type, 0);
1026 	if (!pending) {
1027 		vmci_transport_send_reset(sk, pkt);
1028 		return -ENOMEM;
1029 	}
1030 
1031 	vpending = vsock_sk(pending);
1032 
1033 	vsock_addr_init(&vpending->local_addr, pkt->dg.dst.context,
1034 			pkt->dst_port);
1035 	vsock_addr_init(&vpending->remote_addr, pkt->dg.src.context,
1036 			pkt->src_port);
1037 
1038 	/* If the proposed size fits within our min/max, accept it. Otherwise
1039 	 * propose our own size.
1040 	 */
1041 	if (pkt->u.size >= vmci_trans(vpending)->queue_pair_min_size &&
1042 	    pkt->u.size <= vmci_trans(vpending)->queue_pair_max_size) {
1043 		qp_size = pkt->u.size;
1044 	} else {
1045 		qp_size = vmci_trans(vpending)->queue_pair_size;
1046 	}
1047 
1048 	/* Figure out if we are using old or new requests based on the
1049 	 * overrides pkt types sent by our peer.
1050 	 */
1051 	if (vmci_transport_old_proto_override(&old_pkt_proto)) {
1052 		old_request = old_pkt_proto;
1053 	} else {
1054 		if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST)
1055 			old_request = true;
1056 		else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)
1057 			old_request = false;
1058 
1059 	}
1060 
1061 	if (old_request) {
1062 		/* Handle a REQUEST (or override) */
1063 		u16 version = VSOCK_PROTO_INVALID;
1064 		if (vmci_transport_proto_to_notify_struct(
1065 			pending, &version, true))
1066 			err = vmci_transport_send_negotiate(pending, qp_size);
1067 		else
1068 			err = -EINVAL;
1069 
1070 	} else {
1071 		/* Handle a REQUEST2 (or override) */
1072 		int proto_int = pkt->proto;
1073 		int pos;
1074 		u16 active_proto_version = 0;
1075 
1076 		/* The list of possible protocols is the intersection of all
1077 		 * protocols the client supports ... plus all the protocols we
1078 		 * support.
1079 		 */
1080 		proto_int &= vmci_transport_new_proto_supported_versions();
1081 
1082 		/* We choose the highest possible protocol version and use that
1083 		 * one.
1084 		 */
1085 		pos = fls(proto_int);
1086 		if (pos) {
1087 			active_proto_version = (1 << (pos - 1));
1088 			if (vmci_transport_proto_to_notify_struct(
1089 				pending, &active_proto_version, false))
1090 				err = vmci_transport_send_negotiate2(pending,
1091 							qp_size,
1092 							active_proto_version);
1093 			else
1094 				err = -EINVAL;
1095 
1096 		} else {
1097 			err = -EINVAL;
1098 		}
1099 	}
1100 
1101 	if (err < 0) {
1102 		vmci_transport_send_reset(sk, pkt);
1103 		sock_put(pending);
1104 		err = vmci_transport_error_to_vsock_error(err);
1105 		goto out;
1106 	}
1107 
1108 	vsock_add_pending(sk, pending);
1109 	sk->sk_ack_backlog++;
1110 
1111 	pending->sk_state = TCP_SYN_SENT;
1112 	vmci_trans(vpending)->produce_size =
1113 		vmci_trans(vpending)->consume_size = qp_size;
1114 	vmci_trans(vpending)->queue_pair_size = qp_size;
1115 
1116 	vmci_trans(vpending)->notify_ops->process_request(pending);
1117 
1118 	/* We might never receive another message for this socket and it's not
1119 	 * connected to any process, so we have to ensure it gets cleaned up
1120 	 * ourself.  Our delayed work function will take care of that.  Note
1121 	 * that we do not ever cancel this function since we have few
1122 	 * guarantees about its state when calling cancel_delayed_work().
1123 	 * Instead we hold a reference on the socket for that function and make
1124 	 * it capable of handling cases where it needs to do nothing but
1125 	 * release that reference.
1126 	 */
1127 	vpending->listener = sk;
1128 	sock_hold(sk);
1129 	sock_hold(pending);
1130 	schedule_delayed_work(&vpending->pending_work, HZ);
1131 
1132 out:
1133 	return err;
1134 }
1135 
1136 static int
1137 vmci_transport_recv_connecting_server(struct sock *listener,
1138 				      struct sock *pending,
1139 				      struct vmci_transport_packet *pkt)
1140 {
1141 	struct vsock_sock *vpending;
1142 	struct vmci_handle handle;
1143 	struct vmci_qp *qpair;
1144 	bool is_local;
1145 	u32 flags;
1146 	u32 detach_sub_id;
1147 	int err;
1148 	int skerr;
1149 
1150 	vpending = vsock_sk(pending);
1151 	detach_sub_id = VMCI_INVALID_ID;
1152 
1153 	switch (pkt->type) {
1154 	case VMCI_TRANSPORT_PACKET_TYPE_OFFER:
1155 		if (vmci_handle_is_invalid(pkt->u.handle)) {
1156 			vmci_transport_send_reset(pending, pkt);
1157 			skerr = EPROTO;
1158 			err = -EINVAL;
1159 			goto destroy;
1160 		}
1161 		break;
1162 	default:
1163 		/* Close and cleanup the connection. */
1164 		vmci_transport_send_reset(pending, pkt);
1165 		skerr = EPROTO;
1166 		err = pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST ? 0 : -EINVAL;
1167 		goto destroy;
1168 	}
1169 
1170 	/* In order to complete the connection we need to attach to the offered
1171 	 * queue pair and send an attach notification.  We also subscribe to the
1172 	 * detach event so we know when our peer goes away, and we do that
1173 	 * before attaching so we don't miss an event.  If all this succeeds,
1174 	 * we update our state and wakeup anything waiting in accept() for a
1175 	 * connection.
1176 	 */
1177 
1178 	/* We don't care about attach since we ensure the other side has
1179 	 * attached by specifying the ATTACH_ONLY flag below.
1180 	 */
1181 	err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH,
1182 				   vmci_transport_peer_detach_cb,
1183 				   vmci_trans(vpending), &detach_sub_id);
1184 	if (err < VMCI_SUCCESS) {
1185 		vmci_transport_send_reset(pending, pkt);
1186 		err = vmci_transport_error_to_vsock_error(err);
1187 		skerr = -err;
1188 		goto destroy;
1189 	}
1190 
1191 	vmci_trans(vpending)->detach_sub_id = detach_sub_id;
1192 
1193 	/* Now attach to the queue pair the client created. */
1194 	handle = pkt->u.handle;
1195 
1196 	/* vpending->local_addr always has a context id so we do not need to
1197 	 * worry about VMADDR_CID_ANY in this case.
1198 	 */
1199 	is_local =
1200 	    vpending->remote_addr.svm_cid == vpending->local_addr.svm_cid;
1201 	flags = VMCI_QPFLAG_ATTACH_ONLY;
1202 	flags |= is_local ? VMCI_QPFLAG_LOCAL : 0;
1203 
1204 	err = vmci_transport_queue_pair_alloc(
1205 					&qpair,
1206 					&handle,
1207 					vmci_trans(vpending)->produce_size,
1208 					vmci_trans(vpending)->consume_size,
1209 					pkt->dg.src.context,
1210 					flags,
1211 					vmci_transport_is_trusted(
1212 						vpending,
1213 						vpending->remote_addr.svm_cid));
1214 	if (err < 0) {
1215 		vmci_transport_send_reset(pending, pkt);
1216 		skerr = -err;
1217 		goto destroy;
1218 	}
1219 
1220 	vmci_trans(vpending)->qp_handle = handle;
1221 	vmci_trans(vpending)->qpair = qpair;
1222 
1223 	/* When we send the attach message, we must be ready to handle incoming
1224 	 * control messages on the newly connected socket. So we move the
1225 	 * pending socket to the connected state before sending the attach
1226 	 * message. Otherwise, an incoming packet triggered by the attach being
1227 	 * received by the peer may be processed concurrently with what happens
1228 	 * below after sending the attach message, and that incoming packet
1229 	 * will find the listening socket instead of the (currently) pending
1230 	 * socket. Note that enqueueing the socket increments the reference
1231 	 * count, so even if a reset comes before the connection is accepted,
1232 	 * the socket will be valid until it is removed from the queue.
1233 	 *
1234 	 * If we fail sending the attach below, we remove the socket from the
1235 	 * connected list and move the socket to TCP_CLOSE before
1236 	 * releasing the lock, so a pending slow path processing of an incoming
1237 	 * packet will not see the socket in the connected state in that case.
1238 	 */
1239 	pending->sk_state = TCP_ESTABLISHED;
1240 
1241 	vsock_insert_connected(vpending);
1242 
1243 	/* Notify our peer of our attach. */
1244 	err = vmci_transport_send_attach(pending, handle);
1245 	if (err < 0) {
1246 		vsock_remove_connected(vpending);
1247 		pr_err("Could not send attach\n");
1248 		vmci_transport_send_reset(pending, pkt);
1249 		err = vmci_transport_error_to_vsock_error(err);
1250 		skerr = -err;
1251 		goto destroy;
1252 	}
1253 
1254 	/* We have a connection. Move the now connected socket from the
1255 	 * listener's pending list to the accept queue so callers of accept()
1256 	 * can find it.
1257 	 */
1258 	vsock_remove_pending(listener, pending);
1259 	vsock_enqueue_accept(listener, pending);
1260 
1261 	/* Callers of accept() will be be waiting on the listening socket, not
1262 	 * the pending socket.
1263 	 */
1264 	listener->sk_data_ready(listener);
1265 
1266 	return 0;
1267 
1268 destroy:
1269 	pending->sk_err = skerr;
1270 	pending->sk_state = TCP_CLOSE;
1271 	/* As long as we drop our reference, all necessary cleanup will handle
1272 	 * when the cleanup function drops its reference and our destruct
1273 	 * implementation is called.  Note that since the listen handler will
1274 	 * remove pending from the pending list upon our failure, the cleanup
1275 	 * function won't drop the additional reference, which is why we do it
1276 	 * here.
1277 	 */
1278 	sock_put(pending);
1279 
1280 	return err;
1281 }
1282 
1283 static int
1284 vmci_transport_recv_connecting_client(struct sock *sk,
1285 				      struct vmci_transport_packet *pkt)
1286 {
1287 	struct vsock_sock *vsk;
1288 	int err;
1289 	int skerr;
1290 
1291 	vsk = vsock_sk(sk);
1292 
1293 	switch (pkt->type) {
1294 	case VMCI_TRANSPORT_PACKET_TYPE_ATTACH:
1295 		if (vmci_handle_is_invalid(pkt->u.handle) ||
1296 		    !vmci_handle_is_equal(pkt->u.handle,
1297 					  vmci_trans(vsk)->qp_handle)) {
1298 			skerr = EPROTO;
1299 			err = -EINVAL;
1300 			goto destroy;
1301 		}
1302 
1303 		/* Signify the socket is connected and wakeup the waiter in
1304 		 * connect(). Also place the socket in the connected table for
1305 		 * accounting (it can already be found since it's in the bound
1306 		 * table).
1307 		 */
1308 		sk->sk_state = TCP_ESTABLISHED;
1309 		sk->sk_socket->state = SS_CONNECTED;
1310 		vsock_insert_connected(vsk);
1311 		sk->sk_state_change(sk);
1312 
1313 		break;
1314 	case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE:
1315 	case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2:
1316 		if (pkt->u.size == 0
1317 		    || pkt->dg.src.context != vsk->remote_addr.svm_cid
1318 		    || pkt->src_port != vsk->remote_addr.svm_port
1319 		    || !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)
1320 		    || vmci_trans(vsk)->qpair
1321 		    || vmci_trans(vsk)->produce_size != 0
1322 		    || vmci_trans(vsk)->consume_size != 0
1323 		    || vmci_trans(vsk)->detach_sub_id != VMCI_INVALID_ID) {
1324 			skerr = EPROTO;
1325 			err = -EINVAL;
1326 
1327 			goto destroy;
1328 		}
1329 
1330 		err = vmci_transport_recv_connecting_client_negotiate(sk, pkt);
1331 		if (err) {
1332 			skerr = -err;
1333 			goto destroy;
1334 		}
1335 
1336 		break;
1337 	case VMCI_TRANSPORT_PACKET_TYPE_INVALID:
1338 		err = vmci_transport_recv_connecting_client_invalid(sk, pkt);
1339 		if (err) {
1340 			skerr = -err;
1341 			goto destroy;
1342 		}
1343 
1344 		break;
1345 	case VMCI_TRANSPORT_PACKET_TYPE_RST:
1346 		/* Older versions of the linux code (WS 6.5 / ESX 4.0) used to
1347 		 * continue processing here after they sent an INVALID packet.
1348 		 * This meant that we got a RST after the INVALID. We ignore a
1349 		 * RST after an INVALID. The common code doesn't send the RST
1350 		 * ... so we can hang if an old version of the common code
1351 		 * fails between getting a REQUEST and sending an OFFER back.
1352 		 * Not much we can do about it... except hope that it doesn't
1353 		 * happen.
1354 		 */
1355 		if (vsk->ignore_connecting_rst) {
1356 			vsk->ignore_connecting_rst = false;
1357 		} else {
1358 			skerr = ECONNRESET;
1359 			err = 0;
1360 			goto destroy;
1361 		}
1362 
1363 		break;
1364 	default:
1365 		/* Close and cleanup the connection. */
1366 		skerr = EPROTO;
1367 		err = -EINVAL;
1368 		goto destroy;
1369 	}
1370 
1371 	return 0;
1372 
1373 destroy:
1374 	vmci_transport_send_reset(sk, pkt);
1375 
1376 	sk->sk_state = TCP_CLOSE;
1377 	sk->sk_err = skerr;
1378 	sk->sk_error_report(sk);
1379 	return err;
1380 }
1381 
1382 static int vmci_transport_recv_connecting_client_negotiate(
1383 					struct sock *sk,
1384 					struct vmci_transport_packet *pkt)
1385 {
1386 	int err;
1387 	struct vsock_sock *vsk;
1388 	struct vmci_handle handle;
1389 	struct vmci_qp *qpair;
1390 	u32 detach_sub_id;
1391 	bool is_local;
1392 	u32 flags;
1393 	bool old_proto = true;
1394 	bool old_pkt_proto;
1395 	u16 version;
1396 
1397 	vsk = vsock_sk(sk);
1398 	handle = VMCI_INVALID_HANDLE;
1399 	detach_sub_id = VMCI_INVALID_ID;
1400 
1401 	/* If we have gotten here then we should be past the point where old
1402 	 * linux vsock could have sent the bogus rst.
1403 	 */
1404 	vsk->sent_request = false;
1405 	vsk->ignore_connecting_rst = false;
1406 
1407 	/* Verify that we're OK with the proposed queue pair size */
1408 	if (pkt->u.size < vmci_trans(vsk)->queue_pair_min_size ||
1409 	    pkt->u.size > vmci_trans(vsk)->queue_pair_max_size) {
1410 		err = -EINVAL;
1411 		goto destroy;
1412 	}
1413 
1414 	/* At this point we know the CID the peer is using to talk to us. */
1415 
1416 	if (vsk->local_addr.svm_cid == VMADDR_CID_ANY)
1417 		vsk->local_addr.svm_cid = pkt->dg.dst.context;
1418 
1419 	/* Setup the notify ops to be the highest supported version that both
1420 	 * the server and the client support.
1421 	 */
1422 
1423 	if (vmci_transport_old_proto_override(&old_pkt_proto)) {
1424 		old_proto = old_pkt_proto;
1425 	} else {
1426 		if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE)
1427 			old_proto = true;
1428 		else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2)
1429 			old_proto = false;
1430 
1431 	}
1432 
1433 	if (old_proto)
1434 		version = VSOCK_PROTO_INVALID;
1435 	else
1436 		version = pkt->proto;
1437 
1438 	if (!vmci_transport_proto_to_notify_struct(sk, &version, old_proto)) {
1439 		err = -EINVAL;
1440 		goto destroy;
1441 	}
1442 
1443 	/* Subscribe to detach events first.
1444 	 *
1445 	 * XXX We attach once for each queue pair created for now so it is easy
1446 	 * to find the socket (it's provided), but later we should only
1447 	 * subscribe once and add a way to lookup sockets by queue pair handle.
1448 	 */
1449 	err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH,
1450 				   vmci_transport_peer_detach_cb,
1451 				   vmci_trans(vsk), &detach_sub_id);
1452 	if (err < VMCI_SUCCESS) {
1453 		err = vmci_transport_error_to_vsock_error(err);
1454 		goto destroy;
1455 	}
1456 
1457 	/* Make VMCI select the handle for us. */
1458 	handle = VMCI_INVALID_HANDLE;
1459 	is_local = vsk->remote_addr.svm_cid == vsk->local_addr.svm_cid;
1460 	flags = is_local ? VMCI_QPFLAG_LOCAL : 0;
1461 
1462 	err = vmci_transport_queue_pair_alloc(&qpair,
1463 					      &handle,
1464 					      pkt->u.size,
1465 					      pkt->u.size,
1466 					      vsk->remote_addr.svm_cid,
1467 					      flags,
1468 					      vmci_transport_is_trusted(
1469 						  vsk,
1470 						  vsk->
1471 						  remote_addr.svm_cid));
1472 	if (err < 0)
1473 		goto destroy;
1474 
1475 	err = vmci_transport_send_qp_offer(sk, handle);
1476 	if (err < 0) {
1477 		err = vmci_transport_error_to_vsock_error(err);
1478 		goto destroy;
1479 	}
1480 
1481 	vmci_trans(vsk)->qp_handle = handle;
1482 	vmci_trans(vsk)->qpair = qpair;
1483 
1484 	vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size =
1485 		pkt->u.size;
1486 
1487 	vmci_trans(vsk)->detach_sub_id = detach_sub_id;
1488 
1489 	vmci_trans(vsk)->notify_ops->process_negotiate(sk);
1490 
1491 	return 0;
1492 
1493 destroy:
1494 	if (detach_sub_id != VMCI_INVALID_ID)
1495 		vmci_event_unsubscribe(detach_sub_id);
1496 
1497 	if (!vmci_handle_is_invalid(handle))
1498 		vmci_qpair_detach(&qpair);
1499 
1500 	return err;
1501 }
1502 
1503 static int
1504 vmci_transport_recv_connecting_client_invalid(struct sock *sk,
1505 					      struct vmci_transport_packet *pkt)
1506 {
1507 	int err = 0;
1508 	struct vsock_sock *vsk = vsock_sk(sk);
1509 
1510 	if (vsk->sent_request) {
1511 		vsk->sent_request = false;
1512 		vsk->ignore_connecting_rst = true;
1513 
1514 		err = vmci_transport_send_conn_request(
1515 			sk, vmci_trans(vsk)->queue_pair_size);
1516 		if (err < 0)
1517 			err = vmci_transport_error_to_vsock_error(err);
1518 		else
1519 			err = 0;
1520 
1521 	}
1522 
1523 	return err;
1524 }
1525 
1526 static int vmci_transport_recv_connected(struct sock *sk,
1527 					 struct vmci_transport_packet *pkt)
1528 {
1529 	struct vsock_sock *vsk;
1530 	bool pkt_processed = false;
1531 
1532 	/* In cases where we are closing the connection, it's sufficient to
1533 	 * mark the state change (and maybe error) and wake up any waiting
1534 	 * threads. Since this is a connected socket, it's owned by a user
1535 	 * process and will be cleaned up when the failure is passed back on
1536 	 * the current or next system call.  Our system call implementations
1537 	 * must therefore check for error and state changes on entry and when
1538 	 * being awoken.
1539 	 */
1540 	switch (pkt->type) {
1541 	case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN:
1542 		if (pkt->u.mode) {
1543 			vsk = vsock_sk(sk);
1544 
1545 			vsk->peer_shutdown |= pkt->u.mode;
1546 			sk->sk_state_change(sk);
1547 		}
1548 		break;
1549 
1550 	case VMCI_TRANSPORT_PACKET_TYPE_RST:
1551 		vsk = vsock_sk(sk);
1552 		/* It is possible that we sent our peer a message (e.g a
1553 		 * WAITING_READ) right before we got notified that the peer had
1554 		 * detached. If that happens then we can get a RST pkt back
1555 		 * from our peer even though there is data available for us to
1556 		 * read. In that case, don't shutdown the socket completely but
1557 		 * instead allow the local client to finish reading data off
1558 		 * the queuepair. Always treat a RST pkt in connected mode like
1559 		 * a clean shutdown.
1560 		 */
1561 		sock_set_flag(sk, SOCK_DONE);
1562 		vsk->peer_shutdown = SHUTDOWN_MASK;
1563 		if (vsock_stream_has_data(vsk) <= 0)
1564 			sk->sk_state = TCP_CLOSING;
1565 
1566 		sk->sk_state_change(sk);
1567 		break;
1568 
1569 	default:
1570 		vsk = vsock_sk(sk);
1571 		vmci_trans(vsk)->notify_ops->handle_notify_pkt(
1572 				sk, pkt, false, NULL, NULL,
1573 				&pkt_processed);
1574 		if (!pkt_processed)
1575 			return -EINVAL;
1576 
1577 		break;
1578 	}
1579 
1580 	return 0;
1581 }
1582 
1583 static int vmci_transport_socket_init(struct vsock_sock *vsk,
1584 				      struct vsock_sock *psk)
1585 {
1586 	vsk->trans = kmalloc(sizeof(struct vmci_transport), GFP_KERNEL);
1587 	if (!vsk->trans)
1588 		return -ENOMEM;
1589 
1590 	vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE;
1591 	vmci_trans(vsk)->qp_handle = VMCI_INVALID_HANDLE;
1592 	vmci_trans(vsk)->qpair = NULL;
1593 	vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size = 0;
1594 	vmci_trans(vsk)->detach_sub_id = VMCI_INVALID_ID;
1595 	vmci_trans(vsk)->notify_ops = NULL;
1596 	INIT_LIST_HEAD(&vmci_trans(vsk)->elem);
1597 	vmci_trans(vsk)->sk = &vsk->sk;
1598 	spin_lock_init(&vmci_trans(vsk)->lock);
1599 	if (psk) {
1600 		vmci_trans(vsk)->queue_pair_size =
1601 			vmci_trans(psk)->queue_pair_size;
1602 		vmci_trans(vsk)->queue_pair_min_size =
1603 			vmci_trans(psk)->queue_pair_min_size;
1604 		vmci_trans(vsk)->queue_pair_max_size =
1605 			vmci_trans(psk)->queue_pair_max_size;
1606 	} else {
1607 		vmci_trans(vsk)->queue_pair_size =
1608 			VMCI_TRANSPORT_DEFAULT_QP_SIZE;
1609 		vmci_trans(vsk)->queue_pair_min_size =
1610 			 VMCI_TRANSPORT_DEFAULT_QP_SIZE_MIN;
1611 		vmci_trans(vsk)->queue_pair_max_size =
1612 			VMCI_TRANSPORT_DEFAULT_QP_SIZE_MAX;
1613 	}
1614 
1615 	return 0;
1616 }
1617 
1618 static void vmci_transport_free_resources(struct list_head *transport_list)
1619 {
1620 	while (!list_empty(transport_list)) {
1621 		struct vmci_transport *transport =
1622 		    list_first_entry(transport_list, struct vmci_transport,
1623 				     elem);
1624 		list_del(&transport->elem);
1625 
1626 		if (transport->detach_sub_id != VMCI_INVALID_ID) {
1627 			vmci_event_unsubscribe(transport->detach_sub_id);
1628 			transport->detach_sub_id = VMCI_INVALID_ID;
1629 		}
1630 
1631 		if (!vmci_handle_is_invalid(transport->qp_handle)) {
1632 			vmci_qpair_detach(&transport->qpair);
1633 			transport->qp_handle = VMCI_INVALID_HANDLE;
1634 			transport->produce_size = 0;
1635 			transport->consume_size = 0;
1636 		}
1637 
1638 		kfree(transport);
1639 	}
1640 }
1641 
1642 static void vmci_transport_cleanup(struct work_struct *work)
1643 {
1644 	LIST_HEAD(pending);
1645 
1646 	spin_lock_bh(&vmci_transport_cleanup_lock);
1647 	list_replace_init(&vmci_transport_cleanup_list, &pending);
1648 	spin_unlock_bh(&vmci_transport_cleanup_lock);
1649 	vmci_transport_free_resources(&pending);
1650 }
1651 
1652 static void vmci_transport_destruct(struct vsock_sock *vsk)
1653 {
1654 	/* transport can be NULL if we hit a failure at init() time */
1655 	if (!vmci_trans(vsk))
1656 		return;
1657 
1658 	/* Ensure that the detach callback doesn't use the sk/vsk
1659 	 * we are about to destruct.
1660 	 */
1661 	spin_lock_bh(&vmci_trans(vsk)->lock);
1662 	vmci_trans(vsk)->sk = NULL;
1663 	spin_unlock_bh(&vmci_trans(vsk)->lock);
1664 
1665 	if (vmci_trans(vsk)->notify_ops)
1666 		vmci_trans(vsk)->notify_ops->socket_destruct(vsk);
1667 
1668 	spin_lock_bh(&vmci_transport_cleanup_lock);
1669 	list_add(&vmci_trans(vsk)->elem, &vmci_transport_cleanup_list);
1670 	spin_unlock_bh(&vmci_transport_cleanup_lock);
1671 	schedule_work(&vmci_transport_cleanup_work);
1672 
1673 	vsk->trans = NULL;
1674 }
1675 
1676 static void vmci_transport_release(struct vsock_sock *vsk)
1677 {
1678 	vsock_remove_sock(vsk);
1679 
1680 	if (!vmci_handle_is_invalid(vmci_trans(vsk)->dg_handle)) {
1681 		vmci_datagram_destroy_handle(vmci_trans(vsk)->dg_handle);
1682 		vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE;
1683 	}
1684 }
1685 
1686 static int vmci_transport_dgram_bind(struct vsock_sock *vsk,
1687 				     struct sockaddr_vm *addr)
1688 {
1689 	u32 port;
1690 	u32 flags;
1691 	int err;
1692 
1693 	/* VMCI will select a resource ID for us if we provide
1694 	 * VMCI_INVALID_ID.
1695 	 */
1696 	port = addr->svm_port == VMADDR_PORT_ANY ?
1697 			VMCI_INVALID_ID : addr->svm_port;
1698 
1699 	if (port <= LAST_RESERVED_PORT && !capable(CAP_NET_BIND_SERVICE))
1700 		return -EACCES;
1701 
1702 	flags = addr->svm_cid == VMADDR_CID_ANY ?
1703 				VMCI_FLAG_ANYCID_DG_HND : 0;
1704 
1705 	err = vmci_transport_datagram_create_hnd(port, flags,
1706 						 vmci_transport_recv_dgram_cb,
1707 						 &vsk->sk,
1708 						 &vmci_trans(vsk)->dg_handle);
1709 	if (err < VMCI_SUCCESS)
1710 		return vmci_transport_error_to_vsock_error(err);
1711 	vsock_addr_init(&vsk->local_addr, addr->svm_cid,
1712 			vmci_trans(vsk)->dg_handle.resource);
1713 
1714 	return 0;
1715 }
1716 
1717 static int vmci_transport_dgram_enqueue(
1718 	struct vsock_sock *vsk,
1719 	struct sockaddr_vm *remote_addr,
1720 	struct msghdr *msg,
1721 	size_t len)
1722 {
1723 	int err;
1724 	struct vmci_datagram *dg;
1725 
1726 	if (len > VMCI_MAX_DG_PAYLOAD_SIZE)
1727 		return -EMSGSIZE;
1728 
1729 	if (!vmci_transport_allow_dgram(vsk, remote_addr->svm_cid))
1730 		return -EPERM;
1731 
1732 	/* Allocate a buffer for the user's message and our packet header. */
1733 	dg = kmalloc(len + sizeof(*dg), GFP_KERNEL);
1734 	if (!dg)
1735 		return -ENOMEM;
1736 
1737 	memcpy_from_msg(VMCI_DG_PAYLOAD(dg), msg, len);
1738 
1739 	dg->dst = vmci_make_handle(remote_addr->svm_cid,
1740 				   remote_addr->svm_port);
1741 	dg->src = vmci_make_handle(vsk->local_addr.svm_cid,
1742 				   vsk->local_addr.svm_port);
1743 	dg->payload_size = len;
1744 
1745 	err = vmci_datagram_send(dg);
1746 	kfree(dg);
1747 	if (err < 0)
1748 		return vmci_transport_error_to_vsock_error(err);
1749 
1750 	return err - sizeof(*dg);
1751 }
1752 
1753 static int vmci_transport_dgram_dequeue(struct vsock_sock *vsk,
1754 					struct msghdr *msg, size_t len,
1755 					int flags)
1756 {
1757 	int err;
1758 	int noblock;
1759 	struct vmci_datagram *dg;
1760 	size_t payload_len;
1761 	struct sk_buff *skb;
1762 
1763 	noblock = flags & MSG_DONTWAIT;
1764 
1765 	if (flags & MSG_OOB || flags & MSG_ERRQUEUE)
1766 		return -EOPNOTSUPP;
1767 
1768 	/* Retrieve the head sk_buff from the socket's receive queue. */
1769 	err = 0;
1770 	skb = skb_recv_datagram(&vsk->sk, flags, noblock, &err);
1771 	if (!skb)
1772 		return err;
1773 
1774 	dg = (struct vmci_datagram *)skb->data;
1775 	if (!dg)
1776 		/* err is 0, meaning we read zero bytes. */
1777 		goto out;
1778 
1779 	payload_len = dg->payload_size;
1780 	/* Ensure the sk_buff matches the payload size claimed in the packet. */
1781 	if (payload_len != skb->len - sizeof(*dg)) {
1782 		err = -EINVAL;
1783 		goto out;
1784 	}
1785 
1786 	if (payload_len > len) {
1787 		payload_len = len;
1788 		msg->msg_flags |= MSG_TRUNC;
1789 	}
1790 
1791 	/* Place the datagram payload in the user's iovec. */
1792 	err = skb_copy_datagram_msg(skb, sizeof(*dg), msg, payload_len);
1793 	if (err)
1794 		goto out;
1795 
1796 	if (msg->msg_name) {
1797 		/* Provide the address of the sender. */
1798 		DECLARE_SOCKADDR(struct sockaddr_vm *, vm_addr, msg->msg_name);
1799 		vsock_addr_init(vm_addr, dg->src.context, dg->src.resource);
1800 		msg->msg_namelen = sizeof(*vm_addr);
1801 	}
1802 	err = payload_len;
1803 
1804 out:
1805 	skb_free_datagram(&vsk->sk, skb);
1806 	return err;
1807 }
1808 
1809 static bool vmci_transport_dgram_allow(u32 cid, u32 port)
1810 {
1811 	if (cid == VMADDR_CID_HYPERVISOR) {
1812 		/* Registrations of PBRPC Servers do not modify VMX/Hypervisor
1813 		 * state and are allowed.
1814 		 */
1815 		return port == VMCI_UNITY_PBRPC_REGISTER;
1816 	}
1817 
1818 	return true;
1819 }
1820 
1821 static int vmci_transport_connect(struct vsock_sock *vsk)
1822 {
1823 	int err;
1824 	bool old_pkt_proto = false;
1825 	struct sock *sk = &vsk->sk;
1826 
1827 	if (vmci_transport_old_proto_override(&old_pkt_proto) &&
1828 		old_pkt_proto) {
1829 		err = vmci_transport_send_conn_request(
1830 			sk, vmci_trans(vsk)->queue_pair_size);
1831 		if (err < 0) {
1832 			sk->sk_state = TCP_CLOSE;
1833 			return err;
1834 		}
1835 	} else {
1836 		int supported_proto_versions =
1837 			vmci_transport_new_proto_supported_versions();
1838 		err = vmci_transport_send_conn_request2(
1839 				sk, vmci_trans(vsk)->queue_pair_size,
1840 				supported_proto_versions);
1841 		if (err < 0) {
1842 			sk->sk_state = TCP_CLOSE;
1843 			return err;
1844 		}
1845 
1846 		vsk->sent_request = true;
1847 	}
1848 
1849 	return err;
1850 }
1851 
1852 static ssize_t vmci_transport_stream_dequeue(
1853 	struct vsock_sock *vsk,
1854 	struct msghdr *msg,
1855 	size_t len,
1856 	int flags)
1857 {
1858 	if (flags & MSG_PEEK)
1859 		return vmci_qpair_peekv(vmci_trans(vsk)->qpair, msg, len, 0);
1860 	else
1861 		return vmci_qpair_dequev(vmci_trans(vsk)->qpair, msg, len, 0);
1862 }
1863 
1864 static ssize_t vmci_transport_stream_enqueue(
1865 	struct vsock_sock *vsk,
1866 	struct msghdr *msg,
1867 	size_t len)
1868 {
1869 	return vmci_qpair_enquev(vmci_trans(vsk)->qpair, msg, len, 0);
1870 }
1871 
1872 static s64 vmci_transport_stream_has_data(struct vsock_sock *vsk)
1873 {
1874 	return vmci_qpair_consume_buf_ready(vmci_trans(vsk)->qpair);
1875 }
1876 
1877 static s64 vmci_transport_stream_has_space(struct vsock_sock *vsk)
1878 {
1879 	return vmci_qpair_produce_free_space(vmci_trans(vsk)->qpair);
1880 }
1881 
1882 static u64 vmci_transport_stream_rcvhiwat(struct vsock_sock *vsk)
1883 {
1884 	return vmci_trans(vsk)->consume_size;
1885 }
1886 
1887 static bool vmci_transport_stream_is_active(struct vsock_sock *vsk)
1888 {
1889 	return !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle);
1890 }
1891 
1892 static u64 vmci_transport_get_buffer_size(struct vsock_sock *vsk)
1893 {
1894 	return vmci_trans(vsk)->queue_pair_size;
1895 }
1896 
1897 static u64 vmci_transport_get_min_buffer_size(struct vsock_sock *vsk)
1898 {
1899 	return vmci_trans(vsk)->queue_pair_min_size;
1900 }
1901 
1902 static u64 vmci_transport_get_max_buffer_size(struct vsock_sock *vsk)
1903 {
1904 	return vmci_trans(vsk)->queue_pair_max_size;
1905 }
1906 
1907 static void vmci_transport_set_buffer_size(struct vsock_sock *vsk, u64 val)
1908 {
1909 	if (val < vmci_trans(vsk)->queue_pair_min_size)
1910 		vmci_trans(vsk)->queue_pair_min_size = val;
1911 	if (val > vmci_trans(vsk)->queue_pair_max_size)
1912 		vmci_trans(vsk)->queue_pair_max_size = val;
1913 	vmci_trans(vsk)->queue_pair_size = val;
1914 }
1915 
1916 static void vmci_transport_set_min_buffer_size(struct vsock_sock *vsk,
1917 					       u64 val)
1918 {
1919 	if (val > vmci_trans(vsk)->queue_pair_size)
1920 		vmci_trans(vsk)->queue_pair_size = val;
1921 	vmci_trans(vsk)->queue_pair_min_size = val;
1922 }
1923 
1924 static void vmci_transport_set_max_buffer_size(struct vsock_sock *vsk,
1925 					       u64 val)
1926 {
1927 	if (val < vmci_trans(vsk)->queue_pair_size)
1928 		vmci_trans(vsk)->queue_pair_size = val;
1929 	vmci_trans(vsk)->queue_pair_max_size = val;
1930 }
1931 
1932 static int vmci_transport_notify_poll_in(
1933 	struct vsock_sock *vsk,
1934 	size_t target,
1935 	bool *data_ready_now)
1936 {
1937 	return vmci_trans(vsk)->notify_ops->poll_in(
1938 			&vsk->sk, target, data_ready_now);
1939 }
1940 
1941 static int vmci_transport_notify_poll_out(
1942 	struct vsock_sock *vsk,
1943 	size_t target,
1944 	bool *space_available_now)
1945 {
1946 	return vmci_trans(vsk)->notify_ops->poll_out(
1947 			&vsk->sk, target, space_available_now);
1948 }
1949 
1950 static int vmci_transport_notify_recv_init(
1951 	struct vsock_sock *vsk,
1952 	size_t target,
1953 	struct vsock_transport_recv_notify_data *data)
1954 {
1955 	return vmci_trans(vsk)->notify_ops->recv_init(
1956 			&vsk->sk, target,
1957 			(struct vmci_transport_recv_notify_data *)data);
1958 }
1959 
1960 static int vmci_transport_notify_recv_pre_block(
1961 	struct vsock_sock *vsk,
1962 	size_t target,
1963 	struct vsock_transport_recv_notify_data *data)
1964 {
1965 	return vmci_trans(vsk)->notify_ops->recv_pre_block(
1966 			&vsk->sk, target,
1967 			(struct vmci_transport_recv_notify_data *)data);
1968 }
1969 
1970 static int vmci_transport_notify_recv_pre_dequeue(
1971 	struct vsock_sock *vsk,
1972 	size_t target,
1973 	struct vsock_transport_recv_notify_data *data)
1974 {
1975 	return vmci_trans(vsk)->notify_ops->recv_pre_dequeue(
1976 			&vsk->sk, target,
1977 			(struct vmci_transport_recv_notify_data *)data);
1978 }
1979 
1980 static int vmci_transport_notify_recv_post_dequeue(
1981 	struct vsock_sock *vsk,
1982 	size_t target,
1983 	ssize_t copied,
1984 	bool data_read,
1985 	struct vsock_transport_recv_notify_data *data)
1986 {
1987 	return vmci_trans(vsk)->notify_ops->recv_post_dequeue(
1988 			&vsk->sk, target, copied, data_read,
1989 			(struct vmci_transport_recv_notify_data *)data);
1990 }
1991 
1992 static int vmci_transport_notify_send_init(
1993 	struct vsock_sock *vsk,
1994 	struct vsock_transport_send_notify_data *data)
1995 {
1996 	return vmci_trans(vsk)->notify_ops->send_init(
1997 			&vsk->sk,
1998 			(struct vmci_transport_send_notify_data *)data);
1999 }
2000 
2001 static int vmci_transport_notify_send_pre_block(
2002 	struct vsock_sock *vsk,
2003 	struct vsock_transport_send_notify_data *data)
2004 {
2005 	return vmci_trans(vsk)->notify_ops->send_pre_block(
2006 			&vsk->sk,
2007 			(struct vmci_transport_send_notify_data *)data);
2008 }
2009 
2010 static int vmci_transport_notify_send_pre_enqueue(
2011 	struct vsock_sock *vsk,
2012 	struct vsock_transport_send_notify_data *data)
2013 {
2014 	return vmci_trans(vsk)->notify_ops->send_pre_enqueue(
2015 			&vsk->sk,
2016 			(struct vmci_transport_send_notify_data *)data);
2017 }
2018 
2019 static int vmci_transport_notify_send_post_enqueue(
2020 	struct vsock_sock *vsk,
2021 	ssize_t written,
2022 	struct vsock_transport_send_notify_data *data)
2023 {
2024 	return vmci_trans(vsk)->notify_ops->send_post_enqueue(
2025 			&vsk->sk, written,
2026 			(struct vmci_transport_send_notify_data *)data);
2027 }
2028 
2029 static bool vmci_transport_old_proto_override(bool *old_pkt_proto)
2030 {
2031 	if (PROTOCOL_OVERRIDE != -1) {
2032 		if (PROTOCOL_OVERRIDE == 0)
2033 			*old_pkt_proto = true;
2034 		else
2035 			*old_pkt_proto = false;
2036 
2037 		pr_info("Proto override in use\n");
2038 		return true;
2039 	}
2040 
2041 	return false;
2042 }
2043 
2044 static bool vmci_transport_proto_to_notify_struct(struct sock *sk,
2045 						  u16 *proto,
2046 						  bool old_pkt_proto)
2047 {
2048 	struct vsock_sock *vsk = vsock_sk(sk);
2049 
2050 	if (old_pkt_proto) {
2051 		if (*proto != VSOCK_PROTO_INVALID) {
2052 			pr_err("Can't set both an old and new protocol\n");
2053 			return false;
2054 		}
2055 		vmci_trans(vsk)->notify_ops = &vmci_transport_notify_pkt_ops;
2056 		goto exit;
2057 	}
2058 
2059 	switch (*proto) {
2060 	case VSOCK_PROTO_PKT_ON_NOTIFY:
2061 		vmci_trans(vsk)->notify_ops =
2062 			&vmci_transport_notify_pkt_q_state_ops;
2063 		break;
2064 	default:
2065 		pr_err("Unknown notify protocol version\n");
2066 		return false;
2067 	}
2068 
2069 exit:
2070 	vmci_trans(vsk)->notify_ops->socket_init(sk);
2071 	return true;
2072 }
2073 
2074 static u16 vmci_transport_new_proto_supported_versions(void)
2075 {
2076 	if (PROTOCOL_OVERRIDE != -1)
2077 		return PROTOCOL_OVERRIDE;
2078 
2079 	return VSOCK_PROTO_ALL_SUPPORTED;
2080 }
2081 
2082 static u32 vmci_transport_get_local_cid(void)
2083 {
2084 	return vmci_get_context_id();
2085 }
2086 
2087 static const struct vsock_transport vmci_transport = {
2088 	.init = vmci_transport_socket_init,
2089 	.destruct = vmci_transport_destruct,
2090 	.release = vmci_transport_release,
2091 	.connect = vmci_transport_connect,
2092 	.dgram_bind = vmci_transport_dgram_bind,
2093 	.dgram_dequeue = vmci_transport_dgram_dequeue,
2094 	.dgram_enqueue = vmci_transport_dgram_enqueue,
2095 	.dgram_allow = vmci_transport_dgram_allow,
2096 	.stream_dequeue = vmci_transport_stream_dequeue,
2097 	.stream_enqueue = vmci_transport_stream_enqueue,
2098 	.stream_has_data = vmci_transport_stream_has_data,
2099 	.stream_has_space = vmci_transport_stream_has_space,
2100 	.stream_rcvhiwat = vmci_transport_stream_rcvhiwat,
2101 	.stream_is_active = vmci_transport_stream_is_active,
2102 	.stream_allow = vmci_transport_stream_allow,
2103 	.notify_poll_in = vmci_transport_notify_poll_in,
2104 	.notify_poll_out = vmci_transport_notify_poll_out,
2105 	.notify_recv_init = vmci_transport_notify_recv_init,
2106 	.notify_recv_pre_block = vmci_transport_notify_recv_pre_block,
2107 	.notify_recv_pre_dequeue = vmci_transport_notify_recv_pre_dequeue,
2108 	.notify_recv_post_dequeue = vmci_transport_notify_recv_post_dequeue,
2109 	.notify_send_init = vmci_transport_notify_send_init,
2110 	.notify_send_pre_block = vmci_transport_notify_send_pre_block,
2111 	.notify_send_pre_enqueue = vmci_transport_notify_send_pre_enqueue,
2112 	.notify_send_post_enqueue = vmci_transport_notify_send_post_enqueue,
2113 	.shutdown = vmci_transport_shutdown,
2114 	.set_buffer_size = vmci_transport_set_buffer_size,
2115 	.set_min_buffer_size = vmci_transport_set_min_buffer_size,
2116 	.set_max_buffer_size = vmci_transport_set_max_buffer_size,
2117 	.get_buffer_size = vmci_transport_get_buffer_size,
2118 	.get_min_buffer_size = vmci_transport_get_min_buffer_size,
2119 	.get_max_buffer_size = vmci_transport_get_max_buffer_size,
2120 	.get_local_cid = vmci_transport_get_local_cid,
2121 };
2122 
2123 static int __init vmci_transport_init(void)
2124 {
2125 	int err;
2126 
2127 	/* Create the datagram handle that we will use to send and receive all
2128 	 * VSocket control messages for this context.
2129 	 */
2130 	err = vmci_transport_datagram_create_hnd(VMCI_TRANSPORT_PACKET_RID,
2131 						 VMCI_FLAG_ANYCID_DG_HND,
2132 						 vmci_transport_recv_stream_cb,
2133 						 NULL,
2134 						 &vmci_transport_stream_handle);
2135 	if (err < VMCI_SUCCESS) {
2136 		pr_err("Unable to create datagram handle. (%d)\n", err);
2137 		return vmci_transport_error_to_vsock_error(err);
2138 	}
2139 
2140 	err = vmci_event_subscribe(VMCI_EVENT_QP_RESUMED,
2141 				   vmci_transport_qp_resumed_cb,
2142 				   NULL, &vmci_transport_qp_resumed_sub_id);
2143 	if (err < VMCI_SUCCESS) {
2144 		pr_err("Unable to subscribe to resumed event. (%d)\n", err);
2145 		err = vmci_transport_error_to_vsock_error(err);
2146 		vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
2147 		goto err_destroy_stream_handle;
2148 	}
2149 
2150 	err = vsock_core_init(&vmci_transport);
2151 	if (err < 0)
2152 		goto err_unsubscribe;
2153 
2154 	return 0;
2155 
2156 err_unsubscribe:
2157 	vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id);
2158 err_destroy_stream_handle:
2159 	vmci_datagram_destroy_handle(vmci_transport_stream_handle);
2160 	return err;
2161 }
2162 module_init(vmci_transport_init);
2163 
2164 static void __exit vmci_transport_exit(void)
2165 {
2166 	cancel_work_sync(&vmci_transport_cleanup_work);
2167 	vmci_transport_free_resources(&vmci_transport_cleanup_list);
2168 
2169 	if (!vmci_handle_is_invalid(vmci_transport_stream_handle)) {
2170 		if (vmci_datagram_destroy_handle(
2171 			vmci_transport_stream_handle) != VMCI_SUCCESS)
2172 			pr_err("Couldn't destroy datagram handle\n");
2173 		vmci_transport_stream_handle = VMCI_INVALID_HANDLE;
2174 	}
2175 
2176 	if (vmci_transport_qp_resumed_sub_id != VMCI_INVALID_ID) {
2177 		vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id);
2178 		vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
2179 	}
2180 
2181 	vsock_core_exit();
2182 }
2183 module_exit(vmci_transport_exit);
2184 
2185 MODULE_AUTHOR("VMware, Inc.");
2186 MODULE_DESCRIPTION("VMCI transport for Virtual Sockets");
2187 MODULE_VERSION("1.0.5.0-k");
2188 MODULE_LICENSE("GPL v2");
2189 MODULE_ALIAS("vmware_vsock");
2190 MODULE_ALIAS_NETPROTO(PF_VSOCK);
2191