xref: /openbmc/linux/net/rds/rdma.c (revision eee2fa6a)
1 /*
2  * Copyright (c) 2007, 2017 Oracle and/or its affiliates. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/pagemap.h>
34 #include <linux/slab.h>
35 #include <linux/rbtree.h>
36 #include <linux/dma-mapping.h> /* for DMA_*_DEVICE */
37 
38 #include "rds.h"
39 
40 /*
41  * XXX
42  *  - build with sparse
43  *  - should we detect duplicate keys on a socket?  hmm.
44  *  - an rdma is an mlock, apply rlimit?
45  */
46 
47 /*
48  * get the number of pages by looking at the page indices that the start and
49  * end addresses fall in.
50  *
51  * Returns 0 if the vec is invalid.  It is invalid if the number of bytes
52  * causes the address to wrap or overflows an unsigned int.  This comes
53  * from being stored in the 'length' member of 'struct scatterlist'.
54  */
55 static unsigned int rds_pages_in_vec(struct rds_iovec *vec)
56 {
57 	if ((vec->addr + vec->bytes <= vec->addr) ||
58 	    (vec->bytes > (u64)UINT_MAX))
59 		return 0;
60 
61 	return ((vec->addr + vec->bytes + PAGE_SIZE - 1) >> PAGE_SHIFT) -
62 		(vec->addr >> PAGE_SHIFT);
63 }
64 
65 static struct rds_mr *rds_mr_tree_walk(struct rb_root *root, u64 key,
66 				       struct rds_mr *insert)
67 {
68 	struct rb_node **p = &root->rb_node;
69 	struct rb_node *parent = NULL;
70 	struct rds_mr *mr;
71 
72 	while (*p) {
73 		parent = *p;
74 		mr = rb_entry(parent, struct rds_mr, r_rb_node);
75 
76 		if (key < mr->r_key)
77 			p = &(*p)->rb_left;
78 		else if (key > mr->r_key)
79 			p = &(*p)->rb_right;
80 		else
81 			return mr;
82 	}
83 
84 	if (insert) {
85 		rb_link_node(&insert->r_rb_node, parent, p);
86 		rb_insert_color(&insert->r_rb_node, root);
87 		refcount_inc(&insert->r_refcount);
88 	}
89 	return NULL;
90 }
91 
92 /*
93  * Destroy the transport-specific part of a MR.
94  */
95 static void rds_destroy_mr(struct rds_mr *mr)
96 {
97 	struct rds_sock *rs = mr->r_sock;
98 	void *trans_private = NULL;
99 	unsigned long flags;
100 
101 	rdsdebug("RDS: destroy mr key is %x refcnt %u\n",
102 			mr->r_key, refcount_read(&mr->r_refcount));
103 
104 	if (test_and_set_bit(RDS_MR_DEAD, &mr->r_state))
105 		return;
106 
107 	spin_lock_irqsave(&rs->rs_rdma_lock, flags);
108 	if (!RB_EMPTY_NODE(&mr->r_rb_node))
109 		rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
110 	trans_private = mr->r_trans_private;
111 	mr->r_trans_private = NULL;
112 	spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
113 
114 	if (trans_private)
115 		mr->r_trans->free_mr(trans_private, mr->r_invalidate);
116 }
117 
118 void __rds_put_mr_final(struct rds_mr *mr)
119 {
120 	rds_destroy_mr(mr);
121 	kfree(mr);
122 }
123 
124 /*
125  * By the time this is called we can't have any more ioctls called on
126  * the socket so we don't need to worry about racing with others.
127  */
128 void rds_rdma_drop_keys(struct rds_sock *rs)
129 {
130 	struct rds_mr *mr;
131 	struct rb_node *node;
132 	unsigned long flags;
133 
134 	/* Release any MRs associated with this socket */
135 	spin_lock_irqsave(&rs->rs_rdma_lock, flags);
136 	while ((node = rb_first(&rs->rs_rdma_keys))) {
137 		mr = rb_entry(node, struct rds_mr, r_rb_node);
138 		if (mr->r_trans == rs->rs_transport)
139 			mr->r_invalidate = 0;
140 		rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
141 		RB_CLEAR_NODE(&mr->r_rb_node);
142 		spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
143 		rds_destroy_mr(mr);
144 		rds_mr_put(mr);
145 		spin_lock_irqsave(&rs->rs_rdma_lock, flags);
146 	}
147 	spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
148 
149 	if (rs->rs_transport && rs->rs_transport->flush_mrs)
150 		rs->rs_transport->flush_mrs();
151 }
152 
153 /*
154  * Helper function to pin user pages.
155  */
156 static int rds_pin_pages(unsigned long user_addr, unsigned int nr_pages,
157 			struct page **pages, int write)
158 {
159 	int ret;
160 
161 	ret = get_user_pages_fast(user_addr, nr_pages, write, pages);
162 
163 	if (ret >= 0 && ret < nr_pages) {
164 		while (ret--)
165 			put_page(pages[ret]);
166 		ret = -EFAULT;
167 	}
168 
169 	return ret;
170 }
171 
172 static int __rds_rdma_map(struct rds_sock *rs, struct rds_get_mr_args *args,
173 				u64 *cookie_ret, struct rds_mr **mr_ret)
174 {
175 	struct rds_mr *mr = NULL, *found;
176 	unsigned int nr_pages;
177 	struct page **pages = NULL;
178 	struct scatterlist *sg;
179 	void *trans_private;
180 	unsigned long flags;
181 	rds_rdma_cookie_t cookie;
182 	unsigned int nents;
183 	long i;
184 	int ret;
185 
186 	if (ipv6_addr_any(&rs->rs_bound_addr) || !rs->rs_transport) {
187 		ret = -ENOTCONN; /* XXX not a great errno */
188 		goto out;
189 	}
190 
191 	if (!rs->rs_transport->get_mr) {
192 		ret = -EOPNOTSUPP;
193 		goto out;
194 	}
195 
196 	nr_pages = rds_pages_in_vec(&args->vec);
197 	if (nr_pages == 0) {
198 		ret = -EINVAL;
199 		goto out;
200 	}
201 
202 	/* Restrict the size of mr irrespective of underlying transport
203 	 * To account for unaligned mr regions, subtract one from nr_pages
204 	 */
205 	if ((nr_pages - 1) > (RDS_MAX_MSG_SIZE >> PAGE_SHIFT)) {
206 		ret = -EMSGSIZE;
207 		goto out;
208 	}
209 
210 	rdsdebug("RDS: get_mr addr %llx len %llu nr_pages %u\n",
211 		args->vec.addr, args->vec.bytes, nr_pages);
212 
213 	/* XXX clamp nr_pages to limit the size of this alloc? */
214 	pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
215 	if (!pages) {
216 		ret = -ENOMEM;
217 		goto out;
218 	}
219 
220 	mr = kzalloc(sizeof(struct rds_mr), GFP_KERNEL);
221 	if (!mr) {
222 		ret = -ENOMEM;
223 		goto out;
224 	}
225 
226 	refcount_set(&mr->r_refcount, 1);
227 	RB_CLEAR_NODE(&mr->r_rb_node);
228 	mr->r_trans = rs->rs_transport;
229 	mr->r_sock = rs;
230 
231 	if (args->flags & RDS_RDMA_USE_ONCE)
232 		mr->r_use_once = 1;
233 	if (args->flags & RDS_RDMA_INVALIDATE)
234 		mr->r_invalidate = 1;
235 	if (args->flags & RDS_RDMA_READWRITE)
236 		mr->r_write = 1;
237 
238 	/*
239 	 * Pin the pages that make up the user buffer and transfer the page
240 	 * pointers to the mr's sg array.  We check to see if we've mapped
241 	 * the whole region after transferring the partial page references
242 	 * to the sg array so that we can have one page ref cleanup path.
243 	 *
244 	 * For now we have no flag that tells us whether the mapping is
245 	 * r/o or r/w. We need to assume r/w, or we'll do a lot of RDMA to
246 	 * the zero page.
247 	 */
248 	ret = rds_pin_pages(args->vec.addr, nr_pages, pages, 1);
249 	if (ret < 0)
250 		goto out;
251 
252 	nents = ret;
253 	sg = kcalloc(nents, sizeof(*sg), GFP_KERNEL);
254 	if (!sg) {
255 		ret = -ENOMEM;
256 		goto out;
257 	}
258 	WARN_ON(!nents);
259 	sg_init_table(sg, nents);
260 
261 	/* Stick all pages into the scatterlist */
262 	for (i = 0 ; i < nents; i++)
263 		sg_set_page(&sg[i], pages[i], PAGE_SIZE, 0);
264 
265 	rdsdebug("RDS: trans_private nents is %u\n", nents);
266 
267 	/* Obtain a transport specific MR. If this succeeds, the
268 	 * s/g list is now owned by the MR.
269 	 * Note that dma_map() implies that pending writes are
270 	 * flushed to RAM, so no dma_sync is needed here. */
271 	trans_private = rs->rs_transport->get_mr(sg, nents, rs,
272 						 &mr->r_key);
273 
274 	if (IS_ERR(trans_private)) {
275 		for (i = 0 ; i < nents; i++)
276 			put_page(sg_page(&sg[i]));
277 		kfree(sg);
278 		ret = PTR_ERR(trans_private);
279 		goto out;
280 	}
281 
282 	mr->r_trans_private = trans_private;
283 
284 	rdsdebug("RDS: get_mr put_user key is %x cookie_addr %p\n",
285 	       mr->r_key, (void *)(unsigned long) args->cookie_addr);
286 
287 	/* The user may pass us an unaligned address, but we can only
288 	 * map page aligned regions. So we keep the offset, and build
289 	 * a 64bit cookie containing <R_Key, offset> and pass that
290 	 * around. */
291 	cookie = rds_rdma_make_cookie(mr->r_key, args->vec.addr & ~PAGE_MASK);
292 	if (cookie_ret)
293 		*cookie_ret = cookie;
294 
295 	if (args->cookie_addr && put_user(cookie, (u64 __user *)(unsigned long) args->cookie_addr)) {
296 		ret = -EFAULT;
297 		goto out;
298 	}
299 
300 	/* Inserting the new MR into the rbtree bumps its
301 	 * reference count. */
302 	spin_lock_irqsave(&rs->rs_rdma_lock, flags);
303 	found = rds_mr_tree_walk(&rs->rs_rdma_keys, mr->r_key, mr);
304 	spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
305 
306 	BUG_ON(found && found != mr);
307 
308 	rdsdebug("RDS: get_mr key is %x\n", mr->r_key);
309 	if (mr_ret) {
310 		refcount_inc(&mr->r_refcount);
311 		*mr_ret = mr;
312 	}
313 
314 	ret = 0;
315 out:
316 	kfree(pages);
317 	if (mr)
318 		rds_mr_put(mr);
319 	return ret;
320 }
321 
322 int rds_get_mr(struct rds_sock *rs, char __user *optval, int optlen)
323 {
324 	struct rds_get_mr_args args;
325 
326 	if (optlen != sizeof(struct rds_get_mr_args))
327 		return -EINVAL;
328 
329 	if (copy_from_user(&args, (struct rds_get_mr_args __user *)optval,
330 			   sizeof(struct rds_get_mr_args)))
331 		return -EFAULT;
332 
333 	return __rds_rdma_map(rs, &args, NULL, NULL);
334 }
335 
336 int rds_get_mr_for_dest(struct rds_sock *rs, char __user *optval, int optlen)
337 {
338 	struct rds_get_mr_for_dest_args args;
339 	struct rds_get_mr_args new_args;
340 
341 	if (optlen != sizeof(struct rds_get_mr_for_dest_args))
342 		return -EINVAL;
343 
344 	if (copy_from_user(&args, (struct rds_get_mr_for_dest_args __user *)optval,
345 			   sizeof(struct rds_get_mr_for_dest_args)))
346 		return -EFAULT;
347 
348 	/*
349 	 * Initially, just behave like get_mr().
350 	 * TODO: Implement get_mr as wrapper around this
351 	 *	 and deprecate it.
352 	 */
353 	new_args.vec = args.vec;
354 	new_args.cookie_addr = args.cookie_addr;
355 	new_args.flags = args.flags;
356 
357 	return __rds_rdma_map(rs, &new_args, NULL, NULL);
358 }
359 
360 /*
361  * Free the MR indicated by the given R_Key
362  */
363 int rds_free_mr(struct rds_sock *rs, char __user *optval, int optlen)
364 {
365 	struct rds_free_mr_args args;
366 	struct rds_mr *mr;
367 	unsigned long flags;
368 
369 	if (optlen != sizeof(struct rds_free_mr_args))
370 		return -EINVAL;
371 
372 	if (copy_from_user(&args, (struct rds_free_mr_args __user *)optval,
373 			   sizeof(struct rds_free_mr_args)))
374 		return -EFAULT;
375 
376 	/* Special case - a null cookie means flush all unused MRs */
377 	if (args.cookie == 0) {
378 		if (!rs->rs_transport || !rs->rs_transport->flush_mrs)
379 			return -EINVAL;
380 		rs->rs_transport->flush_mrs();
381 		return 0;
382 	}
383 
384 	/* Look up the MR given its R_key and remove it from the rbtree
385 	 * so nobody else finds it.
386 	 * This should also prevent races with rds_rdma_unuse.
387 	 */
388 	spin_lock_irqsave(&rs->rs_rdma_lock, flags);
389 	mr = rds_mr_tree_walk(&rs->rs_rdma_keys, rds_rdma_cookie_key(args.cookie), NULL);
390 	if (mr) {
391 		rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
392 		RB_CLEAR_NODE(&mr->r_rb_node);
393 		if (args.flags & RDS_RDMA_INVALIDATE)
394 			mr->r_invalidate = 1;
395 	}
396 	spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
397 
398 	if (!mr)
399 		return -EINVAL;
400 
401 	/*
402 	 * call rds_destroy_mr() ourselves so that we're sure it's done by the time
403 	 * we return.  If we let rds_mr_put() do it it might not happen until
404 	 * someone else drops their ref.
405 	 */
406 	rds_destroy_mr(mr);
407 	rds_mr_put(mr);
408 	return 0;
409 }
410 
411 /*
412  * This is called when we receive an extension header that
413  * tells us this MR was used. It allows us to implement
414  * use_once semantics
415  */
416 void rds_rdma_unuse(struct rds_sock *rs, u32 r_key, int force)
417 {
418 	struct rds_mr *mr;
419 	unsigned long flags;
420 	int zot_me = 0;
421 
422 	spin_lock_irqsave(&rs->rs_rdma_lock, flags);
423 	mr = rds_mr_tree_walk(&rs->rs_rdma_keys, r_key, NULL);
424 	if (!mr) {
425 		pr_debug("rds: trying to unuse MR with unknown r_key %u!\n",
426 			 r_key);
427 		spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
428 		return;
429 	}
430 
431 	if (mr->r_use_once || force) {
432 		rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
433 		RB_CLEAR_NODE(&mr->r_rb_node);
434 		zot_me = 1;
435 	}
436 	spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
437 
438 	/* May have to issue a dma_sync on this memory region.
439 	 * Note we could avoid this if the operation was a RDMA READ,
440 	 * but at this point we can't tell. */
441 	if (mr->r_trans->sync_mr)
442 		mr->r_trans->sync_mr(mr->r_trans_private, DMA_FROM_DEVICE);
443 
444 	/* If the MR was marked as invalidate, this will
445 	 * trigger an async flush. */
446 	if (zot_me) {
447 		rds_destroy_mr(mr);
448 		rds_mr_put(mr);
449 	}
450 }
451 
452 void rds_rdma_free_op(struct rm_rdma_op *ro)
453 {
454 	unsigned int i;
455 
456 	for (i = 0; i < ro->op_nents; i++) {
457 		struct page *page = sg_page(&ro->op_sg[i]);
458 
459 		/* Mark page dirty if it was possibly modified, which
460 		 * is the case for a RDMA_READ which copies from remote
461 		 * to local memory */
462 		if (!ro->op_write) {
463 			WARN_ON(!page->mapping && irqs_disabled());
464 			set_page_dirty(page);
465 		}
466 		put_page(page);
467 	}
468 
469 	kfree(ro->op_notifier);
470 	ro->op_notifier = NULL;
471 	ro->op_active = 0;
472 }
473 
474 void rds_atomic_free_op(struct rm_atomic_op *ao)
475 {
476 	struct page *page = sg_page(ao->op_sg);
477 
478 	/* Mark page dirty if it was possibly modified, which
479 	 * is the case for a RDMA_READ which copies from remote
480 	 * to local memory */
481 	set_page_dirty(page);
482 	put_page(page);
483 
484 	kfree(ao->op_notifier);
485 	ao->op_notifier = NULL;
486 	ao->op_active = 0;
487 }
488 
489 
490 /*
491  * Count the number of pages needed to describe an incoming iovec array.
492  */
493 static int rds_rdma_pages(struct rds_iovec iov[], int nr_iovecs)
494 {
495 	int tot_pages = 0;
496 	unsigned int nr_pages;
497 	unsigned int i;
498 
499 	/* figure out the number of pages in the vector */
500 	for (i = 0; i < nr_iovecs; i++) {
501 		nr_pages = rds_pages_in_vec(&iov[i]);
502 		if (nr_pages == 0)
503 			return -EINVAL;
504 
505 		tot_pages += nr_pages;
506 
507 		/*
508 		 * nr_pages for one entry is limited to (UINT_MAX>>PAGE_SHIFT)+1,
509 		 * so tot_pages cannot overflow without first going negative.
510 		 */
511 		if (tot_pages < 0)
512 			return -EINVAL;
513 	}
514 
515 	return tot_pages;
516 }
517 
518 int rds_rdma_extra_size(struct rds_rdma_args *args)
519 {
520 	struct rds_iovec vec;
521 	struct rds_iovec __user *local_vec;
522 	int tot_pages = 0;
523 	unsigned int nr_pages;
524 	unsigned int i;
525 
526 	local_vec = (struct rds_iovec __user *)(unsigned long) args->local_vec_addr;
527 
528 	if (args->nr_local == 0)
529 		return -EINVAL;
530 
531 	/* figure out the number of pages in the vector */
532 	for (i = 0; i < args->nr_local; i++) {
533 		if (copy_from_user(&vec, &local_vec[i],
534 				   sizeof(struct rds_iovec)))
535 			return -EFAULT;
536 
537 		nr_pages = rds_pages_in_vec(&vec);
538 		if (nr_pages == 0)
539 			return -EINVAL;
540 
541 		tot_pages += nr_pages;
542 
543 		/*
544 		 * nr_pages for one entry is limited to (UINT_MAX>>PAGE_SHIFT)+1,
545 		 * so tot_pages cannot overflow without first going negative.
546 		 */
547 		if (tot_pages < 0)
548 			return -EINVAL;
549 	}
550 
551 	return tot_pages * sizeof(struct scatterlist);
552 }
553 
554 /*
555  * The application asks for a RDMA transfer.
556  * Extract all arguments and set up the rdma_op
557  */
558 int rds_cmsg_rdma_args(struct rds_sock *rs, struct rds_message *rm,
559 			  struct cmsghdr *cmsg)
560 {
561 	struct rds_rdma_args *args;
562 	struct rm_rdma_op *op = &rm->rdma;
563 	int nr_pages;
564 	unsigned int nr_bytes;
565 	struct page **pages = NULL;
566 	struct rds_iovec iovstack[UIO_FASTIOV], *iovs = iovstack;
567 	int iov_size;
568 	unsigned int i, j;
569 	int ret = 0;
570 
571 	if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_rdma_args))
572 	    || rm->rdma.op_active)
573 		return -EINVAL;
574 
575 	args = CMSG_DATA(cmsg);
576 
577 	if (ipv6_addr_any(&rs->rs_bound_addr)) {
578 		ret = -ENOTCONN; /* XXX not a great errno */
579 		goto out_ret;
580 	}
581 
582 	if (args->nr_local > UIO_MAXIOV) {
583 		ret = -EMSGSIZE;
584 		goto out_ret;
585 	}
586 
587 	/* Check whether to allocate the iovec area */
588 	iov_size = args->nr_local * sizeof(struct rds_iovec);
589 	if (args->nr_local > UIO_FASTIOV) {
590 		iovs = sock_kmalloc(rds_rs_to_sk(rs), iov_size, GFP_KERNEL);
591 		if (!iovs) {
592 			ret = -ENOMEM;
593 			goto out_ret;
594 		}
595 	}
596 
597 	if (copy_from_user(iovs, (struct rds_iovec __user *)(unsigned long) args->local_vec_addr, iov_size)) {
598 		ret = -EFAULT;
599 		goto out;
600 	}
601 
602 	nr_pages = rds_rdma_pages(iovs, args->nr_local);
603 	if (nr_pages < 0) {
604 		ret = -EINVAL;
605 		goto out;
606 	}
607 
608 	pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
609 	if (!pages) {
610 		ret = -ENOMEM;
611 		goto out;
612 	}
613 
614 	op->op_write = !!(args->flags & RDS_RDMA_READWRITE);
615 	op->op_fence = !!(args->flags & RDS_RDMA_FENCE);
616 	op->op_notify = !!(args->flags & RDS_RDMA_NOTIFY_ME);
617 	op->op_silent = !!(args->flags & RDS_RDMA_SILENT);
618 	op->op_active = 1;
619 	op->op_recverr = rs->rs_recverr;
620 	WARN_ON(!nr_pages);
621 	op->op_sg = rds_message_alloc_sgs(rm, nr_pages);
622 	if (!op->op_sg) {
623 		ret = -ENOMEM;
624 		goto out;
625 	}
626 
627 	if (op->op_notify || op->op_recverr) {
628 		/* We allocate an uninitialized notifier here, because
629 		 * we don't want to do that in the completion handler. We
630 		 * would have to use GFP_ATOMIC there, and don't want to deal
631 		 * with failed allocations.
632 		 */
633 		op->op_notifier = kmalloc(sizeof(struct rds_notifier), GFP_KERNEL);
634 		if (!op->op_notifier) {
635 			ret = -ENOMEM;
636 			goto out;
637 		}
638 		op->op_notifier->n_user_token = args->user_token;
639 		op->op_notifier->n_status = RDS_RDMA_SUCCESS;
640 
641 		/* Enable rmda notification on data operation for composite
642 		 * rds messages and make sure notification is enabled only
643 		 * for the data operation which follows it so that application
644 		 * gets notified only after full message gets delivered.
645 		 */
646 		if (rm->data.op_sg) {
647 			rm->rdma.op_notify = 0;
648 			rm->data.op_notify = !!(args->flags & RDS_RDMA_NOTIFY_ME);
649 		}
650 	}
651 
652 	/* The cookie contains the R_Key of the remote memory region, and
653 	 * optionally an offset into it. This is how we implement RDMA into
654 	 * unaligned memory.
655 	 * When setting up the RDMA, we need to add that offset to the
656 	 * destination address (which is really an offset into the MR)
657 	 * FIXME: We may want to move this into ib_rdma.c
658 	 */
659 	op->op_rkey = rds_rdma_cookie_key(args->cookie);
660 	op->op_remote_addr = args->remote_vec.addr + rds_rdma_cookie_offset(args->cookie);
661 
662 	nr_bytes = 0;
663 
664 	rdsdebug("RDS: rdma prepare nr_local %llu rva %llx rkey %x\n",
665 	       (unsigned long long)args->nr_local,
666 	       (unsigned long long)args->remote_vec.addr,
667 	       op->op_rkey);
668 
669 	for (i = 0; i < args->nr_local; i++) {
670 		struct rds_iovec *iov = &iovs[i];
671 		/* don't need to check, rds_rdma_pages() verified nr will be +nonzero */
672 		unsigned int nr = rds_pages_in_vec(iov);
673 
674 		rs->rs_user_addr = iov->addr;
675 		rs->rs_user_bytes = iov->bytes;
676 
677 		/* If it's a WRITE operation, we want to pin the pages for reading.
678 		 * If it's a READ operation, we need to pin the pages for writing.
679 		 */
680 		ret = rds_pin_pages(iov->addr, nr, pages, !op->op_write);
681 		if (ret < 0)
682 			goto out;
683 		else
684 			ret = 0;
685 
686 		rdsdebug("RDS: nr_bytes %u nr %u iov->bytes %llu iov->addr %llx\n",
687 			 nr_bytes, nr, iov->bytes, iov->addr);
688 
689 		nr_bytes += iov->bytes;
690 
691 		for (j = 0; j < nr; j++) {
692 			unsigned int offset = iov->addr & ~PAGE_MASK;
693 			struct scatterlist *sg;
694 
695 			sg = &op->op_sg[op->op_nents + j];
696 			sg_set_page(sg, pages[j],
697 					min_t(unsigned int, iov->bytes, PAGE_SIZE - offset),
698 					offset);
699 
700 			rdsdebug("RDS: sg->offset %x sg->len %x iov->addr %llx iov->bytes %llu\n",
701 			       sg->offset, sg->length, iov->addr, iov->bytes);
702 
703 			iov->addr += sg->length;
704 			iov->bytes -= sg->length;
705 		}
706 
707 		op->op_nents += nr;
708 	}
709 
710 	if (nr_bytes > args->remote_vec.bytes) {
711 		rdsdebug("RDS nr_bytes %u remote_bytes %u do not match\n",
712 				nr_bytes,
713 				(unsigned int) args->remote_vec.bytes);
714 		ret = -EINVAL;
715 		goto out;
716 	}
717 	op->op_bytes = nr_bytes;
718 
719 out:
720 	if (iovs != iovstack)
721 		sock_kfree_s(rds_rs_to_sk(rs), iovs, iov_size);
722 	kfree(pages);
723 out_ret:
724 	if (ret)
725 		rds_rdma_free_op(op);
726 	else
727 		rds_stats_inc(s_send_rdma);
728 
729 	return ret;
730 }
731 
732 /*
733  * The application wants us to pass an RDMA destination (aka MR)
734  * to the remote
735  */
736 int rds_cmsg_rdma_dest(struct rds_sock *rs, struct rds_message *rm,
737 			  struct cmsghdr *cmsg)
738 {
739 	unsigned long flags;
740 	struct rds_mr *mr;
741 	u32 r_key;
742 	int err = 0;
743 
744 	if (cmsg->cmsg_len < CMSG_LEN(sizeof(rds_rdma_cookie_t)) ||
745 	    rm->m_rdma_cookie != 0)
746 		return -EINVAL;
747 
748 	memcpy(&rm->m_rdma_cookie, CMSG_DATA(cmsg), sizeof(rm->m_rdma_cookie));
749 
750 	/* We are reusing a previously mapped MR here. Most likely, the
751 	 * application has written to the buffer, so we need to explicitly
752 	 * flush those writes to RAM. Otherwise the HCA may not see them
753 	 * when doing a DMA from that buffer.
754 	 */
755 	r_key = rds_rdma_cookie_key(rm->m_rdma_cookie);
756 
757 	spin_lock_irqsave(&rs->rs_rdma_lock, flags);
758 	mr = rds_mr_tree_walk(&rs->rs_rdma_keys, r_key, NULL);
759 	if (!mr)
760 		err = -EINVAL;	/* invalid r_key */
761 	else
762 		refcount_inc(&mr->r_refcount);
763 	spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
764 
765 	if (mr) {
766 		mr->r_trans->sync_mr(mr->r_trans_private, DMA_TO_DEVICE);
767 		rm->rdma.op_rdma_mr = mr;
768 	}
769 	return err;
770 }
771 
772 /*
773  * The application passes us an address range it wants to enable RDMA
774  * to/from. We map the area, and save the <R_Key,offset> pair
775  * in rm->m_rdma_cookie. This causes it to be sent along to the peer
776  * in an extension header.
777  */
778 int rds_cmsg_rdma_map(struct rds_sock *rs, struct rds_message *rm,
779 			  struct cmsghdr *cmsg)
780 {
781 	if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_get_mr_args)) ||
782 	    rm->m_rdma_cookie != 0)
783 		return -EINVAL;
784 
785 	return __rds_rdma_map(rs, CMSG_DATA(cmsg), &rm->m_rdma_cookie, &rm->rdma.op_rdma_mr);
786 }
787 
788 /*
789  * Fill in rds_message for an atomic request.
790  */
791 int rds_cmsg_atomic(struct rds_sock *rs, struct rds_message *rm,
792 		    struct cmsghdr *cmsg)
793 {
794 	struct page *page = NULL;
795 	struct rds_atomic_args *args;
796 	int ret = 0;
797 
798 	if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_atomic_args))
799 	 || rm->atomic.op_active)
800 		return -EINVAL;
801 
802 	args = CMSG_DATA(cmsg);
803 
804 	/* Nonmasked & masked cmsg ops converted to masked hw ops */
805 	switch (cmsg->cmsg_type) {
806 	case RDS_CMSG_ATOMIC_FADD:
807 		rm->atomic.op_type = RDS_ATOMIC_TYPE_FADD;
808 		rm->atomic.op_m_fadd.add = args->fadd.add;
809 		rm->atomic.op_m_fadd.nocarry_mask = 0;
810 		break;
811 	case RDS_CMSG_MASKED_ATOMIC_FADD:
812 		rm->atomic.op_type = RDS_ATOMIC_TYPE_FADD;
813 		rm->atomic.op_m_fadd.add = args->m_fadd.add;
814 		rm->atomic.op_m_fadd.nocarry_mask = args->m_fadd.nocarry_mask;
815 		break;
816 	case RDS_CMSG_ATOMIC_CSWP:
817 		rm->atomic.op_type = RDS_ATOMIC_TYPE_CSWP;
818 		rm->atomic.op_m_cswp.compare = args->cswp.compare;
819 		rm->atomic.op_m_cswp.swap = args->cswp.swap;
820 		rm->atomic.op_m_cswp.compare_mask = ~0;
821 		rm->atomic.op_m_cswp.swap_mask = ~0;
822 		break;
823 	case RDS_CMSG_MASKED_ATOMIC_CSWP:
824 		rm->atomic.op_type = RDS_ATOMIC_TYPE_CSWP;
825 		rm->atomic.op_m_cswp.compare = args->m_cswp.compare;
826 		rm->atomic.op_m_cswp.swap = args->m_cswp.swap;
827 		rm->atomic.op_m_cswp.compare_mask = args->m_cswp.compare_mask;
828 		rm->atomic.op_m_cswp.swap_mask = args->m_cswp.swap_mask;
829 		break;
830 	default:
831 		BUG(); /* should never happen */
832 	}
833 
834 	rm->atomic.op_notify = !!(args->flags & RDS_RDMA_NOTIFY_ME);
835 	rm->atomic.op_silent = !!(args->flags & RDS_RDMA_SILENT);
836 	rm->atomic.op_active = 1;
837 	rm->atomic.op_recverr = rs->rs_recverr;
838 	rm->atomic.op_sg = rds_message_alloc_sgs(rm, 1);
839 	if (!rm->atomic.op_sg) {
840 		ret = -ENOMEM;
841 		goto err;
842 	}
843 
844 	/* verify 8 byte-aligned */
845 	if (args->local_addr & 0x7) {
846 		ret = -EFAULT;
847 		goto err;
848 	}
849 
850 	ret = rds_pin_pages(args->local_addr, 1, &page, 1);
851 	if (ret != 1)
852 		goto err;
853 	ret = 0;
854 
855 	sg_set_page(rm->atomic.op_sg, page, 8, offset_in_page(args->local_addr));
856 
857 	if (rm->atomic.op_notify || rm->atomic.op_recverr) {
858 		/* We allocate an uninitialized notifier here, because
859 		 * we don't want to do that in the completion handler. We
860 		 * would have to use GFP_ATOMIC there, and don't want to deal
861 		 * with failed allocations.
862 		 */
863 		rm->atomic.op_notifier = kmalloc(sizeof(*rm->atomic.op_notifier), GFP_KERNEL);
864 		if (!rm->atomic.op_notifier) {
865 			ret = -ENOMEM;
866 			goto err;
867 		}
868 
869 		rm->atomic.op_notifier->n_user_token = args->user_token;
870 		rm->atomic.op_notifier->n_status = RDS_RDMA_SUCCESS;
871 	}
872 
873 	rm->atomic.op_rkey = rds_rdma_cookie_key(args->cookie);
874 	rm->atomic.op_remote_addr = args->remote_addr + rds_rdma_cookie_offset(args->cookie);
875 
876 	return ret;
877 err:
878 	if (page)
879 		put_page(page);
880 	rm->atomic.op_active = 0;
881 	kfree(rm->atomic.op_notifier);
882 
883 	return ret;
884 }
885