1 /* 2 * Copyright (c) 2007 Oracle. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 * 32 */ 33 #include <linux/pagemap.h> 34 #include <linux/slab.h> 35 #include <linux/rbtree.h> 36 #include <linux/dma-mapping.h> /* for DMA_*_DEVICE */ 37 38 #include "rds.h" 39 40 /* 41 * XXX 42 * - build with sparse 43 * - should we detect duplicate keys on a socket? hmm. 44 * - an rdma is an mlock, apply rlimit? 45 */ 46 47 /* 48 * get the number of pages by looking at the page indices that the start and 49 * end addresses fall in. 50 * 51 * Returns 0 if the vec is invalid. It is invalid if the number of bytes 52 * causes the address to wrap or overflows an unsigned int. This comes 53 * from being stored in the 'length' member of 'struct scatterlist'. 54 */ 55 static unsigned int rds_pages_in_vec(struct rds_iovec *vec) 56 { 57 if ((vec->addr + vec->bytes <= vec->addr) || 58 (vec->bytes > (u64)UINT_MAX)) 59 return 0; 60 61 return ((vec->addr + vec->bytes + PAGE_SIZE - 1) >> PAGE_SHIFT) - 62 (vec->addr >> PAGE_SHIFT); 63 } 64 65 static struct rds_mr *rds_mr_tree_walk(struct rb_root *root, u64 key, 66 struct rds_mr *insert) 67 { 68 struct rb_node **p = &root->rb_node; 69 struct rb_node *parent = NULL; 70 struct rds_mr *mr; 71 72 while (*p) { 73 parent = *p; 74 mr = rb_entry(parent, struct rds_mr, r_rb_node); 75 76 if (key < mr->r_key) 77 p = &(*p)->rb_left; 78 else if (key > mr->r_key) 79 p = &(*p)->rb_right; 80 else 81 return mr; 82 } 83 84 if (insert) { 85 rb_link_node(&insert->r_rb_node, parent, p); 86 rb_insert_color(&insert->r_rb_node, root); 87 refcount_inc(&insert->r_refcount); 88 } 89 return NULL; 90 } 91 92 /* 93 * Destroy the transport-specific part of a MR. 94 */ 95 static void rds_destroy_mr(struct rds_mr *mr) 96 { 97 struct rds_sock *rs = mr->r_sock; 98 void *trans_private = NULL; 99 unsigned long flags; 100 101 rdsdebug("RDS: destroy mr key is %x refcnt %u\n", 102 mr->r_key, refcount_read(&mr->r_refcount)); 103 104 if (test_and_set_bit(RDS_MR_DEAD, &mr->r_state)) 105 return; 106 107 spin_lock_irqsave(&rs->rs_rdma_lock, flags); 108 if (!RB_EMPTY_NODE(&mr->r_rb_node)) 109 rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys); 110 trans_private = mr->r_trans_private; 111 mr->r_trans_private = NULL; 112 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); 113 114 if (trans_private) 115 mr->r_trans->free_mr(trans_private, mr->r_invalidate); 116 } 117 118 void __rds_put_mr_final(struct rds_mr *mr) 119 { 120 rds_destroy_mr(mr); 121 kfree(mr); 122 } 123 124 /* 125 * By the time this is called we can't have any more ioctls called on 126 * the socket so we don't need to worry about racing with others. 127 */ 128 void rds_rdma_drop_keys(struct rds_sock *rs) 129 { 130 struct rds_mr *mr; 131 struct rb_node *node; 132 unsigned long flags; 133 134 /* Release any MRs associated with this socket */ 135 spin_lock_irqsave(&rs->rs_rdma_lock, flags); 136 while ((node = rb_first(&rs->rs_rdma_keys))) { 137 mr = rb_entry(node, struct rds_mr, r_rb_node); 138 if (mr->r_trans == rs->rs_transport) 139 mr->r_invalidate = 0; 140 rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys); 141 RB_CLEAR_NODE(&mr->r_rb_node); 142 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); 143 rds_destroy_mr(mr); 144 rds_mr_put(mr); 145 spin_lock_irqsave(&rs->rs_rdma_lock, flags); 146 } 147 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); 148 149 if (rs->rs_transport && rs->rs_transport->flush_mrs) 150 rs->rs_transport->flush_mrs(); 151 } 152 153 /* 154 * Helper function to pin user pages. 155 */ 156 static int rds_pin_pages(unsigned long user_addr, unsigned int nr_pages, 157 struct page **pages, int write) 158 { 159 int ret; 160 161 ret = get_user_pages_fast(user_addr, nr_pages, write, pages); 162 163 if (ret >= 0 && ret < nr_pages) { 164 while (ret--) 165 put_page(pages[ret]); 166 ret = -EFAULT; 167 } 168 169 return ret; 170 } 171 172 static int __rds_rdma_map(struct rds_sock *rs, struct rds_get_mr_args *args, 173 u64 *cookie_ret, struct rds_mr **mr_ret, 174 struct rds_conn_path *cp) 175 { 176 struct rds_mr *mr = NULL, *found; 177 unsigned int nr_pages; 178 struct page **pages = NULL; 179 struct scatterlist *sg; 180 void *trans_private; 181 unsigned long flags; 182 rds_rdma_cookie_t cookie; 183 unsigned int nents; 184 long i; 185 int ret; 186 187 if (rs->rs_bound_addr == 0 || !rs->rs_transport) { 188 ret = -ENOTCONN; /* XXX not a great errno */ 189 goto out; 190 } 191 192 if (!rs->rs_transport->get_mr) { 193 ret = -EOPNOTSUPP; 194 goto out; 195 } 196 197 nr_pages = rds_pages_in_vec(&args->vec); 198 if (nr_pages == 0) { 199 ret = -EINVAL; 200 goto out; 201 } 202 203 /* Restrict the size of mr irrespective of underlying transport 204 * To account for unaligned mr regions, subtract one from nr_pages 205 */ 206 if ((nr_pages - 1) > (RDS_MAX_MSG_SIZE >> PAGE_SHIFT)) { 207 ret = -EMSGSIZE; 208 goto out; 209 } 210 211 rdsdebug("RDS: get_mr addr %llx len %llu nr_pages %u\n", 212 args->vec.addr, args->vec.bytes, nr_pages); 213 214 /* XXX clamp nr_pages to limit the size of this alloc? */ 215 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL); 216 if (!pages) { 217 ret = -ENOMEM; 218 goto out; 219 } 220 221 mr = kzalloc(sizeof(struct rds_mr), GFP_KERNEL); 222 if (!mr) { 223 ret = -ENOMEM; 224 goto out; 225 } 226 227 refcount_set(&mr->r_refcount, 1); 228 RB_CLEAR_NODE(&mr->r_rb_node); 229 mr->r_trans = rs->rs_transport; 230 mr->r_sock = rs; 231 232 if (args->flags & RDS_RDMA_USE_ONCE) 233 mr->r_use_once = 1; 234 if (args->flags & RDS_RDMA_INVALIDATE) 235 mr->r_invalidate = 1; 236 if (args->flags & RDS_RDMA_READWRITE) 237 mr->r_write = 1; 238 239 /* 240 * Pin the pages that make up the user buffer and transfer the page 241 * pointers to the mr's sg array. We check to see if we've mapped 242 * the whole region after transferring the partial page references 243 * to the sg array so that we can have one page ref cleanup path. 244 * 245 * For now we have no flag that tells us whether the mapping is 246 * r/o or r/w. We need to assume r/w, or we'll do a lot of RDMA to 247 * the zero page. 248 */ 249 ret = rds_pin_pages(args->vec.addr, nr_pages, pages, 1); 250 if (ret < 0) 251 goto out; 252 253 nents = ret; 254 sg = kcalloc(nents, sizeof(*sg), GFP_KERNEL); 255 if (!sg) { 256 ret = -ENOMEM; 257 goto out; 258 } 259 WARN_ON(!nents); 260 sg_init_table(sg, nents); 261 262 /* Stick all pages into the scatterlist */ 263 for (i = 0 ; i < nents; i++) 264 sg_set_page(&sg[i], pages[i], PAGE_SIZE, 0); 265 266 rdsdebug("RDS: trans_private nents is %u\n", nents); 267 268 /* Obtain a transport specific MR. If this succeeds, the 269 * s/g list is now owned by the MR. 270 * Note that dma_map() implies that pending writes are 271 * flushed to RAM, so no dma_sync is needed here. */ 272 trans_private = rs->rs_transport->get_mr(sg, nents, rs, 273 &mr->r_key, 274 cp ? cp->cp_conn : NULL); 275 276 if (IS_ERR(trans_private)) { 277 for (i = 0 ; i < nents; i++) 278 put_page(sg_page(&sg[i])); 279 kfree(sg); 280 ret = PTR_ERR(trans_private); 281 goto out; 282 } 283 284 mr->r_trans_private = trans_private; 285 286 rdsdebug("RDS: get_mr put_user key is %x cookie_addr %p\n", 287 mr->r_key, (void *)(unsigned long) args->cookie_addr); 288 289 /* The user may pass us an unaligned address, but we can only 290 * map page aligned regions. So we keep the offset, and build 291 * a 64bit cookie containing <R_Key, offset> and pass that 292 * around. */ 293 cookie = rds_rdma_make_cookie(mr->r_key, args->vec.addr & ~PAGE_MASK); 294 if (cookie_ret) 295 *cookie_ret = cookie; 296 297 if (args->cookie_addr && put_user(cookie, (u64 __user *)(unsigned long) args->cookie_addr)) { 298 ret = -EFAULT; 299 goto out; 300 } 301 302 /* Inserting the new MR into the rbtree bumps its 303 * reference count. */ 304 spin_lock_irqsave(&rs->rs_rdma_lock, flags); 305 found = rds_mr_tree_walk(&rs->rs_rdma_keys, mr->r_key, mr); 306 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); 307 308 BUG_ON(found && found != mr); 309 310 rdsdebug("RDS: get_mr key is %x\n", mr->r_key); 311 if (mr_ret) { 312 refcount_inc(&mr->r_refcount); 313 *mr_ret = mr; 314 } 315 316 ret = 0; 317 out: 318 kfree(pages); 319 if (mr) 320 rds_mr_put(mr); 321 return ret; 322 } 323 324 int rds_get_mr(struct rds_sock *rs, char __user *optval, int optlen) 325 { 326 struct rds_get_mr_args args; 327 328 if (optlen != sizeof(struct rds_get_mr_args)) 329 return -EINVAL; 330 331 if (copy_from_user(&args, (struct rds_get_mr_args __user *)optval, 332 sizeof(struct rds_get_mr_args))) 333 return -EFAULT; 334 335 return __rds_rdma_map(rs, &args, NULL, NULL, NULL); 336 } 337 338 int rds_get_mr_for_dest(struct rds_sock *rs, char __user *optval, int optlen) 339 { 340 struct rds_get_mr_for_dest_args args; 341 struct rds_get_mr_args new_args; 342 343 if (optlen != sizeof(struct rds_get_mr_for_dest_args)) 344 return -EINVAL; 345 346 if (copy_from_user(&args, (struct rds_get_mr_for_dest_args __user *)optval, 347 sizeof(struct rds_get_mr_for_dest_args))) 348 return -EFAULT; 349 350 /* 351 * Initially, just behave like get_mr(). 352 * TODO: Implement get_mr as wrapper around this 353 * and deprecate it. 354 */ 355 new_args.vec = args.vec; 356 new_args.cookie_addr = args.cookie_addr; 357 new_args.flags = args.flags; 358 359 return __rds_rdma_map(rs, &new_args, NULL, NULL, NULL); 360 } 361 362 /* 363 * Free the MR indicated by the given R_Key 364 */ 365 int rds_free_mr(struct rds_sock *rs, char __user *optval, int optlen) 366 { 367 struct rds_free_mr_args args; 368 struct rds_mr *mr; 369 unsigned long flags; 370 371 if (optlen != sizeof(struct rds_free_mr_args)) 372 return -EINVAL; 373 374 if (copy_from_user(&args, (struct rds_free_mr_args __user *)optval, 375 sizeof(struct rds_free_mr_args))) 376 return -EFAULT; 377 378 /* Special case - a null cookie means flush all unused MRs */ 379 if (args.cookie == 0) { 380 if (!rs->rs_transport || !rs->rs_transport->flush_mrs) 381 return -EINVAL; 382 rs->rs_transport->flush_mrs(); 383 return 0; 384 } 385 386 /* Look up the MR given its R_key and remove it from the rbtree 387 * so nobody else finds it. 388 * This should also prevent races with rds_rdma_unuse. 389 */ 390 spin_lock_irqsave(&rs->rs_rdma_lock, flags); 391 mr = rds_mr_tree_walk(&rs->rs_rdma_keys, rds_rdma_cookie_key(args.cookie), NULL); 392 if (mr) { 393 rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys); 394 RB_CLEAR_NODE(&mr->r_rb_node); 395 if (args.flags & RDS_RDMA_INVALIDATE) 396 mr->r_invalidate = 1; 397 } 398 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); 399 400 if (!mr) 401 return -EINVAL; 402 403 /* 404 * call rds_destroy_mr() ourselves so that we're sure it's done by the time 405 * we return. If we let rds_mr_put() do it it might not happen until 406 * someone else drops their ref. 407 */ 408 rds_destroy_mr(mr); 409 rds_mr_put(mr); 410 return 0; 411 } 412 413 /* 414 * This is called when we receive an extension header that 415 * tells us this MR was used. It allows us to implement 416 * use_once semantics 417 */ 418 void rds_rdma_unuse(struct rds_sock *rs, u32 r_key, int force) 419 { 420 struct rds_mr *mr; 421 unsigned long flags; 422 int zot_me = 0; 423 424 spin_lock_irqsave(&rs->rs_rdma_lock, flags); 425 mr = rds_mr_tree_walk(&rs->rs_rdma_keys, r_key, NULL); 426 if (!mr) { 427 pr_debug("rds: trying to unuse MR with unknown r_key %u!\n", 428 r_key); 429 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); 430 return; 431 } 432 433 if (mr->r_use_once || force) { 434 rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys); 435 RB_CLEAR_NODE(&mr->r_rb_node); 436 zot_me = 1; 437 } 438 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); 439 440 /* May have to issue a dma_sync on this memory region. 441 * Note we could avoid this if the operation was a RDMA READ, 442 * but at this point we can't tell. */ 443 if (mr->r_trans->sync_mr) 444 mr->r_trans->sync_mr(mr->r_trans_private, DMA_FROM_DEVICE); 445 446 /* If the MR was marked as invalidate, this will 447 * trigger an async flush. */ 448 if (zot_me) { 449 rds_destroy_mr(mr); 450 rds_mr_put(mr); 451 } 452 } 453 454 void rds_rdma_free_op(struct rm_rdma_op *ro) 455 { 456 unsigned int i; 457 458 for (i = 0; i < ro->op_nents; i++) { 459 struct page *page = sg_page(&ro->op_sg[i]); 460 461 /* Mark page dirty if it was possibly modified, which 462 * is the case for a RDMA_READ which copies from remote 463 * to local memory */ 464 if (!ro->op_write) { 465 WARN_ON(!page->mapping && irqs_disabled()); 466 set_page_dirty(page); 467 } 468 put_page(page); 469 } 470 471 kfree(ro->op_notifier); 472 ro->op_notifier = NULL; 473 ro->op_active = 0; 474 } 475 476 void rds_atomic_free_op(struct rm_atomic_op *ao) 477 { 478 struct page *page = sg_page(ao->op_sg); 479 480 /* Mark page dirty if it was possibly modified, which 481 * is the case for a RDMA_READ which copies from remote 482 * to local memory */ 483 set_page_dirty(page); 484 put_page(page); 485 486 kfree(ao->op_notifier); 487 ao->op_notifier = NULL; 488 ao->op_active = 0; 489 } 490 491 492 /* 493 * Count the number of pages needed to describe an incoming iovec array. 494 */ 495 static int rds_rdma_pages(struct rds_iovec iov[], int nr_iovecs) 496 { 497 int tot_pages = 0; 498 unsigned int nr_pages; 499 unsigned int i; 500 501 /* figure out the number of pages in the vector */ 502 for (i = 0; i < nr_iovecs; i++) { 503 nr_pages = rds_pages_in_vec(&iov[i]); 504 if (nr_pages == 0) 505 return -EINVAL; 506 507 tot_pages += nr_pages; 508 509 /* 510 * nr_pages for one entry is limited to (UINT_MAX>>PAGE_SHIFT)+1, 511 * so tot_pages cannot overflow without first going negative. 512 */ 513 if (tot_pages < 0) 514 return -EINVAL; 515 } 516 517 return tot_pages; 518 } 519 520 int rds_rdma_extra_size(struct rds_rdma_args *args) 521 { 522 struct rds_iovec vec; 523 struct rds_iovec __user *local_vec; 524 int tot_pages = 0; 525 unsigned int nr_pages; 526 unsigned int i; 527 528 local_vec = (struct rds_iovec __user *)(unsigned long) args->local_vec_addr; 529 530 if (args->nr_local == 0) 531 return -EINVAL; 532 533 /* figure out the number of pages in the vector */ 534 for (i = 0; i < args->nr_local; i++) { 535 if (copy_from_user(&vec, &local_vec[i], 536 sizeof(struct rds_iovec))) 537 return -EFAULT; 538 539 nr_pages = rds_pages_in_vec(&vec); 540 if (nr_pages == 0) 541 return -EINVAL; 542 543 tot_pages += nr_pages; 544 545 /* 546 * nr_pages for one entry is limited to (UINT_MAX>>PAGE_SHIFT)+1, 547 * so tot_pages cannot overflow without first going negative. 548 */ 549 if (tot_pages < 0) 550 return -EINVAL; 551 } 552 553 return tot_pages * sizeof(struct scatterlist); 554 } 555 556 /* 557 * The application asks for a RDMA transfer. 558 * Extract all arguments and set up the rdma_op 559 */ 560 int rds_cmsg_rdma_args(struct rds_sock *rs, struct rds_message *rm, 561 struct cmsghdr *cmsg) 562 { 563 struct rds_rdma_args *args; 564 struct rm_rdma_op *op = &rm->rdma; 565 int nr_pages; 566 unsigned int nr_bytes; 567 struct page **pages = NULL; 568 struct rds_iovec iovstack[UIO_FASTIOV], *iovs = iovstack; 569 int iov_size; 570 unsigned int i, j; 571 int ret = 0; 572 573 if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_rdma_args)) 574 || rm->rdma.op_active) 575 return -EINVAL; 576 577 args = CMSG_DATA(cmsg); 578 579 if (rs->rs_bound_addr == 0) { 580 ret = -ENOTCONN; /* XXX not a great errno */ 581 goto out_ret; 582 } 583 584 if (args->nr_local > UIO_MAXIOV) { 585 ret = -EMSGSIZE; 586 goto out_ret; 587 } 588 589 /* Check whether to allocate the iovec area */ 590 iov_size = args->nr_local * sizeof(struct rds_iovec); 591 if (args->nr_local > UIO_FASTIOV) { 592 iovs = sock_kmalloc(rds_rs_to_sk(rs), iov_size, GFP_KERNEL); 593 if (!iovs) { 594 ret = -ENOMEM; 595 goto out_ret; 596 } 597 } 598 599 if (copy_from_user(iovs, (struct rds_iovec __user *)(unsigned long) args->local_vec_addr, iov_size)) { 600 ret = -EFAULT; 601 goto out; 602 } 603 604 nr_pages = rds_rdma_pages(iovs, args->nr_local); 605 if (nr_pages < 0) { 606 ret = -EINVAL; 607 goto out; 608 } 609 610 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL); 611 if (!pages) { 612 ret = -ENOMEM; 613 goto out; 614 } 615 616 op->op_write = !!(args->flags & RDS_RDMA_READWRITE); 617 op->op_fence = !!(args->flags & RDS_RDMA_FENCE); 618 op->op_notify = !!(args->flags & RDS_RDMA_NOTIFY_ME); 619 op->op_silent = !!(args->flags & RDS_RDMA_SILENT); 620 op->op_active = 1; 621 op->op_recverr = rs->rs_recverr; 622 WARN_ON(!nr_pages); 623 op->op_sg = rds_message_alloc_sgs(rm, nr_pages); 624 if (!op->op_sg) { 625 ret = -ENOMEM; 626 goto out; 627 } 628 629 if (op->op_notify || op->op_recverr) { 630 /* We allocate an uninitialized notifier here, because 631 * we don't want to do that in the completion handler. We 632 * would have to use GFP_ATOMIC there, and don't want to deal 633 * with failed allocations. 634 */ 635 op->op_notifier = kmalloc(sizeof(struct rds_notifier), GFP_KERNEL); 636 if (!op->op_notifier) { 637 ret = -ENOMEM; 638 goto out; 639 } 640 op->op_notifier->n_user_token = args->user_token; 641 op->op_notifier->n_status = RDS_RDMA_SUCCESS; 642 643 /* Enable rmda notification on data operation for composite 644 * rds messages and make sure notification is enabled only 645 * for the data operation which follows it so that application 646 * gets notified only after full message gets delivered. 647 */ 648 if (rm->data.op_sg) { 649 rm->rdma.op_notify = 0; 650 rm->data.op_notify = !!(args->flags & RDS_RDMA_NOTIFY_ME); 651 } 652 } 653 654 /* The cookie contains the R_Key of the remote memory region, and 655 * optionally an offset into it. This is how we implement RDMA into 656 * unaligned memory. 657 * When setting up the RDMA, we need to add that offset to the 658 * destination address (which is really an offset into the MR) 659 * FIXME: We may want to move this into ib_rdma.c 660 */ 661 op->op_rkey = rds_rdma_cookie_key(args->cookie); 662 op->op_remote_addr = args->remote_vec.addr + rds_rdma_cookie_offset(args->cookie); 663 664 nr_bytes = 0; 665 666 rdsdebug("RDS: rdma prepare nr_local %llu rva %llx rkey %x\n", 667 (unsigned long long)args->nr_local, 668 (unsigned long long)args->remote_vec.addr, 669 op->op_rkey); 670 671 for (i = 0; i < args->nr_local; i++) { 672 struct rds_iovec *iov = &iovs[i]; 673 /* don't need to check, rds_rdma_pages() verified nr will be +nonzero */ 674 unsigned int nr = rds_pages_in_vec(iov); 675 676 rs->rs_user_addr = iov->addr; 677 rs->rs_user_bytes = iov->bytes; 678 679 /* If it's a WRITE operation, we want to pin the pages for reading. 680 * If it's a READ operation, we need to pin the pages for writing. 681 */ 682 ret = rds_pin_pages(iov->addr, nr, pages, !op->op_write); 683 if (ret < 0) 684 goto out; 685 else 686 ret = 0; 687 688 rdsdebug("RDS: nr_bytes %u nr %u iov->bytes %llu iov->addr %llx\n", 689 nr_bytes, nr, iov->bytes, iov->addr); 690 691 nr_bytes += iov->bytes; 692 693 for (j = 0; j < nr; j++) { 694 unsigned int offset = iov->addr & ~PAGE_MASK; 695 struct scatterlist *sg; 696 697 sg = &op->op_sg[op->op_nents + j]; 698 sg_set_page(sg, pages[j], 699 min_t(unsigned int, iov->bytes, PAGE_SIZE - offset), 700 offset); 701 702 rdsdebug("RDS: sg->offset %x sg->len %x iov->addr %llx iov->bytes %llu\n", 703 sg->offset, sg->length, iov->addr, iov->bytes); 704 705 iov->addr += sg->length; 706 iov->bytes -= sg->length; 707 } 708 709 op->op_nents += nr; 710 } 711 712 if (nr_bytes > args->remote_vec.bytes) { 713 rdsdebug("RDS nr_bytes %u remote_bytes %u do not match\n", 714 nr_bytes, 715 (unsigned int) args->remote_vec.bytes); 716 ret = -EINVAL; 717 goto out; 718 } 719 op->op_bytes = nr_bytes; 720 721 out: 722 if (iovs != iovstack) 723 sock_kfree_s(rds_rs_to_sk(rs), iovs, iov_size); 724 kfree(pages); 725 out_ret: 726 if (ret) 727 rds_rdma_free_op(op); 728 else 729 rds_stats_inc(s_send_rdma); 730 731 return ret; 732 } 733 734 /* 735 * The application wants us to pass an RDMA destination (aka MR) 736 * to the remote 737 */ 738 int rds_cmsg_rdma_dest(struct rds_sock *rs, struct rds_message *rm, 739 struct cmsghdr *cmsg) 740 { 741 unsigned long flags; 742 struct rds_mr *mr; 743 u32 r_key; 744 int err = 0; 745 746 if (cmsg->cmsg_len < CMSG_LEN(sizeof(rds_rdma_cookie_t)) || 747 rm->m_rdma_cookie != 0) 748 return -EINVAL; 749 750 memcpy(&rm->m_rdma_cookie, CMSG_DATA(cmsg), sizeof(rm->m_rdma_cookie)); 751 752 /* We are reusing a previously mapped MR here. Most likely, the 753 * application has written to the buffer, so we need to explicitly 754 * flush those writes to RAM. Otherwise the HCA may not see them 755 * when doing a DMA from that buffer. 756 */ 757 r_key = rds_rdma_cookie_key(rm->m_rdma_cookie); 758 759 spin_lock_irqsave(&rs->rs_rdma_lock, flags); 760 mr = rds_mr_tree_walk(&rs->rs_rdma_keys, r_key, NULL); 761 if (!mr) 762 err = -EINVAL; /* invalid r_key */ 763 else 764 refcount_inc(&mr->r_refcount); 765 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); 766 767 if (mr) { 768 mr->r_trans->sync_mr(mr->r_trans_private, DMA_TO_DEVICE); 769 rm->rdma.op_rdma_mr = mr; 770 } 771 return err; 772 } 773 774 /* 775 * The application passes us an address range it wants to enable RDMA 776 * to/from. We map the area, and save the <R_Key,offset> pair 777 * in rm->m_rdma_cookie. This causes it to be sent along to the peer 778 * in an extension header. 779 */ 780 int rds_cmsg_rdma_map(struct rds_sock *rs, struct rds_message *rm, 781 struct cmsghdr *cmsg) 782 { 783 if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_get_mr_args)) || 784 rm->m_rdma_cookie != 0) 785 return -EINVAL; 786 787 return __rds_rdma_map(rs, CMSG_DATA(cmsg), &rm->m_rdma_cookie, 788 &rm->rdma.op_rdma_mr, rm->m_conn_path); 789 } 790 791 /* 792 * Fill in rds_message for an atomic request. 793 */ 794 int rds_cmsg_atomic(struct rds_sock *rs, struct rds_message *rm, 795 struct cmsghdr *cmsg) 796 { 797 struct page *page = NULL; 798 struct rds_atomic_args *args; 799 int ret = 0; 800 801 if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_atomic_args)) 802 || rm->atomic.op_active) 803 return -EINVAL; 804 805 args = CMSG_DATA(cmsg); 806 807 /* Nonmasked & masked cmsg ops converted to masked hw ops */ 808 switch (cmsg->cmsg_type) { 809 case RDS_CMSG_ATOMIC_FADD: 810 rm->atomic.op_type = RDS_ATOMIC_TYPE_FADD; 811 rm->atomic.op_m_fadd.add = args->fadd.add; 812 rm->atomic.op_m_fadd.nocarry_mask = 0; 813 break; 814 case RDS_CMSG_MASKED_ATOMIC_FADD: 815 rm->atomic.op_type = RDS_ATOMIC_TYPE_FADD; 816 rm->atomic.op_m_fadd.add = args->m_fadd.add; 817 rm->atomic.op_m_fadd.nocarry_mask = args->m_fadd.nocarry_mask; 818 break; 819 case RDS_CMSG_ATOMIC_CSWP: 820 rm->atomic.op_type = RDS_ATOMIC_TYPE_CSWP; 821 rm->atomic.op_m_cswp.compare = args->cswp.compare; 822 rm->atomic.op_m_cswp.swap = args->cswp.swap; 823 rm->atomic.op_m_cswp.compare_mask = ~0; 824 rm->atomic.op_m_cswp.swap_mask = ~0; 825 break; 826 case RDS_CMSG_MASKED_ATOMIC_CSWP: 827 rm->atomic.op_type = RDS_ATOMIC_TYPE_CSWP; 828 rm->atomic.op_m_cswp.compare = args->m_cswp.compare; 829 rm->atomic.op_m_cswp.swap = args->m_cswp.swap; 830 rm->atomic.op_m_cswp.compare_mask = args->m_cswp.compare_mask; 831 rm->atomic.op_m_cswp.swap_mask = args->m_cswp.swap_mask; 832 break; 833 default: 834 BUG(); /* should never happen */ 835 } 836 837 rm->atomic.op_notify = !!(args->flags & RDS_RDMA_NOTIFY_ME); 838 rm->atomic.op_silent = !!(args->flags & RDS_RDMA_SILENT); 839 rm->atomic.op_active = 1; 840 rm->atomic.op_recverr = rs->rs_recverr; 841 rm->atomic.op_sg = rds_message_alloc_sgs(rm, 1); 842 if (!rm->atomic.op_sg) { 843 ret = -ENOMEM; 844 goto err; 845 } 846 847 /* verify 8 byte-aligned */ 848 if (args->local_addr & 0x7) { 849 ret = -EFAULT; 850 goto err; 851 } 852 853 ret = rds_pin_pages(args->local_addr, 1, &page, 1); 854 if (ret != 1) 855 goto err; 856 ret = 0; 857 858 sg_set_page(rm->atomic.op_sg, page, 8, offset_in_page(args->local_addr)); 859 860 if (rm->atomic.op_notify || rm->atomic.op_recverr) { 861 /* We allocate an uninitialized notifier here, because 862 * we don't want to do that in the completion handler. We 863 * would have to use GFP_ATOMIC there, and don't want to deal 864 * with failed allocations. 865 */ 866 rm->atomic.op_notifier = kmalloc(sizeof(*rm->atomic.op_notifier), GFP_KERNEL); 867 if (!rm->atomic.op_notifier) { 868 ret = -ENOMEM; 869 goto err; 870 } 871 872 rm->atomic.op_notifier->n_user_token = args->user_token; 873 rm->atomic.op_notifier->n_status = RDS_RDMA_SUCCESS; 874 } 875 876 rm->atomic.op_rkey = rds_rdma_cookie_key(args->cookie); 877 rm->atomic.op_remote_addr = args->remote_addr + rds_rdma_cookie_offset(args->cookie); 878 879 return ret; 880 err: 881 if (page) 882 put_page(page); 883 rm->atomic.op_active = 0; 884 kfree(rm->atomic.op_notifier); 885 886 return ret; 887 } 888