xref: /openbmc/linux/net/rds/rdma.c (revision e8e0929d)
1 /*
2  * Copyright (c) 2007 Oracle.  All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/pagemap.h>
34 #include <linux/rbtree.h>
35 #include <linux/dma-mapping.h> /* for DMA_*_DEVICE */
36 
37 #include "rdma.h"
38 
39 /*
40  * XXX
41  *  - build with sparse
42  *  - should we limit the size of a mr region?  let transport return failure?
43  *  - should we detect duplicate keys on a socket?  hmm.
44  *  - an rdma is an mlock, apply rlimit?
45  */
46 
47 /*
48  * get the number of pages by looking at the page indices that the start and
49  * end addresses fall in.
50  *
51  * Returns 0 if the vec is invalid.  It is invalid if the number of bytes
52  * causes the address to wrap or overflows an unsigned int.  This comes
53  * from being stored in the 'length' member of 'struct scatterlist'.
54  */
55 static unsigned int rds_pages_in_vec(struct rds_iovec *vec)
56 {
57 	if ((vec->addr + vec->bytes <= vec->addr) ||
58 	    (vec->bytes > (u64)UINT_MAX))
59 		return 0;
60 
61 	return ((vec->addr + vec->bytes + PAGE_SIZE - 1) >> PAGE_SHIFT) -
62 		(vec->addr >> PAGE_SHIFT);
63 }
64 
65 static struct rds_mr *rds_mr_tree_walk(struct rb_root *root, u64 key,
66 				       struct rds_mr *insert)
67 {
68 	struct rb_node **p = &root->rb_node;
69 	struct rb_node *parent = NULL;
70 	struct rds_mr *mr;
71 
72 	while (*p) {
73 		parent = *p;
74 		mr = rb_entry(parent, struct rds_mr, r_rb_node);
75 
76 		if (key < mr->r_key)
77 			p = &(*p)->rb_left;
78 		else if (key > mr->r_key)
79 			p = &(*p)->rb_right;
80 		else
81 			return mr;
82 	}
83 
84 	if (insert) {
85 		rb_link_node(&insert->r_rb_node, parent, p);
86 		rb_insert_color(&insert->r_rb_node, root);
87 		atomic_inc(&insert->r_refcount);
88 	}
89 	return NULL;
90 }
91 
92 /*
93  * Destroy the transport-specific part of a MR.
94  */
95 static void rds_destroy_mr(struct rds_mr *mr)
96 {
97 	struct rds_sock *rs = mr->r_sock;
98 	void *trans_private = NULL;
99 	unsigned long flags;
100 
101 	rdsdebug("RDS: destroy mr key is %x refcnt %u\n",
102 			mr->r_key, atomic_read(&mr->r_refcount));
103 
104 	if (test_and_set_bit(RDS_MR_DEAD, &mr->r_state))
105 		return;
106 
107 	spin_lock_irqsave(&rs->rs_rdma_lock, flags);
108 	if (!RB_EMPTY_NODE(&mr->r_rb_node))
109 		rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
110 	trans_private = mr->r_trans_private;
111 	mr->r_trans_private = NULL;
112 	spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
113 
114 	if (trans_private)
115 		mr->r_trans->free_mr(trans_private, mr->r_invalidate);
116 }
117 
118 void __rds_put_mr_final(struct rds_mr *mr)
119 {
120 	rds_destroy_mr(mr);
121 	kfree(mr);
122 }
123 
124 /*
125  * By the time this is called we can't have any more ioctls called on
126  * the socket so we don't need to worry about racing with others.
127  */
128 void rds_rdma_drop_keys(struct rds_sock *rs)
129 {
130 	struct rds_mr *mr;
131 	struct rb_node *node;
132 
133 	/* Release any MRs associated with this socket */
134 	while ((node = rb_first(&rs->rs_rdma_keys))) {
135 		mr = container_of(node, struct rds_mr, r_rb_node);
136 		if (mr->r_trans == rs->rs_transport)
137 			mr->r_invalidate = 0;
138 		rds_mr_put(mr);
139 	}
140 
141 	if (rs->rs_transport && rs->rs_transport->flush_mrs)
142 		rs->rs_transport->flush_mrs();
143 }
144 
145 /*
146  * Helper function to pin user pages.
147  */
148 static int rds_pin_pages(unsigned long user_addr, unsigned int nr_pages,
149 			struct page **pages, int write)
150 {
151 	int ret;
152 
153 	ret = get_user_pages_fast(user_addr, nr_pages, write, pages);
154 
155 	if (ret >= 0 && ret < nr_pages) {
156 		while (ret--)
157 			put_page(pages[ret]);
158 		ret = -EFAULT;
159 	}
160 
161 	return ret;
162 }
163 
164 static int __rds_rdma_map(struct rds_sock *rs, struct rds_get_mr_args *args,
165 				u64 *cookie_ret, struct rds_mr **mr_ret)
166 {
167 	struct rds_mr *mr = NULL, *found;
168 	unsigned int nr_pages;
169 	struct page **pages = NULL;
170 	struct scatterlist *sg;
171 	void *trans_private;
172 	unsigned long flags;
173 	rds_rdma_cookie_t cookie;
174 	unsigned int nents;
175 	long i;
176 	int ret;
177 
178 	if (rs->rs_bound_addr == 0) {
179 		ret = -ENOTCONN; /* XXX not a great errno */
180 		goto out;
181 	}
182 
183 	if (rs->rs_transport->get_mr == NULL) {
184 		ret = -EOPNOTSUPP;
185 		goto out;
186 	}
187 
188 	nr_pages = rds_pages_in_vec(&args->vec);
189 	if (nr_pages == 0) {
190 		ret = -EINVAL;
191 		goto out;
192 	}
193 
194 	rdsdebug("RDS: get_mr addr %llx len %llu nr_pages %u\n",
195 		args->vec.addr, args->vec.bytes, nr_pages);
196 
197 	/* XXX clamp nr_pages to limit the size of this alloc? */
198 	pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
199 	if (pages == NULL) {
200 		ret = -ENOMEM;
201 		goto out;
202 	}
203 
204 	mr = kzalloc(sizeof(struct rds_mr), GFP_KERNEL);
205 	if (mr == NULL) {
206 		ret = -ENOMEM;
207 		goto out;
208 	}
209 
210 	atomic_set(&mr->r_refcount, 1);
211 	RB_CLEAR_NODE(&mr->r_rb_node);
212 	mr->r_trans = rs->rs_transport;
213 	mr->r_sock = rs;
214 
215 	if (args->flags & RDS_RDMA_USE_ONCE)
216 		mr->r_use_once = 1;
217 	if (args->flags & RDS_RDMA_INVALIDATE)
218 		mr->r_invalidate = 1;
219 	if (args->flags & RDS_RDMA_READWRITE)
220 		mr->r_write = 1;
221 
222 	/*
223 	 * Pin the pages that make up the user buffer and transfer the page
224 	 * pointers to the mr's sg array.  We check to see if we've mapped
225 	 * the whole region after transferring the partial page references
226 	 * to the sg array so that we can have one page ref cleanup path.
227 	 *
228 	 * For now we have no flag that tells us whether the mapping is
229 	 * r/o or r/w. We need to assume r/w, or we'll do a lot of RDMA to
230 	 * the zero page.
231 	 */
232 	ret = rds_pin_pages(args->vec.addr & PAGE_MASK, nr_pages, pages, 1);
233 	if (ret < 0)
234 		goto out;
235 
236 	nents = ret;
237 	sg = kcalloc(nents, sizeof(*sg), GFP_KERNEL);
238 	if (sg == NULL) {
239 		ret = -ENOMEM;
240 		goto out;
241 	}
242 	WARN_ON(!nents);
243 	sg_init_table(sg, nents);
244 
245 	/* Stick all pages into the scatterlist */
246 	for (i = 0 ; i < nents; i++)
247 		sg_set_page(&sg[i], pages[i], PAGE_SIZE, 0);
248 
249 	rdsdebug("RDS: trans_private nents is %u\n", nents);
250 
251 	/* Obtain a transport specific MR. If this succeeds, the
252 	 * s/g list is now owned by the MR.
253 	 * Note that dma_map() implies that pending writes are
254 	 * flushed to RAM, so no dma_sync is needed here. */
255 	trans_private = rs->rs_transport->get_mr(sg, nents, rs,
256 						 &mr->r_key);
257 
258 	if (IS_ERR(trans_private)) {
259 		for (i = 0 ; i < nents; i++)
260 			put_page(sg_page(&sg[i]));
261 		kfree(sg);
262 		ret = PTR_ERR(trans_private);
263 		goto out;
264 	}
265 
266 	mr->r_trans_private = trans_private;
267 
268 	rdsdebug("RDS: get_mr put_user key is %x cookie_addr %p\n",
269 	       mr->r_key, (void *)(unsigned long) args->cookie_addr);
270 
271 	/* The user may pass us an unaligned address, but we can only
272 	 * map page aligned regions. So we keep the offset, and build
273 	 * a 64bit cookie containing <R_Key, offset> and pass that
274 	 * around. */
275 	cookie = rds_rdma_make_cookie(mr->r_key, args->vec.addr & ~PAGE_MASK);
276 	if (cookie_ret)
277 		*cookie_ret = cookie;
278 
279 	if (args->cookie_addr && put_user(cookie, (u64 __user *)(unsigned long) args->cookie_addr)) {
280 		ret = -EFAULT;
281 		goto out;
282 	}
283 
284 	/* Inserting the new MR into the rbtree bumps its
285 	 * reference count. */
286 	spin_lock_irqsave(&rs->rs_rdma_lock, flags);
287 	found = rds_mr_tree_walk(&rs->rs_rdma_keys, mr->r_key, mr);
288 	spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
289 
290 	BUG_ON(found && found != mr);
291 
292 	rdsdebug("RDS: get_mr key is %x\n", mr->r_key);
293 	if (mr_ret) {
294 		atomic_inc(&mr->r_refcount);
295 		*mr_ret = mr;
296 	}
297 
298 	ret = 0;
299 out:
300 	kfree(pages);
301 	if (mr)
302 		rds_mr_put(mr);
303 	return ret;
304 }
305 
306 int rds_get_mr(struct rds_sock *rs, char __user *optval, int optlen)
307 {
308 	struct rds_get_mr_args args;
309 
310 	if (optlen != sizeof(struct rds_get_mr_args))
311 		return -EINVAL;
312 
313 	if (copy_from_user(&args, (struct rds_get_mr_args __user *)optval,
314 			   sizeof(struct rds_get_mr_args)))
315 		return -EFAULT;
316 
317 	return __rds_rdma_map(rs, &args, NULL, NULL);
318 }
319 
320 /*
321  * Free the MR indicated by the given R_Key
322  */
323 int rds_free_mr(struct rds_sock *rs, char __user *optval, int optlen)
324 {
325 	struct rds_free_mr_args args;
326 	struct rds_mr *mr;
327 	unsigned long flags;
328 
329 	if (optlen != sizeof(struct rds_free_mr_args))
330 		return -EINVAL;
331 
332 	if (copy_from_user(&args, (struct rds_free_mr_args __user *)optval,
333 			   sizeof(struct rds_free_mr_args)))
334 		return -EFAULT;
335 
336 	/* Special case - a null cookie means flush all unused MRs */
337 	if (args.cookie == 0) {
338 		if (!rs->rs_transport || !rs->rs_transport->flush_mrs)
339 			return -EINVAL;
340 		rs->rs_transport->flush_mrs();
341 		return 0;
342 	}
343 
344 	/* Look up the MR given its R_key and remove it from the rbtree
345 	 * so nobody else finds it.
346 	 * This should also prevent races with rds_rdma_unuse.
347 	 */
348 	spin_lock_irqsave(&rs->rs_rdma_lock, flags);
349 	mr = rds_mr_tree_walk(&rs->rs_rdma_keys, rds_rdma_cookie_key(args.cookie), NULL);
350 	if (mr) {
351 		rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
352 		RB_CLEAR_NODE(&mr->r_rb_node);
353 		if (args.flags & RDS_RDMA_INVALIDATE)
354 			mr->r_invalidate = 1;
355 	}
356 	spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
357 
358 	if (!mr)
359 		return -EINVAL;
360 
361 	/*
362 	 * call rds_destroy_mr() ourselves so that we're sure it's done by the time
363 	 * we return.  If we let rds_mr_put() do it it might not happen until
364 	 * someone else drops their ref.
365 	 */
366 	rds_destroy_mr(mr);
367 	rds_mr_put(mr);
368 	return 0;
369 }
370 
371 /*
372  * This is called when we receive an extension header that
373  * tells us this MR was used. It allows us to implement
374  * use_once semantics
375  */
376 void rds_rdma_unuse(struct rds_sock *rs, u32 r_key, int force)
377 {
378 	struct rds_mr *mr;
379 	unsigned long flags;
380 	int zot_me = 0;
381 
382 	spin_lock_irqsave(&rs->rs_rdma_lock, flags);
383 	mr = rds_mr_tree_walk(&rs->rs_rdma_keys, r_key, NULL);
384 	if (mr && (mr->r_use_once || force)) {
385 		rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
386 		RB_CLEAR_NODE(&mr->r_rb_node);
387 		zot_me = 1;
388 	} else if (mr)
389 		atomic_inc(&mr->r_refcount);
390 	spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
391 
392 	/* May have to issue a dma_sync on this memory region.
393 	 * Note we could avoid this if the operation was a RDMA READ,
394 	 * but at this point we can't tell. */
395 	if (mr != NULL) {
396 		if (mr->r_trans->sync_mr)
397 			mr->r_trans->sync_mr(mr->r_trans_private, DMA_FROM_DEVICE);
398 
399 		/* If the MR was marked as invalidate, this will
400 		 * trigger an async flush. */
401 		if (zot_me)
402 			rds_destroy_mr(mr);
403 		rds_mr_put(mr);
404 	}
405 }
406 
407 void rds_rdma_free_op(struct rds_rdma_op *ro)
408 {
409 	unsigned int i;
410 
411 	for (i = 0; i < ro->r_nents; i++) {
412 		struct page *page = sg_page(&ro->r_sg[i]);
413 
414 		/* Mark page dirty if it was possibly modified, which
415 		 * is the case for a RDMA_READ which copies from remote
416 		 * to local memory */
417 		if (!ro->r_write)
418 			set_page_dirty(page);
419 		put_page(page);
420 	}
421 
422 	kfree(ro->r_notifier);
423 	kfree(ro);
424 }
425 
426 /*
427  * args is a pointer to an in-kernel copy in the sendmsg cmsg.
428  */
429 static struct rds_rdma_op *rds_rdma_prepare(struct rds_sock *rs,
430 					    struct rds_rdma_args *args)
431 {
432 	struct rds_iovec vec;
433 	struct rds_rdma_op *op = NULL;
434 	unsigned int nr_pages;
435 	unsigned int max_pages;
436 	unsigned int nr_bytes;
437 	struct page **pages = NULL;
438 	struct rds_iovec __user *local_vec;
439 	struct scatterlist *sg;
440 	unsigned int nr;
441 	unsigned int i, j;
442 	int ret;
443 
444 
445 	if (rs->rs_bound_addr == 0) {
446 		ret = -ENOTCONN; /* XXX not a great errno */
447 		goto out;
448 	}
449 
450 	if (args->nr_local > (u64)UINT_MAX) {
451 		ret = -EMSGSIZE;
452 		goto out;
453 	}
454 
455 	nr_pages = 0;
456 	max_pages = 0;
457 
458 	local_vec = (struct rds_iovec __user *)(unsigned long) args->local_vec_addr;
459 
460 	/* figure out the number of pages in the vector */
461 	for (i = 0; i < args->nr_local; i++) {
462 		if (copy_from_user(&vec, &local_vec[i],
463 				   sizeof(struct rds_iovec))) {
464 			ret = -EFAULT;
465 			goto out;
466 		}
467 
468 		nr = rds_pages_in_vec(&vec);
469 		if (nr == 0) {
470 			ret = -EINVAL;
471 			goto out;
472 		}
473 
474 		max_pages = max(nr, max_pages);
475 		nr_pages += nr;
476 	}
477 
478 	pages = kcalloc(max_pages, sizeof(struct page *), GFP_KERNEL);
479 	if (pages == NULL) {
480 		ret = -ENOMEM;
481 		goto out;
482 	}
483 
484 	op = kzalloc(offsetof(struct rds_rdma_op, r_sg[nr_pages]), GFP_KERNEL);
485 	if (op == NULL) {
486 		ret = -ENOMEM;
487 		goto out;
488 	}
489 
490 	op->r_write = !!(args->flags & RDS_RDMA_READWRITE);
491 	op->r_fence = !!(args->flags & RDS_RDMA_FENCE);
492 	op->r_notify = !!(args->flags & RDS_RDMA_NOTIFY_ME);
493 	op->r_recverr = rs->rs_recverr;
494 	WARN_ON(!nr_pages);
495 	sg_init_table(op->r_sg, nr_pages);
496 
497 	if (op->r_notify || op->r_recverr) {
498 		/* We allocate an uninitialized notifier here, because
499 		 * we don't want to do that in the completion handler. We
500 		 * would have to use GFP_ATOMIC there, and don't want to deal
501 		 * with failed allocations.
502 		 */
503 		op->r_notifier = kmalloc(sizeof(struct rds_notifier), GFP_KERNEL);
504 		if (!op->r_notifier) {
505 			ret = -ENOMEM;
506 			goto out;
507 		}
508 		op->r_notifier->n_user_token = args->user_token;
509 		op->r_notifier->n_status = RDS_RDMA_SUCCESS;
510 	}
511 
512 	/* The cookie contains the R_Key of the remote memory region, and
513 	 * optionally an offset into it. This is how we implement RDMA into
514 	 * unaligned memory.
515 	 * When setting up the RDMA, we need to add that offset to the
516 	 * destination address (which is really an offset into the MR)
517 	 * FIXME: We may want to move this into ib_rdma.c
518 	 */
519 	op->r_key = rds_rdma_cookie_key(args->cookie);
520 	op->r_remote_addr = args->remote_vec.addr + rds_rdma_cookie_offset(args->cookie);
521 
522 	nr_bytes = 0;
523 
524 	rdsdebug("RDS: rdma prepare nr_local %llu rva %llx rkey %x\n",
525 	       (unsigned long long)args->nr_local,
526 	       (unsigned long long)args->remote_vec.addr,
527 	       op->r_key);
528 
529 	for (i = 0; i < args->nr_local; i++) {
530 		if (copy_from_user(&vec, &local_vec[i],
531 				   sizeof(struct rds_iovec))) {
532 			ret = -EFAULT;
533 			goto out;
534 		}
535 
536 		nr = rds_pages_in_vec(&vec);
537 		if (nr == 0) {
538 			ret = -EINVAL;
539 			goto out;
540 		}
541 
542 		rs->rs_user_addr = vec.addr;
543 		rs->rs_user_bytes = vec.bytes;
544 
545 		/* did the user change the vec under us? */
546 		if (nr > max_pages || op->r_nents + nr > nr_pages) {
547 			ret = -EINVAL;
548 			goto out;
549 		}
550 		/* If it's a WRITE operation, we want to pin the pages for reading.
551 		 * If it's a READ operation, we need to pin the pages for writing.
552 		 */
553 		ret = rds_pin_pages(vec.addr & PAGE_MASK, nr, pages, !op->r_write);
554 		if (ret < 0)
555 			goto out;
556 
557 		rdsdebug("RDS: nr_bytes %u nr %u vec.bytes %llu vec.addr %llx\n",
558 		       nr_bytes, nr, vec.bytes, vec.addr);
559 
560 		nr_bytes += vec.bytes;
561 
562 		for (j = 0; j < nr; j++) {
563 			unsigned int offset = vec.addr & ~PAGE_MASK;
564 
565 			sg = &op->r_sg[op->r_nents + j];
566 			sg_set_page(sg, pages[j],
567 					min_t(unsigned int, vec.bytes, PAGE_SIZE - offset),
568 					offset);
569 
570 			rdsdebug("RDS: sg->offset %x sg->len %x vec.addr %llx vec.bytes %llu\n",
571 			       sg->offset, sg->length, vec.addr, vec.bytes);
572 
573 			vec.addr += sg->length;
574 			vec.bytes -= sg->length;
575 		}
576 
577 		op->r_nents += nr;
578 	}
579 
580 
581 	if (nr_bytes > args->remote_vec.bytes) {
582 		rdsdebug("RDS nr_bytes %u remote_bytes %u do not match\n",
583 				nr_bytes,
584 				(unsigned int) args->remote_vec.bytes);
585 		ret = -EINVAL;
586 		goto out;
587 	}
588 	op->r_bytes = nr_bytes;
589 
590 	ret = 0;
591 out:
592 	kfree(pages);
593 	if (ret) {
594 		if (op)
595 			rds_rdma_free_op(op);
596 		op = ERR_PTR(ret);
597 	}
598 	return op;
599 }
600 
601 /*
602  * The application asks for a RDMA transfer.
603  * Extract all arguments and set up the rdma_op
604  */
605 int rds_cmsg_rdma_args(struct rds_sock *rs, struct rds_message *rm,
606 			  struct cmsghdr *cmsg)
607 {
608 	struct rds_rdma_op *op;
609 
610 	if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_rdma_args))
611 	 || rm->m_rdma_op != NULL)
612 		return -EINVAL;
613 
614 	op = rds_rdma_prepare(rs, CMSG_DATA(cmsg));
615 	if (IS_ERR(op))
616 		return PTR_ERR(op);
617 	rds_stats_inc(s_send_rdma);
618 	rm->m_rdma_op = op;
619 	return 0;
620 }
621 
622 /*
623  * The application wants us to pass an RDMA destination (aka MR)
624  * to the remote
625  */
626 int rds_cmsg_rdma_dest(struct rds_sock *rs, struct rds_message *rm,
627 			  struct cmsghdr *cmsg)
628 {
629 	unsigned long flags;
630 	struct rds_mr *mr;
631 	u32 r_key;
632 	int err = 0;
633 
634 	if (cmsg->cmsg_len < CMSG_LEN(sizeof(rds_rdma_cookie_t))
635 	 || rm->m_rdma_cookie != 0)
636 		return -EINVAL;
637 
638 	memcpy(&rm->m_rdma_cookie, CMSG_DATA(cmsg), sizeof(rm->m_rdma_cookie));
639 
640 	/* We are reusing a previously mapped MR here. Most likely, the
641 	 * application has written to the buffer, so we need to explicitly
642 	 * flush those writes to RAM. Otherwise the HCA may not see them
643 	 * when doing a DMA from that buffer.
644 	 */
645 	r_key = rds_rdma_cookie_key(rm->m_rdma_cookie);
646 
647 	spin_lock_irqsave(&rs->rs_rdma_lock, flags);
648 	mr = rds_mr_tree_walk(&rs->rs_rdma_keys, r_key, NULL);
649 	if (mr == NULL)
650 		err = -EINVAL;	/* invalid r_key */
651 	else
652 		atomic_inc(&mr->r_refcount);
653 	spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
654 
655 	if (mr) {
656 		mr->r_trans->sync_mr(mr->r_trans_private, DMA_TO_DEVICE);
657 		rm->m_rdma_mr = mr;
658 	}
659 	return err;
660 }
661 
662 /*
663  * The application passes us an address range it wants to enable RDMA
664  * to/from. We map the area, and save the <R_Key,offset> pair
665  * in rm->m_rdma_cookie. This causes it to be sent along to the peer
666  * in an extension header.
667  */
668 int rds_cmsg_rdma_map(struct rds_sock *rs, struct rds_message *rm,
669 			  struct cmsghdr *cmsg)
670 {
671 	if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_get_mr_args))
672 	 || rm->m_rdma_cookie != 0)
673 		return -EINVAL;
674 
675 	return __rds_rdma_map(rs, CMSG_DATA(cmsg), &rm->m_rdma_cookie, &rm->m_rdma_mr);
676 }
677