xref: /openbmc/linux/net/rds/rdma.c (revision e6dec923)
1 /*
2  * Copyright (c) 2007 Oracle.  All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/pagemap.h>
34 #include <linux/slab.h>
35 #include <linux/rbtree.h>
36 #include <linux/dma-mapping.h> /* for DMA_*_DEVICE */
37 
38 #include "rds.h"
39 
40 /*
41  * XXX
42  *  - build with sparse
43  *  - should we detect duplicate keys on a socket?  hmm.
44  *  - an rdma is an mlock, apply rlimit?
45  */
46 
47 /*
48  * get the number of pages by looking at the page indices that the start and
49  * end addresses fall in.
50  *
51  * Returns 0 if the vec is invalid.  It is invalid if the number of bytes
52  * causes the address to wrap or overflows an unsigned int.  This comes
53  * from being stored in the 'length' member of 'struct scatterlist'.
54  */
55 static unsigned int rds_pages_in_vec(struct rds_iovec *vec)
56 {
57 	if ((vec->addr + vec->bytes <= vec->addr) ||
58 	    (vec->bytes > (u64)UINT_MAX))
59 		return 0;
60 
61 	return ((vec->addr + vec->bytes + PAGE_SIZE - 1) >> PAGE_SHIFT) -
62 		(vec->addr >> PAGE_SHIFT);
63 }
64 
65 static struct rds_mr *rds_mr_tree_walk(struct rb_root *root, u64 key,
66 				       struct rds_mr *insert)
67 {
68 	struct rb_node **p = &root->rb_node;
69 	struct rb_node *parent = NULL;
70 	struct rds_mr *mr;
71 
72 	while (*p) {
73 		parent = *p;
74 		mr = rb_entry(parent, struct rds_mr, r_rb_node);
75 
76 		if (key < mr->r_key)
77 			p = &(*p)->rb_left;
78 		else if (key > mr->r_key)
79 			p = &(*p)->rb_right;
80 		else
81 			return mr;
82 	}
83 
84 	if (insert) {
85 		rb_link_node(&insert->r_rb_node, parent, p);
86 		rb_insert_color(&insert->r_rb_node, root);
87 		refcount_inc(&insert->r_refcount);
88 	}
89 	return NULL;
90 }
91 
92 /*
93  * Destroy the transport-specific part of a MR.
94  */
95 static void rds_destroy_mr(struct rds_mr *mr)
96 {
97 	struct rds_sock *rs = mr->r_sock;
98 	void *trans_private = NULL;
99 	unsigned long flags;
100 
101 	rdsdebug("RDS: destroy mr key is %x refcnt %u\n",
102 			mr->r_key, refcount_read(&mr->r_refcount));
103 
104 	if (test_and_set_bit(RDS_MR_DEAD, &mr->r_state))
105 		return;
106 
107 	spin_lock_irqsave(&rs->rs_rdma_lock, flags);
108 	if (!RB_EMPTY_NODE(&mr->r_rb_node))
109 		rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
110 	trans_private = mr->r_trans_private;
111 	mr->r_trans_private = NULL;
112 	spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
113 
114 	if (trans_private)
115 		mr->r_trans->free_mr(trans_private, mr->r_invalidate);
116 }
117 
118 void __rds_put_mr_final(struct rds_mr *mr)
119 {
120 	rds_destroy_mr(mr);
121 	kfree(mr);
122 }
123 
124 /*
125  * By the time this is called we can't have any more ioctls called on
126  * the socket so we don't need to worry about racing with others.
127  */
128 void rds_rdma_drop_keys(struct rds_sock *rs)
129 {
130 	struct rds_mr *mr;
131 	struct rb_node *node;
132 	unsigned long flags;
133 
134 	/* Release any MRs associated with this socket */
135 	spin_lock_irqsave(&rs->rs_rdma_lock, flags);
136 	while ((node = rb_first(&rs->rs_rdma_keys))) {
137 		mr = rb_entry(node, struct rds_mr, r_rb_node);
138 		if (mr->r_trans == rs->rs_transport)
139 			mr->r_invalidate = 0;
140 		rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
141 		RB_CLEAR_NODE(&mr->r_rb_node);
142 		spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
143 		rds_destroy_mr(mr);
144 		rds_mr_put(mr);
145 		spin_lock_irqsave(&rs->rs_rdma_lock, flags);
146 	}
147 	spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
148 
149 	if (rs->rs_transport && rs->rs_transport->flush_mrs)
150 		rs->rs_transport->flush_mrs();
151 }
152 
153 /*
154  * Helper function to pin user pages.
155  */
156 static int rds_pin_pages(unsigned long user_addr, unsigned int nr_pages,
157 			struct page **pages, int write)
158 {
159 	int ret;
160 
161 	ret = get_user_pages_fast(user_addr, nr_pages, write, pages);
162 
163 	if (ret >= 0 && ret < nr_pages) {
164 		while (ret--)
165 			put_page(pages[ret]);
166 		ret = -EFAULT;
167 	}
168 
169 	return ret;
170 }
171 
172 static int __rds_rdma_map(struct rds_sock *rs, struct rds_get_mr_args *args,
173 				u64 *cookie_ret, struct rds_mr **mr_ret)
174 {
175 	struct rds_mr *mr = NULL, *found;
176 	unsigned int nr_pages;
177 	struct page **pages = NULL;
178 	struct scatterlist *sg;
179 	void *trans_private;
180 	unsigned long flags;
181 	rds_rdma_cookie_t cookie;
182 	unsigned int nents;
183 	long i;
184 	int ret;
185 
186 	if (rs->rs_bound_addr == 0) {
187 		ret = -ENOTCONN; /* XXX not a great errno */
188 		goto out;
189 	}
190 
191 	if (!rs->rs_transport->get_mr) {
192 		ret = -EOPNOTSUPP;
193 		goto out;
194 	}
195 
196 	nr_pages = rds_pages_in_vec(&args->vec);
197 	if (nr_pages == 0) {
198 		ret = -EINVAL;
199 		goto out;
200 	}
201 
202 	/* Restrict the size of mr irrespective of underlying transport
203 	 * To account for unaligned mr regions, subtract one from nr_pages
204 	 */
205 	if ((nr_pages - 1) > (RDS_MAX_MSG_SIZE >> PAGE_SHIFT)) {
206 		ret = -EMSGSIZE;
207 		goto out;
208 	}
209 
210 	rdsdebug("RDS: get_mr addr %llx len %llu nr_pages %u\n",
211 		args->vec.addr, args->vec.bytes, nr_pages);
212 
213 	/* XXX clamp nr_pages to limit the size of this alloc? */
214 	pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
215 	if (!pages) {
216 		ret = -ENOMEM;
217 		goto out;
218 	}
219 
220 	mr = kzalloc(sizeof(struct rds_mr), GFP_KERNEL);
221 	if (!mr) {
222 		ret = -ENOMEM;
223 		goto out;
224 	}
225 
226 	refcount_set(&mr->r_refcount, 1);
227 	RB_CLEAR_NODE(&mr->r_rb_node);
228 	mr->r_trans = rs->rs_transport;
229 	mr->r_sock = rs;
230 
231 	if (args->flags & RDS_RDMA_USE_ONCE)
232 		mr->r_use_once = 1;
233 	if (args->flags & RDS_RDMA_INVALIDATE)
234 		mr->r_invalidate = 1;
235 	if (args->flags & RDS_RDMA_READWRITE)
236 		mr->r_write = 1;
237 
238 	/*
239 	 * Pin the pages that make up the user buffer and transfer the page
240 	 * pointers to the mr's sg array.  We check to see if we've mapped
241 	 * the whole region after transferring the partial page references
242 	 * to the sg array so that we can have one page ref cleanup path.
243 	 *
244 	 * For now we have no flag that tells us whether the mapping is
245 	 * r/o or r/w. We need to assume r/w, or we'll do a lot of RDMA to
246 	 * the zero page.
247 	 */
248 	ret = rds_pin_pages(args->vec.addr, nr_pages, pages, 1);
249 	if (ret < 0)
250 		goto out;
251 
252 	nents = ret;
253 	sg = kcalloc(nents, sizeof(*sg), GFP_KERNEL);
254 	if (!sg) {
255 		ret = -ENOMEM;
256 		goto out;
257 	}
258 	WARN_ON(!nents);
259 	sg_init_table(sg, nents);
260 
261 	/* Stick all pages into the scatterlist */
262 	for (i = 0 ; i < nents; i++)
263 		sg_set_page(&sg[i], pages[i], PAGE_SIZE, 0);
264 
265 	rdsdebug("RDS: trans_private nents is %u\n", nents);
266 
267 	/* Obtain a transport specific MR. If this succeeds, the
268 	 * s/g list is now owned by the MR.
269 	 * Note that dma_map() implies that pending writes are
270 	 * flushed to RAM, so no dma_sync is needed here. */
271 	trans_private = rs->rs_transport->get_mr(sg, nents, rs,
272 						 &mr->r_key);
273 
274 	if (IS_ERR(trans_private)) {
275 		for (i = 0 ; i < nents; i++)
276 			put_page(sg_page(&sg[i]));
277 		kfree(sg);
278 		ret = PTR_ERR(trans_private);
279 		goto out;
280 	}
281 
282 	mr->r_trans_private = trans_private;
283 
284 	rdsdebug("RDS: get_mr put_user key is %x cookie_addr %p\n",
285 	       mr->r_key, (void *)(unsigned long) args->cookie_addr);
286 
287 	/* The user may pass us an unaligned address, but we can only
288 	 * map page aligned regions. So we keep the offset, and build
289 	 * a 64bit cookie containing <R_Key, offset> and pass that
290 	 * around. */
291 	cookie = rds_rdma_make_cookie(mr->r_key, args->vec.addr & ~PAGE_MASK);
292 	if (cookie_ret)
293 		*cookie_ret = cookie;
294 
295 	if (args->cookie_addr && put_user(cookie, (u64 __user *)(unsigned long) args->cookie_addr)) {
296 		ret = -EFAULT;
297 		goto out;
298 	}
299 
300 	/* Inserting the new MR into the rbtree bumps its
301 	 * reference count. */
302 	spin_lock_irqsave(&rs->rs_rdma_lock, flags);
303 	found = rds_mr_tree_walk(&rs->rs_rdma_keys, mr->r_key, mr);
304 	spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
305 
306 	BUG_ON(found && found != mr);
307 
308 	rdsdebug("RDS: get_mr key is %x\n", mr->r_key);
309 	if (mr_ret) {
310 		refcount_inc(&mr->r_refcount);
311 		*mr_ret = mr;
312 	}
313 
314 	ret = 0;
315 out:
316 	kfree(pages);
317 	if (mr)
318 		rds_mr_put(mr);
319 	return ret;
320 }
321 
322 int rds_get_mr(struct rds_sock *rs, char __user *optval, int optlen)
323 {
324 	struct rds_get_mr_args args;
325 
326 	if (optlen != sizeof(struct rds_get_mr_args))
327 		return -EINVAL;
328 
329 	if (copy_from_user(&args, (struct rds_get_mr_args __user *)optval,
330 			   sizeof(struct rds_get_mr_args)))
331 		return -EFAULT;
332 
333 	return __rds_rdma_map(rs, &args, NULL, NULL);
334 }
335 
336 int rds_get_mr_for_dest(struct rds_sock *rs, char __user *optval, int optlen)
337 {
338 	struct rds_get_mr_for_dest_args args;
339 	struct rds_get_mr_args new_args;
340 
341 	if (optlen != sizeof(struct rds_get_mr_for_dest_args))
342 		return -EINVAL;
343 
344 	if (copy_from_user(&args, (struct rds_get_mr_for_dest_args __user *)optval,
345 			   sizeof(struct rds_get_mr_for_dest_args)))
346 		return -EFAULT;
347 
348 	/*
349 	 * Initially, just behave like get_mr().
350 	 * TODO: Implement get_mr as wrapper around this
351 	 *	 and deprecate it.
352 	 */
353 	new_args.vec = args.vec;
354 	new_args.cookie_addr = args.cookie_addr;
355 	new_args.flags = args.flags;
356 
357 	return __rds_rdma_map(rs, &new_args, NULL, NULL);
358 }
359 
360 /*
361  * Free the MR indicated by the given R_Key
362  */
363 int rds_free_mr(struct rds_sock *rs, char __user *optval, int optlen)
364 {
365 	struct rds_free_mr_args args;
366 	struct rds_mr *mr;
367 	unsigned long flags;
368 
369 	if (optlen != sizeof(struct rds_free_mr_args))
370 		return -EINVAL;
371 
372 	if (copy_from_user(&args, (struct rds_free_mr_args __user *)optval,
373 			   sizeof(struct rds_free_mr_args)))
374 		return -EFAULT;
375 
376 	/* Special case - a null cookie means flush all unused MRs */
377 	if (args.cookie == 0) {
378 		if (!rs->rs_transport || !rs->rs_transport->flush_mrs)
379 			return -EINVAL;
380 		rs->rs_transport->flush_mrs();
381 		return 0;
382 	}
383 
384 	/* Look up the MR given its R_key and remove it from the rbtree
385 	 * so nobody else finds it.
386 	 * This should also prevent races with rds_rdma_unuse.
387 	 */
388 	spin_lock_irqsave(&rs->rs_rdma_lock, flags);
389 	mr = rds_mr_tree_walk(&rs->rs_rdma_keys, rds_rdma_cookie_key(args.cookie), NULL);
390 	if (mr) {
391 		rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
392 		RB_CLEAR_NODE(&mr->r_rb_node);
393 		if (args.flags & RDS_RDMA_INVALIDATE)
394 			mr->r_invalidate = 1;
395 	}
396 	spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
397 
398 	if (!mr)
399 		return -EINVAL;
400 
401 	/*
402 	 * call rds_destroy_mr() ourselves so that we're sure it's done by the time
403 	 * we return.  If we let rds_mr_put() do it it might not happen until
404 	 * someone else drops their ref.
405 	 */
406 	rds_destroy_mr(mr);
407 	rds_mr_put(mr);
408 	return 0;
409 }
410 
411 /*
412  * This is called when we receive an extension header that
413  * tells us this MR was used. It allows us to implement
414  * use_once semantics
415  */
416 void rds_rdma_unuse(struct rds_sock *rs, u32 r_key, int force)
417 {
418 	struct rds_mr *mr;
419 	unsigned long flags;
420 	int zot_me = 0;
421 
422 	spin_lock_irqsave(&rs->rs_rdma_lock, flags);
423 	mr = rds_mr_tree_walk(&rs->rs_rdma_keys, r_key, NULL);
424 	if (!mr) {
425 		pr_debug("rds: trying to unuse MR with unknown r_key %u!\n",
426 			 r_key);
427 		spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
428 		return;
429 	}
430 
431 	if (mr->r_use_once || force) {
432 		rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
433 		RB_CLEAR_NODE(&mr->r_rb_node);
434 		zot_me = 1;
435 	}
436 	spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
437 
438 	/* May have to issue a dma_sync on this memory region.
439 	 * Note we could avoid this if the operation was a RDMA READ,
440 	 * but at this point we can't tell. */
441 	if (mr->r_trans->sync_mr)
442 		mr->r_trans->sync_mr(mr->r_trans_private, DMA_FROM_DEVICE);
443 
444 	/* If the MR was marked as invalidate, this will
445 	 * trigger an async flush. */
446 	if (zot_me) {
447 		rds_destroy_mr(mr);
448 		rds_mr_put(mr);
449 	}
450 }
451 
452 void rds_rdma_free_op(struct rm_rdma_op *ro)
453 {
454 	unsigned int i;
455 
456 	for (i = 0; i < ro->op_nents; i++) {
457 		struct page *page = sg_page(&ro->op_sg[i]);
458 
459 		/* Mark page dirty if it was possibly modified, which
460 		 * is the case for a RDMA_READ which copies from remote
461 		 * to local memory */
462 		if (!ro->op_write) {
463 			WARN_ON(!page->mapping && irqs_disabled());
464 			set_page_dirty(page);
465 		}
466 		put_page(page);
467 	}
468 
469 	kfree(ro->op_notifier);
470 	ro->op_notifier = NULL;
471 	ro->op_active = 0;
472 }
473 
474 void rds_atomic_free_op(struct rm_atomic_op *ao)
475 {
476 	struct page *page = sg_page(ao->op_sg);
477 
478 	/* Mark page dirty if it was possibly modified, which
479 	 * is the case for a RDMA_READ which copies from remote
480 	 * to local memory */
481 	set_page_dirty(page);
482 	put_page(page);
483 
484 	kfree(ao->op_notifier);
485 	ao->op_notifier = NULL;
486 	ao->op_active = 0;
487 }
488 
489 
490 /*
491  * Count the number of pages needed to describe an incoming iovec array.
492  */
493 static int rds_rdma_pages(struct rds_iovec iov[], int nr_iovecs)
494 {
495 	int tot_pages = 0;
496 	unsigned int nr_pages;
497 	unsigned int i;
498 
499 	/* figure out the number of pages in the vector */
500 	for (i = 0; i < nr_iovecs; i++) {
501 		nr_pages = rds_pages_in_vec(&iov[i]);
502 		if (nr_pages == 0)
503 			return -EINVAL;
504 
505 		tot_pages += nr_pages;
506 
507 		/*
508 		 * nr_pages for one entry is limited to (UINT_MAX>>PAGE_SHIFT)+1,
509 		 * so tot_pages cannot overflow without first going negative.
510 		 */
511 		if (tot_pages < 0)
512 			return -EINVAL;
513 	}
514 
515 	return tot_pages;
516 }
517 
518 int rds_rdma_extra_size(struct rds_rdma_args *args)
519 {
520 	struct rds_iovec vec;
521 	struct rds_iovec __user *local_vec;
522 	int tot_pages = 0;
523 	unsigned int nr_pages;
524 	unsigned int i;
525 
526 	local_vec = (struct rds_iovec __user *)(unsigned long) args->local_vec_addr;
527 
528 	/* figure out the number of pages in the vector */
529 	for (i = 0; i < args->nr_local; i++) {
530 		if (copy_from_user(&vec, &local_vec[i],
531 				   sizeof(struct rds_iovec)))
532 			return -EFAULT;
533 
534 		nr_pages = rds_pages_in_vec(&vec);
535 		if (nr_pages == 0)
536 			return -EINVAL;
537 
538 		tot_pages += nr_pages;
539 
540 		/*
541 		 * nr_pages for one entry is limited to (UINT_MAX>>PAGE_SHIFT)+1,
542 		 * so tot_pages cannot overflow without first going negative.
543 		 */
544 		if (tot_pages < 0)
545 			return -EINVAL;
546 	}
547 
548 	return tot_pages * sizeof(struct scatterlist);
549 }
550 
551 /*
552  * The application asks for a RDMA transfer.
553  * Extract all arguments and set up the rdma_op
554  */
555 int rds_cmsg_rdma_args(struct rds_sock *rs, struct rds_message *rm,
556 			  struct cmsghdr *cmsg)
557 {
558 	struct rds_rdma_args *args;
559 	struct rm_rdma_op *op = &rm->rdma;
560 	int nr_pages;
561 	unsigned int nr_bytes;
562 	struct page **pages = NULL;
563 	struct rds_iovec iovstack[UIO_FASTIOV], *iovs = iovstack;
564 	int iov_size;
565 	unsigned int i, j;
566 	int ret = 0;
567 
568 	if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_rdma_args))
569 	    || rm->rdma.op_active)
570 		return -EINVAL;
571 
572 	args = CMSG_DATA(cmsg);
573 
574 	if (rs->rs_bound_addr == 0) {
575 		ret = -ENOTCONN; /* XXX not a great errno */
576 		goto out_ret;
577 	}
578 
579 	if (args->nr_local > UIO_MAXIOV) {
580 		ret = -EMSGSIZE;
581 		goto out_ret;
582 	}
583 
584 	/* Check whether to allocate the iovec area */
585 	iov_size = args->nr_local * sizeof(struct rds_iovec);
586 	if (args->nr_local > UIO_FASTIOV) {
587 		iovs = sock_kmalloc(rds_rs_to_sk(rs), iov_size, GFP_KERNEL);
588 		if (!iovs) {
589 			ret = -ENOMEM;
590 			goto out_ret;
591 		}
592 	}
593 
594 	if (copy_from_user(iovs, (struct rds_iovec __user *)(unsigned long) args->local_vec_addr, iov_size)) {
595 		ret = -EFAULT;
596 		goto out;
597 	}
598 
599 	nr_pages = rds_rdma_pages(iovs, args->nr_local);
600 	if (nr_pages < 0) {
601 		ret = -EINVAL;
602 		goto out;
603 	}
604 
605 	pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
606 	if (!pages) {
607 		ret = -ENOMEM;
608 		goto out;
609 	}
610 
611 	op->op_write = !!(args->flags & RDS_RDMA_READWRITE);
612 	op->op_fence = !!(args->flags & RDS_RDMA_FENCE);
613 	op->op_notify = !!(args->flags & RDS_RDMA_NOTIFY_ME);
614 	op->op_silent = !!(args->flags & RDS_RDMA_SILENT);
615 	op->op_active = 1;
616 	op->op_recverr = rs->rs_recverr;
617 	WARN_ON(!nr_pages);
618 	op->op_sg = rds_message_alloc_sgs(rm, nr_pages);
619 	if (!op->op_sg) {
620 		ret = -ENOMEM;
621 		goto out;
622 	}
623 
624 	if (op->op_notify || op->op_recverr) {
625 		/* We allocate an uninitialized notifier here, because
626 		 * we don't want to do that in the completion handler. We
627 		 * would have to use GFP_ATOMIC there, and don't want to deal
628 		 * with failed allocations.
629 		 */
630 		op->op_notifier = kmalloc(sizeof(struct rds_notifier), GFP_KERNEL);
631 		if (!op->op_notifier) {
632 			ret = -ENOMEM;
633 			goto out;
634 		}
635 		op->op_notifier->n_user_token = args->user_token;
636 		op->op_notifier->n_status = RDS_RDMA_SUCCESS;
637 
638 		/* Enable rmda notification on data operation for composite
639 		 * rds messages and make sure notification is enabled only
640 		 * for the data operation which follows it so that application
641 		 * gets notified only after full message gets delivered.
642 		 */
643 		if (rm->data.op_sg) {
644 			rm->rdma.op_notify = 0;
645 			rm->data.op_notify = !!(args->flags & RDS_RDMA_NOTIFY_ME);
646 		}
647 	}
648 
649 	/* The cookie contains the R_Key of the remote memory region, and
650 	 * optionally an offset into it. This is how we implement RDMA into
651 	 * unaligned memory.
652 	 * When setting up the RDMA, we need to add that offset to the
653 	 * destination address (which is really an offset into the MR)
654 	 * FIXME: We may want to move this into ib_rdma.c
655 	 */
656 	op->op_rkey = rds_rdma_cookie_key(args->cookie);
657 	op->op_remote_addr = args->remote_vec.addr + rds_rdma_cookie_offset(args->cookie);
658 
659 	nr_bytes = 0;
660 
661 	rdsdebug("RDS: rdma prepare nr_local %llu rva %llx rkey %x\n",
662 	       (unsigned long long)args->nr_local,
663 	       (unsigned long long)args->remote_vec.addr,
664 	       op->op_rkey);
665 
666 	for (i = 0; i < args->nr_local; i++) {
667 		struct rds_iovec *iov = &iovs[i];
668 		/* don't need to check, rds_rdma_pages() verified nr will be +nonzero */
669 		unsigned int nr = rds_pages_in_vec(iov);
670 
671 		rs->rs_user_addr = iov->addr;
672 		rs->rs_user_bytes = iov->bytes;
673 
674 		/* If it's a WRITE operation, we want to pin the pages for reading.
675 		 * If it's a READ operation, we need to pin the pages for writing.
676 		 */
677 		ret = rds_pin_pages(iov->addr, nr, pages, !op->op_write);
678 		if (ret < 0)
679 			goto out;
680 		else
681 			ret = 0;
682 
683 		rdsdebug("RDS: nr_bytes %u nr %u iov->bytes %llu iov->addr %llx\n",
684 			 nr_bytes, nr, iov->bytes, iov->addr);
685 
686 		nr_bytes += iov->bytes;
687 
688 		for (j = 0; j < nr; j++) {
689 			unsigned int offset = iov->addr & ~PAGE_MASK;
690 			struct scatterlist *sg;
691 
692 			sg = &op->op_sg[op->op_nents + j];
693 			sg_set_page(sg, pages[j],
694 					min_t(unsigned int, iov->bytes, PAGE_SIZE - offset),
695 					offset);
696 
697 			rdsdebug("RDS: sg->offset %x sg->len %x iov->addr %llx iov->bytes %llu\n",
698 			       sg->offset, sg->length, iov->addr, iov->bytes);
699 
700 			iov->addr += sg->length;
701 			iov->bytes -= sg->length;
702 		}
703 
704 		op->op_nents += nr;
705 	}
706 
707 	if (nr_bytes > args->remote_vec.bytes) {
708 		rdsdebug("RDS nr_bytes %u remote_bytes %u do not match\n",
709 				nr_bytes,
710 				(unsigned int) args->remote_vec.bytes);
711 		ret = -EINVAL;
712 		goto out;
713 	}
714 	op->op_bytes = nr_bytes;
715 
716 out:
717 	if (iovs != iovstack)
718 		sock_kfree_s(rds_rs_to_sk(rs), iovs, iov_size);
719 	kfree(pages);
720 out_ret:
721 	if (ret)
722 		rds_rdma_free_op(op);
723 	else
724 		rds_stats_inc(s_send_rdma);
725 
726 	return ret;
727 }
728 
729 /*
730  * The application wants us to pass an RDMA destination (aka MR)
731  * to the remote
732  */
733 int rds_cmsg_rdma_dest(struct rds_sock *rs, struct rds_message *rm,
734 			  struct cmsghdr *cmsg)
735 {
736 	unsigned long flags;
737 	struct rds_mr *mr;
738 	u32 r_key;
739 	int err = 0;
740 
741 	if (cmsg->cmsg_len < CMSG_LEN(sizeof(rds_rdma_cookie_t)) ||
742 	    rm->m_rdma_cookie != 0)
743 		return -EINVAL;
744 
745 	memcpy(&rm->m_rdma_cookie, CMSG_DATA(cmsg), sizeof(rm->m_rdma_cookie));
746 
747 	/* We are reusing a previously mapped MR here. Most likely, the
748 	 * application has written to the buffer, so we need to explicitly
749 	 * flush those writes to RAM. Otherwise the HCA may not see them
750 	 * when doing a DMA from that buffer.
751 	 */
752 	r_key = rds_rdma_cookie_key(rm->m_rdma_cookie);
753 
754 	spin_lock_irqsave(&rs->rs_rdma_lock, flags);
755 	mr = rds_mr_tree_walk(&rs->rs_rdma_keys, r_key, NULL);
756 	if (!mr)
757 		err = -EINVAL;	/* invalid r_key */
758 	else
759 		refcount_inc(&mr->r_refcount);
760 	spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
761 
762 	if (mr) {
763 		mr->r_trans->sync_mr(mr->r_trans_private, DMA_TO_DEVICE);
764 		rm->rdma.op_rdma_mr = mr;
765 	}
766 	return err;
767 }
768 
769 /*
770  * The application passes us an address range it wants to enable RDMA
771  * to/from. We map the area, and save the <R_Key,offset> pair
772  * in rm->m_rdma_cookie. This causes it to be sent along to the peer
773  * in an extension header.
774  */
775 int rds_cmsg_rdma_map(struct rds_sock *rs, struct rds_message *rm,
776 			  struct cmsghdr *cmsg)
777 {
778 	if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_get_mr_args)) ||
779 	    rm->m_rdma_cookie != 0)
780 		return -EINVAL;
781 
782 	return __rds_rdma_map(rs, CMSG_DATA(cmsg), &rm->m_rdma_cookie, &rm->rdma.op_rdma_mr);
783 }
784 
785 /*
786  * Fill in rds_message for an atomic request.
787  */
788 int rds_cmsg_atomic(struct rds_sock *rs, struct rds_message *rm,
789 		    struct cmsghdr *cmsg)
790 {
791 	struct page *page = NULL;
792 	struct rds_atomic_args *args;
793 	int ret = 0;
794 
795 	if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_atomic_args))
796 	 || rm->atomic.op_active)
797 		return -EINVAL;
798 
799 	args = CMSG_DATA(cmsg);
800 
801 	/* Nonmasked & masked cmsg ops converted to masked hw ops */
802 	switch (cmsg->cmsg_type) {
803 	case RDS_CMSG_ATOMIC_FADD:
804 		rm->atomic.op_type = RDS_ATOMIC_TYPE_FADD;
805 		rm->atomic.op_m_fadd.add = args->fadd.add;
806 		rm->atomic.op_m_fadd.nocarry_mask = 0;
807 		break;
808 	case RDS_CMSG_MASKED_ATOMIC_FADD:
809 		rm->atomic.op_type = RDS_ATOMIC_TYPE_FADD;
810 		rm->atomic.op_m_fadd.add = args->m_fadd.add;
811 		rm->atomic.op_m_fadd.nocarry_mask = args->m_fadd.nocarry_mask;
812 		break;
813 	case RDS_CMSG_ATOMIC_CSWP:
814 		rm->atomic.op_type = RDS_ATOMIC_TYPE_CSWP;
815 		rm->atomic.op_m_cswp.compare = args->cswp.compare;
816 		rm->atomic.op_m_cswp.swap = args->cswp.swap;
817 		rm->atomic.op_m_cswp.compare_mask = ~0;
818 		rm->atomic.op_m_cswp.swap_mask = ~0;
819 		break;
820 	case RDS_CMSG_MASKED_ATOMIC_CSWP:
821 		rm->atomic.op_type = RDS_ATOMIC_TYPE_CSWP;
822 		rm->atomic.op_m_cswp.compare = args->m_cswp.compare;
823 		rm->atomic.op_m_cswp.swap = args->m_cswp.swap;
824 		rm->atomic.op_m_cswp.compare_mask = args->m_cswp.compare_mask;
825 		rm->atomic.op_m_cswp.swap_mask = args->m_cswp.swap_mask;
826 		break;
827 	default:
828 		BUG(); /* should never happen */
829 	}
830 
831 	rm->atomic.op_notify = !!(args->flags & RDS_RDMA_NOTIFY_ME);
832 	rm->atomic.op_silent = !!(args->flags & RDS_RDMA_SILENT);
833 	rm->atomic.op_active = 1;
834 	rm->atomic.op_recverr = rs->rs_recverr;
835 	rm->atomic.op_sg = rds_message_alloc_sgs(rm, 1);
836 	if (!rm->atomic.op_sg) {
837 		ret = -ENOMEM;
838 		goto err;
839 	}
840 
841 	/* verify 8 byte-aligned */
842 	if (args->local_addr & 0x7) {
843 		ret = -EFAULT;
844 		goto err;
845 	}
846 
847 	ret = rds_pin_pages(args->local_addr, 1, &page, 1);
848 	if (ret != 1)
849 		goto err;
850 	ret = 0;
851 
852 	sg_set_page(rm->atomic.op_sg, page, 8, offset_in_page(args->local_addr));
853 
854 	if (rm->atomic.op_notify || rm->atomic.op_recverr) {
855 		/* We allocate an uninitialized notifier here, because
856 		 * we don't want to do that in the completion handler. We
857 		 * would have to use GFP_ATOMIC there, and don't want to deal
858 		 * with failed allocations.
859 		 */
860 		rm->atomic.op_notifier = kmalloc(sizeof(*rm->atomic.op_notifier), GFP_KERNEL);
861 		if (!rm->atomic.op_notifier) {
862 			ret = -ENOMEM;
863 			goto err;
864 		}
865 
866 		rm->atomic.op_notifier->n_user_token = args->user_token;
867 		rm->atomic.op_notifier->n_status = RDS_RDMA_SUCCESS;
868 	}
869 
870 	rm->atomic.op_rkey = rds_rdma_cookie_key(args->cookie);
871 	rm->atomic.op_remote_addr = args->remote_addr + rds_rdma_cookie_offset(args->cookie);
872 
873 	return ret;
874 err:
875 	if (page)
876 		put_page(page);
877 	kfree(rm->atomic.op_notifier);
878 
879 	return ret;
880 }
881