1 /* 2 * Copyright (c) 2007 Oracle. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 * 32 */ 33 #include <linux/pagemap.h> 34 #include <linux/slab.h> 35 #include <linux/rbtree.h> 36 #include <linux/dma-mapping.h> /* for DMA_*_DEVICE */ 37 38 #include "rds.h" 39 40 /* 41 * XXX 42 * - build with sparse 43 * - should we limit the size of a mr region? let transport return failure? 44 * - should we detect duplicate keys on a socket? hmm. 45 * - an rdma is an mlock, apply rlimit? 46 */ 47 48 /* 49 * get the number of pages by looking at the page indices that the start and 50 * end addresses fall in. 51 * 52 * Returns 0 if the vec is invalid. It is invalid if the number of bytes 53 * causes the address to wrap or overflows an unsigned int. This comes 54 * from being stored in the 'length' member of 'struct scatterlist'. 55 */ 56 static unsigned int rds_pages_in_vec(struct rds_iovec *vec) 57 { 58 if ((vec->addr + vec->bytes <= vec->addr) || 59 (vec->bytes > (u64)UINT_MAX)) 60 return 0; 61 62 return ((vec->addr + vec->bytes + PAGE_SIZE - 1) >> PAGE_SHIFT) - 63 (vec->addr >> PAGE_SHIFT); 64 } 65 66 static struct rds_mr *rds_mr_tree_walk(struct rb_root *root, u64 key, 67 struct rds_mr *insert) 68 { 69 struct rb_node **p = &root->rb_node; 70 struct rb_node *parent = NULL; 71 struct rds_mr *mr; 72 73 while (*p) { 74 parent = *p; 75 mr = rb_entry(parent, struct rds_mr, r_rb_node); 76 77 if (key < mr->r_key) 78 p = &(*p)->rb_left; 79 else if (key > mr->r_key) 80 p = &(*p)->rb_right; 81 else 82 return mr; 83 } 84 85 if (insert) { 86 rb_link_node(&insert->r_rb_node, parent, p); 87 rb_insert_color(&insert->r_rb_node, root); 88 atomic_inc(&insert->r_refcount); 89 } 90 return NULL; 91 } 92 93 /* 94 * Destroy the transport-specific part of a MR. 95 */ 96 static void rds_destroy_mr(struct rds_mr *mr) 97 { 98 struct rds_sock *rs = mr->r_sock; 99 void *trans_private = NULL; 100 unsigned long flags; 101 102 rdsdebug("RDS: destroy mr key is %x refcnt %u\n", 103 mr->r_key, atomic_read(&mr->r_refcount)); 104 105 if (test_and_set_bit(RDS_MR_DEAD, &mr->r_state)) 106 return; 107 108 spin_lock_irqsave(&rs->rs_rdma_lock, flags); 109 if (!RB_EMPTY_NODE(&mr->r_rb_node)) 110 rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys); 111 trans_private = mr->r_trans_private; 112 mr->r_trans_private = NULL; 113 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); 114 115 if (trans_private) 116 mr->r_trans->free_mr(trans_private, mr->r_invalidate); 117 } 118 119 void __rds_put_mr_final(struct rds_mr *mr) 120 { 121 rds_destroy_mr(mr); 122 kfree(mr); 123 } 124 125 /* 126 * By the time this is called we can't have any more ioctls called on 127 * the socket so we don't need to worry about racing with others. 128 */ 129 void rds_rdma_drop_keys(struct rds_sock *rs) 130 { 131 struct rds_mr *mr; 132 struct rb_node *node; 133 unsigned long flags; 134 135 /* Release any MRs associated with this socket */ 136 spin_lock_irqsave(&rs->rs_rdma_lock, flags); 137 while ((node = rb_first(&rs->rs_rdma_keys))) { 138 mr = rb_entry(node, struct rds_mr, r_rb_node); 139 if (mr->r_trans == rs->rs_transport) 140 mr->r_invalidate = 0; 141 rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys); 142 RB_CLEAR_NODE(&mr->r_rb_node); 143 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); 144 rds_destroy_mr(mr); 145 rds_mr_put(mr); 146 spin_lock_irqsave(&rs->rs_rdma_lock, flags); 147 } 148 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); 149 150 if (rs->rs_transport && rs->rs_transport->flush_mrs) 151 rs->rs_transport->flush_mrs(); 152 } 153 154 /* 155 * Helper function to pin user pages. 156 */ 157 static int rds_pin_pages(unsigned long user_addr, unsigned int nr_pages, 158 struct page **pages, int write) 159 { 160 int ret; 161 162 ret = get_user_pages_fast(user_addr, nr_pages, write, pages); 163 164 if (ret >= 0 && ret < nr_pages) { 165 while (ret--) 166 put_page(pages[ret]); 167 ret = -EFAULT; 168 } 169 170 return ret; 171 } 172 173 static int __rds_rdma_map(struct rds_sock *rs, struct rds_get_mr_args *args, 174 u64 *cookie_ret, struct rds_mr **mr_ret) 175 { 176 struct rds_mr *mr = NULL, *found; 177 unsigned int nr_pages; 178 struct page **pages = NULL; 179 struct scatterlist *sg; 180 void *trans_private; 181 unsigned long flags; 182 rds_rdma_cookie_t cookie; 183 unsigned int nents; 184 long i; 185 int ret; 186 187 if (rs->rs_bound_addr == 0) { 188 ret = -ENOTCONN; /* XXX not a great errno */ 189 goto out; 190 } 191 192 if (!rs->rs_transport->get_mr) { 193 ret = -EOPNOTSUPP; 194 goto out; 195 } 196 197 nr_pages = rds_pages_in_vec(&args->vec); 198 if (nr_pages == 0) { 199 ret = -EINVAL; 200 goto out; 201 } 202 203 rdsdebug("RDS: get_mr addr %llx len %llu nr_pages %u\n", 204 args->vec.addr, args->vec.bytes, nr_pages); 205 206 /* XXX clamp nr_pages to limit the size of this alloc? */ 207 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL); 208 if (!pages) { 209 ret = -ENOMEM; 210 goto out; 211 } 212 213 mr = kzalloc(sizeof(struct rds_mr), GFP_KERNEL); 214 if (!mr) { 215 ret = -ENOMEM; 216 goto out; 217 } 218 219 atomic_set(&mr->r_refcount, 1); 220 RB_CLEAR_NODE(&mr->r_rb_node); 221 mr->r_trans = rs->rs_transport; 222 mr->r_sock = rs; 223 224 if (args->flags & RDS_RDMA_USE_ONCE) 225 mr->r_use_once = 1; 226 if (args->flags & RDS_RDMA_INVALIDATE) 227 mr->r_invalidate = 1; 228 if (args->flags & RDS_RDMA_READWRITE) 229 mr->r_write = 1; 230 231 /* 232 * Pin the pages that make up the user buffer and transfer the page 233 * pointers to the mr's sg array. We check to see if we've mapped 234 * the whole region after transferring the partial page references 235 * to the sg array so that we can have one page ref cleanup path. 236 * 237 * For now we have no flag that tells us whether the mapping is 238 * r/o or r/w. We need to assume r/w, or we'll do a lot of RDMA to 239 * the zero page. 240 */ 241 ret = rds_pin_pages(args->vec.addr, nr_pages, pages, 1); 242 if (ret < 0) 243 goto out; 244 245 nents = ret; 246 sg = kcalloc(nents, sizeof(*sg), GFP_KERNEL); 247 if (!sg) { 248 ret = -ENOMEM; 249 goto out; 250 } 251 WARN_ON(!nents); 252 sg_init_table(sg, nents); 253 254 /* Stick all pages into the scatterlist */ 255 for (i = 0 ; i < nents; i++) 256 sg_set_page(&sg[i], pages[i], PAGE_SIZE, 0); 257 258 rdsdebug("RDS: trans_private nents is %u\n", nents); 259 260 /* Obtain a transport specific MR. If this succeeds, the 261 * s/g list is now owned by the MR. 262 * Note that dma_map() implies that pending writes are 263 * flushed to RAM, so no dma_sync is needed here. */ 264 trans_private = rs->rs_transport->get_mr(sg, nents, rs, 265 &mr->r_key); 266 267 if (IS_ERR(trans_private)) { 268 for (i = 0 ; i < nents; i++) 269 put_page(sg_page(&sg[i])); 270 kfree(sg); 271 ret = PTR_ERR(trans_private); 272 goto out; 273 } 274 275 mr->r_trans_private = trans_private; 276 277 rdsdebug("RDS: get_mr put_user key is %x cookie_addr %p\n", 278 mr->r_key, (void *)(unsigned long) args->cookie_addr); 279 280 /* The user may pass us an unaligned address, but we can only 281 * map page aligned regions. So we keep the offset, and build 282 * a 64bit cookie containing <R_Key, offset> and pass that 283 * around. */ 284 cookie = rds_rdma_make_cookie(mr->r_key, args->vec.addr & ~PAGE_MASK); 285 if (cookie_ret) 286 *cookie_ret = cookie; 287 288 if (args->cookie_addr && put_user(cookie, (u64 __user *)(unsigned long) args->cookie_addr)) { 289 ret = -EFAULT; 290 goto out; 291 } 292 293 /* Inserting the new MR into the rbtree bumps its 294 * reference count. */ 295 spin_lock_irqsave(&rs->rs_rdma_lock, flags); 296 found = rds_mr_tree_walk(&rs->rs_rdma_keys, mr->r_key, mr); 297 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); 298 299 BUG_ON(found && found != mr); 300 301 rdsdebug("RDS: get_mr key is %x\n", mr->r_key); 302 if (mr_ret) { 303 atomic_inc(&mr->r_refcount); 304 *mr_ret = mr; 305 } 306 307 ret = 0; 308 out: 309 kfree(pages); 310 if (mr) 311 rds_mr_put(mr); 312 return ret; 313 } 314 315 int rds_get_mr(struct rds_sock *rs, char __user *optval, int optlen) 316 { 317 struct rds_get_mr_args args; 318 319 if (optlen != sizeof(struct rds_get_mr_args)) 320 return -EINVAL; 321 322 if (copy_from_user(&args, (struct rds_get_mr_args __user *)optval, 323 sizeof(struct rds_get_mr_args))) 324 return -EFAULT; 325 326 return __rds_rdma_map(rs, &args, NULL, NULL); 327 } 328 329 int rds_get_mr_for_dest(struct rds_sock *rs, char __user *optval, int optlen) 330 { 331 struct rds_get_mr_for_dest_args args; 332 struct rds_get_mr_args new_args; 333 334 if (optlen != sizeof(struct rds_get_mr_for_dest_args)) 335 return -EINVAL; 336 337 if (copy_from_user(&args, (struct rds_get_mr_for_dest_args __user *)optval, 338 sizeof(struct rds_get_mr_for_dest_args))) 339 return -EFAULT; 340 341 /* 342 * Initially, just behave like get_mr(). 343 * TODO: Implement get_mr as wrapper around this 344 * and deprecate it. 345 */ 346 new_args.vec = args.vec; 347 new_args.cookie_addr = args.cookie_addr; 348 new_args.flags = args.flags; 349 350 return __rds_rdma_map(rs, &new_args, NULL, NULL); 351 } 352 353 /* 354 * Free the MR indicated by the given R_Key 355 */ 356 int rds_free_mr(struct rds_sock *rs, char __user *optval, int optlen) 357 { 358 struct rds_free_mr_args args; 359 struct rds_mr *mr; 360 unsigned long flags; 361 362 if (optlen != sizeof(struct rds_free_mr_args)) 363 return -EINVAL; 364 365 if (copy_from_user(&args, (struct rds_free_mr_args __user *)optval, 366 sizeof(struct rds_free_mr_args))) 367 return -EFAULT; 368 369 /* Special case - a null cookie means flush all unused MRs */ 370 if (args.cookie == 0) { 371 if (!rs->rs_transport || !rs->rs_transport->flush_mrs) 372 return -EINVAL; 373 rs->rs_transport->flush_mrs(); 374 return 0; 375 } 376 377 /* Look up the MR given its R_key and remove it from the rbtree 378 * so nobody else finds it. 379 * This should also prevent races with rds_rdma_unuse. 380 */ 381 spin_lock_irqsave(&rs->rs_rdma_lock, flags); 382 mr = rds_mr_tree_walk(&rs->rs_rdma_keys, rds_rdma_cookie_key(args.cookie), NULL); 383 if (mr) { 384 rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys); 385 RB_CLEAR_NODE(&mr->r_rb_node); 386 if (args.flags & RDS_RDMA_INVALIDATE) 387 mr->r_invalidate = 1; 388 } 389 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); 390 391 if (!mr) 392 return -EINVAL; 393 394 /* 395 * call rds_destroy_mr() ourselves so that we're sure it's done by the time 396 * we return. If we let rds_mr_put() do it it might not happen until 397 * someone else drops their ref. 398 */ 399 rds_destroy_mr(mr); 400 rds_mr_put(mr); 401 return 0; 402 } 403 404 /* 405 * This is called when we receive an extension header that 406 * tells us this MR was used. It allows us to implement 407 * use_once semantics 408 */ 409 void rds_rdma_unuse(struct rds_sock *rs, u32 r_key, int force) 410 { 411 struct rds_mr *mr; 412 unsigned long flags; 413 int zot_me = 0; 414 415 spin_lock_irqsave(&rs->rs_rdma_lock, flags); 416 mr = rds_mr_tree_walk(&rs->rs_rdma_keys, r_key, NULL); 417 if (!mr) { 418 printk(KERN_ERR "rds: trying to unuse MR with unknown r_key %u!\n", r_key); 419 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); 420 return; 421 } 422 423 if (mr->r_use_once || force) { 424 rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys); 425 RB_CLEAR_NODE(&mr->r_rb_node); 426 zot_me = 1; 427 } 428 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); 429 430 /* May have to issue a dma_sync on this memory region. 431 * Note we could avoid this if the operation was a RDMA READ, 432 * but at this point we can't tell. */ 433 if (mr->r_trans->sync_mr) 434 mr->r_trans->sync_mr(mr->r_trans_private, DMA_FROM_DEVICE); 435 436 /* If the MR was marked as invalidate, this will 437 * trigger an async flush. */ 438 if (zot_me) { 439 rds_destroy_mr(mr); 440 rds_mr_put(mr); 441 } 442 } 443 444 void rds_rdma_free_op(struct rm_rdma_op *ro) 445 { 446 unsigned int i; 447 448 for (i = 0; i < ro->op_nents; i++) { 449 struct page *page = sg_page(&ro->op_sg[i]); 450 451 /* Mark page dirty if it was possibly modified, which 452 * is the case for a RDMA_READ which copies from remote 453 * to local memory */ 454 if (!ro->op_write) { 455 WARN_ON(!page->mapping && irqs_disabled()); 456 set_page_dirty(page); 457 } 458 put_page(page); 459 } 460 461 kfree(ro->op_notifier); 462 ro->op_notifier = NULL; 463 ro->op_active = 0; 464 } 465 466 void rds_atomic_free_op(struct rm_atomic_op *ao) 467 { 468 struct page *page = sg_page(ao->op_sg); 469 470 /* Mark page dirty if it was possibly modified, which 471 * is the case for a RDMA_READ which copies from remote 472 * to local memory */ 473 set_page_dirty(page); 474 put_page(page); 475 476 kfree(ao->op_notifier); 477 ao->op_notifier = NULL; 478 ao->op_active = 0; 479 } 480 481 482 /* 483 * Count the number of pages needed to describe an incoming iovec array. 484 */ 485 static int rds_rdma_pages(struct rds_iovec iov[], int nr_iovecs) 486 { 487 int tot_pages = 0; 488 unsigned int nr_pages; 489 unsigned int i; 490 491 /* figure out the number of pages in the vector */ 492 for (i = 0; i < nr_iovecs; i++) { 493 nr_pages = rds_pages_in_vec(&iov[i]); 494 if (nr_pages == 0) 495 return -EINVAL; 496 497 tot_pages += nr_pages; 498 499 /* 500 * nr_pages for one entry is limited to (UINT_MAX>>PAGE_SHIFT)+1, 501 * so tot_pages cannot overflow without first going negative. 502 */ 503 if (tot_pages < 0) 504 return -EINVAL; 505 } 506 507 return tot_pages; 508 } 509 510 int rds_rdma_extra_size(struct rds_rdma_args *args) 511 { 512 struct rds_iovec vec; 513 struct rds_iovec __user *local_vec; 514 int tot_pages = 0; 515 unsigned int nr_pages; 516 unsigned int i; 517 518 local_vec = (struct rds_iovec __user *)(unsigned long) args->local_vec_addr; 519 520 /* figure out the number of pages in the vector */ 521 for (i = 0; i < args->nr_local; i++) { 522 if (copy_from_user(&vec, &local_vec[i], 523 sizeof(struct rds_iovec))) 524 return -EFAULT; 525 526 nr_pages = rds_pages_in_vec(&vec); 527 if (nr_pages == 0) 528 return -EINVAL; 529 530 tot_pages += nr_pages; 531 532 /* 533 * nr_pages for one entry is limited to (UINT_MAX>>PAGE_SHIFT)+1, 534 * so tot_pages cannot overflow without first going negative. 535 */ 536 if (tot_pages < 0) 537 return -EINVAL; 538 } 539 540 return tot_pages * sizeof(struct scatterlist); 541 } 542 543 /* 544 * The application asks for a RDMA transfer. 545 * Extract all arguments and set up the rdma_op 546 */ 547 int rds_cmsg_rdma_args(struct rds_sock *rs, struct rds_message *rm, 548 struct cmsghdr *cmsg) 549 { 550 struct rds_rdma_args *args; 551 struct rm_rdma_op *op = &rm->rdma; 552 int nr_pages; 553 unsigned int nr_bytes; 554 struct page **pages = NULL; 555 struct rds_iovec iovstack[UIO_FASTIOV], *iovs = iovstack; 556 int iov_size; 557 unsigned int i, j; 558 int ret = 0; 559 560 if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_rdma_args)) 561 || rm->rdma.op_active) 562 return -EINVAL; 563 564 args = CMSG_DATA(cmsg); 565 566 if (rs->rs_bound_addr == 0) { 567 ret = -ENOTCONN; /* XXX not a great errno */ 568 goto out_ret; 569 } 570 571 if (args->nr_local > UIO_MAXIOV) { 572 ret = -EMSGSIZE; 573 goto out_ret; 574 } 575 576 /* Check whether to allocate the iovec area */ 577 iov_size = args->nr_local * sizeof(struct rds_iovec); 578 if (args->nr_local > UIO_FASTIOV) { 579 iovs = sock_kmalloc(rds_rs_to_sk(rs), iov_size, GFP_KERNEL); 580 if (!iovs) { 581 ret = -ENOMEM; 582 goto out_ret; 583 } 584 } 585 586 if (copy_from_user(iovs, (struct rds_iovec __user *)(unsigned long) args->local_vec_addr, iov_size)) { 587 ret = -EFAULT; 588 goto out; 589 } 590 591 nr_pages = rds_rdma_pages(iovs, args->nr_local); 592 if (nr_pages < 0) { 593 ret = -EINVAL; 594 goto out; 595 } 596 597 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL); 598 if (!pages) { 599 ret = -ENOMEM; 600 goto out; 601 } 602 603 op->op_write = !!(args->flags & RDS_RDMA_READWRITE); 604 op->op_fence = !!(args->flags & RDS_RDMA_FENCE); 605 op->op_notify = !!(args->flags & RDS_RDMA_NOTIFY_ME); 606 op->op_silent = !!(args->flags & RDS_RDMA_SILENT); 607 op->op_active = 1; 608 op->op_recverr = rs->rs_recverr; 609 WARN_ON(!nr_pages); 610 op->op_sg = rds_message_alloc_sgs(rm, nr_pages); 611 if (!op->op_sg) { 612 ret = -ENOMEM; 613 goto out; 614 } 615 616 if (op->op_notify || op->op_recverr) { 617 /* We allocate an uninitialized notifier here, because 618 * we don't want to do that in the completion handler. We 619 * would have to use GFP_ATOMIC there, and don't want to deal 620 * with failed allocations. 621 */ 622 op->op_notifier = kmalloc(sizeof(struct rds_notifier), GFP_KERNEL); 623 if (!op->op_notifier) { 624 ret = -ENOMEM; 625 goto out; 626 } 627 op->op_notifier->n_user_token = args->user_token; 628 op->op_notifier->n_status = RDS_RDMA_SUCCESS; 629 } 630 631 /* The cookie contains the R_Key of the remote memory region, and 632 * optionally an offset into it. This is how we implement RDMA into 633 * unaligned memory. 634 * When setting up the RDMA, we need to add that offset to the 635 * destination address (which is really an offset into the MR) 636 * FIXME: We may want to move this into ib_rdma.c 637 */ 638 op->op_rkey = rds_rdma_cookie_key(args->cookie); 639 op->op_remote_addr = args->remote_vec.addr + rds_rdma_cookie_offset(args->cookie); 640 641 nr_bytes = 0; 642 643 rdsdebug("RDS: rdma prepare nr_local %llu rva %llx rkey %x\n", 644 (unsigned long long)args->nr_local, 645 (unsigned long long)args->remote_vec.addr, 646 op->op_rkey); 647 648 for (i = 0; i < args->nr_local; i++) { 649 struct rds_iovec *iov = &iovs[i]; 650 /* don't need to check, rds_rdma_pages() verified nr will be +nonzero */ 651 unsigned int nr = rds_pages_in_vec(iov); 652 653 rs->rs_user_addr = iov->addr; 654 rs->rs_user_bytes = iov->bytes; 655 656 /* If it's a WRITE operation, we want to pin the pages for reading. 657 * If it's a READ operation, we need to pin the pages for writing. 658 */ 659 ret = rds_pin_pages(iov->addr, nr, pages, !op->op_write); 660 if (ret < 0) 661 goto out; 662 else 663 ret = 0; 664 665 rdsdebug("RDS: nr_bytes %u nr %u iov->bytes %llu iov->addr %llx\n", 666 nr_bytes, nr, iov->bytes, iov->addr); 667 668 nr_bytes += iov->bytes; 669 670 for (j = 0; j < nr; j++) { 671 unsigned int offset = iov->addr & ~PAGE_MASK; 672 struct scatterlist *sg; 673 674 sg = &op->op_sg[op->op_nents + j]; 675 sg_set_page(sg, pages[j], 676 min_t(unsigned int, iov->bytes, PAGE_SIZE - offset), 677 offset); 678 679 rdsdebug("RDS: sg->offset %x sg->len %x iov->addr %llx iov->bytes %llu\n", 680 sg->offset, sg->length, iov->addr, iov->bytes); 681 682 iov->addr += sg->length; 683 iov->bytes -= sg->length; 684 } 685 686 op->op_nents += nr; 687 } 688 689 if (nr_bytes > args->remote_vec.bytes) { 690 rdsdebug("RDS nr_bytes %u remote_bytes %u do not match\n", 691 nr_bytes, 692 (unsigned int) args->remote_vec.bytes); 693 ret = -EINVAL; 694 goto out; 695 } 696 op->op_bytes = nr_bytes; 697 698 out: 699 if (iovs != iovstack) 700 sock_kfree_s(rds_rs_to_sk(rs), iovs, iov_size); 701 kfree(pages); 702 out_ret: 703 if (ret) 704 rds_rdma_free_op(op); 705 else 706 rds_stats_inc(s_send_rdma); 707 708 return ret; 709 } 710 711 /* 712 * The application wants us to pass an RDMA destination (aka MR) 713 * to the remote 714 */ 715 int rds_cmsg_rdma_dest(struct rds_sock *rs, struct rds_message *rm, 716 struct cmsghdr *cmsg) 717 { 718 unsigned long flags; 719 struct rds_mr *mr; 720 u32 r_key; 721 int err = 0; 722 723 if (cmsg->cmsg_len < CMSG_LEN(sizeof(rds_rdma_cookie_t)) || 724 rm->m_rdma_cookie != 0) 725 return -EINVAL; 726 727 memcpy(&rm->m_rdma_cookie, CMSG_DATA(cmsg), sizeof(rm->m_rdma_cookie)); 728 729 /* We are reusing a previously mapped MR here. Most likely, the 730 * application has written to the buffer, so we need to explicitly 731 * flush those writes to RAM. Otherwise the HCA may not see them 732 * when doing a DMA from that buffer. 733 */ 734 r_key = rds_rdma_cookie_key(rm->m_rdma_cookie); 735 736 spin_lock_irqsave(&rs->rs_rdma_lock, flags); 737 mr = rds_mr_tree_walk(&rs->rs_rdma_keys, r_key, NULL); 738 if (!mr) 739 err = -EINVAL; /* invalid r_key */ 740 else 741 atomic_inc(&mr->r_refcount); 742 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); 743 744 if (mr) { 745 mr->r_trans->sync_mr(mr->r_trans_private, DMA_TO_DEVICE); 746 rm->rdma.op_rdma_mr = mr; 747 } 748 return err; 749 } 750 751 /* 752 * The application passes us an address range it wants to enable RDMA 753 * to/from. We map the area, and save the <R_Key,offset> pair 754 * in rm->m_rdma_cookie. This causes it to be sent along to the peer 755 * in an extension header. 756 */ 757 int rds_cmsg_rdma_map(struct rds_sock *rs, struct rds_message *rm, 758 struct cmsghdr *cmsg) 759 { 760 if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_get_mr_args)) || 761 rm->m_rdma_cookie != 0) 762 return -EINVAL; 763 764 return __rds_rdma_map(rs, CMSG_DATA(cmsg), &rm->m_rdma_cookie, &rm->rdma.op_rdma_mr); 765 } 766 767 /* 768 * Fill in rds_message for an atomic request. 769 */ 770 int rds_cmsg_atomic(struct rds_sock *rs, struct rds_message *rm, 771 struct cmsghdr *cmsg) 772 { 773 struct page *page = NULL; 774 struct rds_atomic_args *args; 775 int ret = 0; 776 777 if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_atomic_args)) 778 || rm->atomic.op_active) 779 return -EINVAL; 780 781 args = CMSG_DATA(cmsg); 782 783 /* Nonmasked & masked cmsg ops converted to masked hw ops */ 784 switch (cmsg->cmsg_type) { 785 case RDS_CMSG_ATOMIC_FADD: 786 rm->atomic.op_type = RDS_ATOMIC_TYPE_FADD; 787 rm->atomic.op_m_fadd.add = args->fadd.add; 788 rm->atomic.op_m_fadd.nocarry_mask = 0; 789 break; 790 case RDS_CMSG_MASKED_ATOMIC_FADD: 791 rm->atomic.op_type = RDS_ATOMIC_TYPE_FADD; 792 rm->atomic.op_m_fadd.add = args->m_fadd.add; 793 rm->atomic.op_m_fadd.nocarry_mask = args->m_fadd.nocarry_mask; 794 break; 795 case RDS_CMSG_ATOMIC_CSWP: 796 rm->atomic.op_type = RDS_ATOMIC_TYPE_CSWP; 797 rm->atomic.op_m_cswp.compare = args->cswp.compare; 798 rm->atomic.op_m_cswp.swap = args->cswp.swap; 799 rm->atomic.op_m_cswp.compare_mask = ~0; 800 rm->atomic.op_m_cswp.swap_mask = ~0; 801 break; 802 case RDS_CMSG_MASKED_ATOMIC_CSWP: 803 rm->atomic.op_type = RDS_ATOMIC_TYPE_CSWP; 804 rm->atomic.op_m_cswp.compare = args->m_cswp.compare; 805 rm->atomic.op_m_cswp.swap = args->m_cswp.swap; 806 rm->atomic.op_m_cswp.compare_mask = args->m_cswp.compare_mask; 807 rm->atomic.op_m_cswp.swap_mask = args->m_cswp.swap_mask; 808 break; 809 default: 810 BUG(); /* should never happen */ 811 } 812 813 rm->atomic.op_notify = !!(args->flags & RDS_RDMA_NOTIFY_ME); 814 rm->atomic.op_silent = !!(args->flags & RDS_RDMA_SILENT); 815 rm->atomic.op_active = 1; 816 rm->atomic.op_recverr = rs->rs_recverr; 817 rm->atomic.op_sg = rds_message_alloc_sgs(rm, 1); 818 if (!rm->atomic.op_sg) { 819 ret = -ENOMEM; 820 goto err; 821 } 822 823 /* verify 8 byte-aligned */ 824 if (args->local_addr & 0x7) { 825 ret = -EFAULT; 826 goto err; 827 } 828 829 ret = rds_pin_pages(args->local_addr, 1, &page, 1); 830 if (ret != 1) 831 goto err; 832 ret = 0; 833 834 sg_set_page(rm->atomic.op_sg, page, 8, offset_in_page(args->local_addr)); 835 836 if (rm->atomic.op_notify || rm->atomic.op_recverr) { 837 /* We allocate an uninitialized notifier here, because 838 * we don't want to do that in the completion handler. We 839 * would have to use GFP_ATOMIC there, and don't want to deal 840 * with failed allocations. 841 */ 842 rm->atomic.op_notifier = kmalloc(sizeof(*rm->atomic.op_notifier), GFP_KERNEL); 843 if (!rm->atomic.op_notifier) { 844 ret = -ENOMEM; 845 goto err; 846 } 847 848 rm->atomic.op_notifier->n_user_token = args->user_token; 849 rm->atomic.op_notifier->n_status = RDS_RDMA_SUCCESS; 850 } 851 852 rm->atomic.op_rkey = rds_rdma_cookie_key(args->cookie); 853 rm->atomic.op_remote_addr = args->remote_addr + rds_rdma_cookie_offset(args->cookie); 854 855 return ret; 856 err: 857 if (page) 858 put_page(page); 859 kfree(rm->atomic.op_notifier); 860 861 return ret; 862 } 863