1 /* 2 * Copyright (c) 2007, 2020 Oracle and/or its affiliates. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 * 32 */ 33 #include <linux/pagemap.h> 34 #include <linux/slab.h> 35 #include <linux/rbtree.h> 36 #include <linux/dma-mapping.h> /* for DMA_*_DEVICE */ 37 38 #include "rds.h" 39 40 /* 41 * XXX 42 * - build with sparse 43 * - should we detect duplicate keys on a socket? hmm. 44 * - an rdma is an mlock, apply rlimit? 45 */ 46 47 /* 48 * get the number of pages by looking at the page indices that the start and 49 * end addresses fall in. 50 * 51 * Returns 0 if the vec is invalid. It is invalid if the number of bytes 52 * causes the address to wrap or overflows an unsigned int. This comes 53 * from being stored in the 'length' member of 'struct scatterlist'. 54 */ 55 static unsigned int rds_pages_in_vec(struct rds_iovec *vec) 56 { 57 if ((vec->addr + vec->bytes <= vec->addr) || 58 (vec->bytes > (u64)UINT_MAX)) 59 return 0; 60 61 return ((vec->addr + vec->bytes + PAGE_SIZE - 1) >> PAGE_SHIFT) - 62 (vec->addr >> PAGE_SHIFT); 63 } 64 65 static struct rds_mr *rds_mr_tree_walk(struct rb_root *root, u64 key, 66 struct rds_mr *insert) 67 { 68 struct rb_node **p = &root->rb_node; 69 struct rb_node *parent = NULL; 70 struct rds_mr *mr; 71 72 while (*p) { 73 parent = *p; 74 mr = rb_entry(parent, struct rds_mr, r_rb_node); 75 76 if (key < mr->r_key) 77 p = &(*p)->rb_left; 78 else if (key > mr->r_key) 79 p = &(*p)->rb_right; 80 else 81 return mr; 82 } 83 84 if (insert) { 85 rb_link_node(&insert->r_rb_node, parent, p); 86 rb_insert_color(&insert->r_rb_node, root); 87 kref_get(&insert->r_kref); 88 } 89 return NULL; 90 } 91 92 /* 93 * Destroy the transport-specific part of a MR. 94 */ 95 static void rds_destroy_mr(struct rds_mr *mr) 96 { 97 struct rds_sock *rs = mr->r_sock; 98 void *trans_private = NULL; 99 unsigned long flags; 100 101 rdsdebug("RDS: destroy mr key is %x refcnt %u\n", 102 mr->r_key, kref_read(&mr->r_kref)); 103 104 spin_lock_irqsave(&rs->rs_rdma_lock, flags); 105 if (!RB_EMPTY_NODE(&mr->r_rb_node)) 106 rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys); 107 trans_private = mr->r_trans_private; 108 mr->r_trans_private = NULL; 109 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); 110 111 if (trans_private) 112 mr->r_trans->free_mr(trans_private, mr->r_invalidate); 113 } 114 115 void __rds_put_mr_final(struct kref *kref) 116 { 117 struct rds_mr *mr = container_of(kref, struct rds_mr, r_kref); 118 119 rds_destroy_mr(mr); 120 kfree(mr); 121 } 122 123 /* 124 * By the time this is called we can't have any more ioctls called on 125 * the socket so we don't need to worry about racing with others. 126 */ 127 void rds_rdma_drop_keys(struct rds_sock *rs) 128 { 129 struct rds_mr *mr; 130 struct rb_node *node; 131 unsigned long flags; 132 133 /* Release any MRs associated with this socket */ 134 spin_lock_irqsave(&rs->rs_rdma_lock, flags); 135 while ((node = rb_first(&rs->rs_rdma_keys))) { 136 mr = rb_entry(node, struct rds_mr, r_rb_node); 137 if (mr->r_trans == rs->rs_transport) 138 mr->r_invalidate = 0; 139 rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys); 140 RB_CLEAR_NODE(&mr->r_rb_node); 141 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); 142 kref_put(&mr->r_kref, __rds_put_mr_final); 143 spin_lock_irqsave(&rs->rs_rdma_lock, flags); 144 } 145 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); 146 147 if (rs->rs_transport && rs->rs_transport->flush_mrs) 148 rs->rs_transport->flush_mrs(); 149 } 150 151 /* 152 * Helper function to pin user pages. 153 */ 154 static int rds_pin_pages(unsigned long user_addr, unsigned int nr_pages, 155 struct page **pages, int write) 156 { 157 unsigned int gup_flags = FOLL_LONGTERM; 158 int ret; 159 160 if (write) 161 gup_flags |= FOLL_WRITE; 162 163 ret = pin_user_pages_fast(user_addr, nr_pages, gup_flags, pages); 164 if (ret >= 0 && ret < nr_pages) { 165 unpin_user_pages(pages, ret); 166 ret = -EFAULT; 167 } 168 169 return ret; 170 } 171 172 static int __rds_rdma_map(struct rds_sock *rs, struct rds_get_mr_args *args, 173 u64 *cookie_ret, struct rds_mr **mr_ret, 174 struct rds_conn_path *cp) 175 { 176 struct rds_mr *mr = NULL, *found; 177 struct scatterlist *sg = NULL; 178 unsigned int nr_pages; 179 struct page **pages = NULL; 180 void *trans_private; 181 unsigned long flags; 182 rds_rdma_cookie_t cookie; 183 unsigned int nents = 0; 184 int need_odp = 0; 185 long i; 186 int ret; 187 188 if (ipv6_addr_any(&rs->rs_bound_addr) || !rs->rs_transport) { 189 ret = -ENOTCONN; /* XXX not a great errno */ 190 goto out; 191 } 192 193 if (!rs->rs_transport->get_mr) { 194 ret = -EOPNOTSUPP; 195 goto out; 196 } 197 198 /* If the combination of the addr and size requested for this memory 199 * region causes an integer overflow, return error. 200 */ 201 if (((args->vec.addr + args->vec.bytes) < args->vec.addr) || 202 PAGE_ALIGN(args->vec.addr + args->vec.bytes) < 203 (args->vec.addr + args->vec.bytes)) { 204 ret = -EINVAL; 205 goto out; 206 } 207 208 if (!can_do_mlock()) { 209 ret = -EPERM; 210 goto out; 211 } 212 213 nr_pages = rds_pages_in_vec(&args->vec); 214 if (nr_pages == 0) { 215 ret = -EINVAL; 216 goto out; 217 } 218 219 /* Restrict the size of mr irrespective of underlying transport 220 * To account for unaligned mr regions, subtract one from nr_pages 221 */ 222 if ((nr_pages - 1) > (RDS_MAX_MSG_SIZE >> PAGE_SHIFT)) { 223 ret = -EMSGSIZE; 224 goto out; 225 } 226 227 rdsdebug("RDS: get_mr addr %llx len %llu nr_pages %u\n", 228 args->vec.addr, args->vec.bytes, nr_pages); 229 230 /* XXX clamp nr_pages to limit the size of this alloc? */ 231 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL); 232 if (!pages) { 233 ret = -ENOMEM; 234 goto out; 235 } 236 237 mr = kzalloc(sizeof(struct rds_mr), GFP_KERNEL); 238 if (!mr) { 239 ret = -ENOMEM; 240 goto out; 241 } 242 243 kref_init(&mr->r_kref); 244 RB_CLEAR_NODE(&mr->r_rb_node); 245 mr->r_trans = rs->rs_transport; 246 mr->r_sock = rs; 247 248 if (args->flags & RDS_RDMA_USE_ONCE) 249 mr->r_use_once = 1; 250 if (args->flags & RDS_RDMA_INVALIDATE) 251 mr->r_invalidate = 1; 252 if (args->flags & RDS_RDMA_READWRITE) 253 mr->r_write = 1; 254 255 /* 256 * Pin the pages that make up the user buffer and transfer the page 257 * pointers to the mr's sg array. We check to see if we've mapped 258 * the whole region after transferring the partial page references 259 * to the sg array so that we can have one page ref cleanup path. 260 * 261 * For now we have no flag that tells us whether the mapping is 262 * r/o or r/w. We need to assume r/w, or we'll do a lot of RDMA to 263 * the zero page. 264 */ 265 ret = rds_pin_pages(args->vec.addr, nr_pages, pages, 1); 266 if (ret == -EOPNOTSUPP) { 267 need_odp = 1; 268 } else if (ret <= 0) { 269 goto out; 270 } else { 271 nents = ret; 272 sg = kmalloc_array(nents, sizeof(*sg), GFP_KERNEL); 273 if (!sg) { 274 ret = -ENOMEM; 275 goto out; 276 } 277 WARN_ON(!nents); 278 sg_init_table(sg, nents); 279 280 /* Stick all pages into the scatterlist */ 281 for (i = 0 ; i < nents; i++) 282 sg_set_page(&sg[i], pages[i], PAGE_SIZE, 0); 283 284 rdsdebug("RDS: trans_private nents is %u\n", nents); 285 } 286 /* Obtain a transport specific MR. If this succeeds, the 287 * s/g list is now owned by the MR. 288 * Note that dma_map() implies that pending writes are 289 * flushed to RAM, so no dma_sync is needed here. */ 290 trans_private = rs->rs_transport->get_mr( 291 sg, nents, rs, &mr->r_key, cp ? cp->cp_conn : NULL, 292 args->vec.addr, args->vec.bytes, 293 need_odp ? ODP_ZEROBASED : ODP_NOT_NEEDED); 294 295 if (IS_ERR(trans_private)) { 296 /* In ODP case, we don't GUP pages, so don't need 297 * to release anything. 298 */ 299 if (!need_odp) { 300 unpin_user_pages(pages, nr_pages); 301 kfree(sg); 302 } 303 ret = PTR_ERR(trans_private); 304 goto out; 305 } 306 307 mr->r_trans_private = trans_private; 308 309 rdsdebug("RDS: get_mr put_user key is %x cookie_addr %p\n", 310 mr->r_key, (void *)(unsigned long) args->cookie_addr); 311 312 /* The user may pass us an unaligned address, but we can only 313 * map page aligned regions. So we keep the offset, and build 314 * a 64bit cookie containing <R_Key, offset> and pass that 315 * around. */ 316 if (need_odp) 317 cookie = rds_rdma_make_cookie(mr->r_key, 0); 318 else 319 cookie = rds_rdma_make_cookie(mr->r_key, 320 args->vec.addr & ~PAGE_MASK); 321 if (cookie_ret) 322 *cookie_ret = cookie; 323 324 if (args->cookie_addr && 325 put_user(cookie, (u64 __user *)(unsigned long)args->cookie_addr)) { 326 if (!need_odp) { 327 unpin_user_pages(pages, nr_pages); 328 kfree(sg); 329 } 330 ret = -EFAULT; 331 goto out; 332 } 333 334 /* Inserting the new MR into the rbtree bumps its 335 * reference count. */ 336 spin_lock_irqsave(&rs->rs_rdma_lock, flags); 337 found = rds_mr_tree_walk(&rs->rs_rdma_keys, mr->r_key, mr); 338 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); 339 340 BUG_ON(found && found != mr); 341 342 rdsdebug("RDS: get_mr key is %x\n", mr->r_key); 343 if (mr_ret) { 344 kref_get(&mr->r_kref); 345 *mr_ret = mr; 346 } 347 348 ret = 0; 349 out: 350 kfree(pages); 351 if (mr) 352 kref_put(&mr->r_kref, __rds_put_mr_final); 353 return ret; 354 } 355 356 int rds_get_mr(struct rds_sock *rs, sockptr_t optval, int optlen) 357 { 358 struct rds_get_mr_args args; 359 360 if (optlen != sizeof(struct rds_get_mr_args)) 361 return -EINVAL; 362 363 if (copy_from_sockptr(&args, optval, sizeof(struct rds_get_mr_args))) 364 return -EFAULT; 365 366 return __rds_rdma_map(rs, &args, NULL, NULL, NULL); 367 } 368 369 int rds_get_mr_for_dest(struct rds_sock *rs, sockptr_t optval, int optlen) 370 { 371 struct rds_get_mr_for_dest_args args; 372 struct rds_get_mr_args new_args; 373 374 if (optlen != sizeof(struct rds_get_mr_for_dest_args)) 375 return -EINVAL; 376 377 if (copy_from_sockptr(&args, optval, 378 sizeof(struct rds_get_mr_for_dest_args))) 379 return -EFAULT; 380 381 /* 382 * Initially, just behave like get_mr(). 383 * TODO: Implement get_mr as wrapper around this 384 * and deprecate it. 385 */ 386 new_args.vec = args.vec; 387 new_args.cookie_addr = args.cookie_addr; 388 new_args.flags = args.flags; 389 390 return __rds_rdma_map(rs, &new_args, NULL, NULL, NULL); 391 } 392 393 /* 394 * Free the MR indicated by the given R_Key 395 */ 396 int rds_free_mr(struct rds_sock *rs, sockptr_t optval, int optlen) 397 { 398 struct rds_free_mr_args args; 399 struct rds_mr *mr; 400 unsigned long flags; 401 402 if (optlen != sizeof(struct rds_free_mr_args)) 403 return -EINVAL; 404 405 if (copy_from_sockptr(&args, optval, sizeof(struct rds_free_mr_args))) 406 return -EFAULT; 407 408 /* Special case - a null cookie means flush all unused MRs */ 409 if (args.cookie == 0) { 410 if (!rs->rs_transport || !rs->rs_transport->flush_mrs) 411 return -EINVAL; 412 rs->rs_transport->flush_mrs(); 413 return 0; 414 } 415 416 /* Look up the MR given its R_key and remove it from the rbtree 417 * so nobody else finds it. 418 * This should also prevent races with rds_rdma_unuse. 419 */ 420 spin_lock_irqsave(&rs->rs_rdma_lock, flags); 421 mr = rds_mr_tree_walk(&rs->rs_rdma_keys, rds_rdma_cookie_key(args.cookie), NULL); 422 if (mr) { 423 rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys); 424 RB_CLEAR_NODE(&mr->r_rb_node); 425 if (args.flags & RDS_RDMA_INVALIDATE) 426 mr->r_invalidate = 1; 427 } 428 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); 429 430 if (!mr) 431 return -EINVAL; 432 433 kref_put(&mr->r_kref, __rds_put_mr_final); 434 return 0; 435 } 436 437 /* 438 * This is called when we receive an extension header that 439 * tells us this MR was used. It allows us to implement 440 * use_once semantics 441 */ 442 void rds_rdma_unuse(struct rds_sock *rs, u32 r_key, int force) 443 { 444 struct rds_mr *mr; 445 unsigned long flags; 446 int zot_me = 0; 447 448 spin_lock_irqsave(&rs->rs_rdma_lock, flags); 449 mr = rds_mr_tree_walk(&rs->rs_rdma_keys, r_key, NULL); 450 if (!mr) { 451 pr_debug("rds: trying to unuse MR with unknown r_key %u!\n", 452 r_key); 453 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); 454 return; 455 } 456 457 /* Get a reference so that the MR won't go away before calling 458 * sync_mr() below. 459 */ 460 kref_get(&mr->r_kref); 461 462 /* If it is going to be freed, remove it from the tree now so 463 * that no other thread can find it and free it. 464 */ 465 if (mr->r_use_once || force) { 466 rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys); 467 RB_CLEAR_NODE(&mr->r_rb_node); 468 zot_me = 1; 469 } 470 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); 471 472 /* May have to issue a dma_sync on this memory region. 473 * Note we could avoid this if the operation was a RDMA READ, 474 * but at this point we can't tell. */ 475 if (mr->r_trans->sync_mr) 476 mr->r_trans->sync_mr(mr->r_trans_private, DMA_FROM_DEVICE); 477 478 /* Release the reference held above. */ 479 kref_put(&mr->r_kref, __rds_put_mr_final); 480 481 /* If the MR was marked as invalidate, this will 482 * trigger an async flush. */ 483 if (zot_me) 484 kref_put(&mr->r_kref, __rds_put_mr_final); 485 } 486 487 void rds_rdma_free_op(struct rm_rdma_op *ro) 488 { 489 unsigned int i; 490 491 if (ro->op_odp_mr) { 492 kref_put(&ro->op_odp_mr->r_kref, __rds_put_mr_final); 493 } else { 494 for (i = 0; i < ro->op_nents; i++) { 495 struct page *page = sg_page(&ro->op_sg[i]); 496 497 /* Mark page dirty if it was possibly modified, which 498 * is the case for a RDMA_READ which copies from remote 499 * to local memory 500 */ 501 unpin_user_pages_dirty_lock(&page, 1, !ro->op_write); 502 } 503 } 504 505 kfree(ro->op_notifier); 506 ro->op_notifier = NULL; 507 ro->op_active = 0; 508 ro->op_odp_mr = NULL; 509 } 510 511 void rds_atomic_free_op(struct rm_atomic_op *ao) 512 { 513 struct page *page = sg_page(ao->op_sg); 514 515 /* Mark page dirty if it was possibly modified, which 516 * is the case for a RDMA_READ which copies from remote 517 * to local memory */ 518 unpin_user_pages_dirty_lock(&page, 1, true); 519 520 kfree(ao->op_notifier); 521 ao->op_notifier = NULL; 522 ao->op_active = 0; 523 } 524 525 526 /* 527 * Count the number of pages needed to describe an incoming iovec array. 528 */ 529 static int rds_rdma_pages(struct rds_iovec iov[], int nr_iovecs) 530 { 531 int tot_pages = 0; 532 unsigned int nr_pages; 533 unsigned int i; 534 535 /* figure out the number of pages in the vector */ 536 for (i = 0; i < nr_iovecs; i++) { 537 nr_pages = rds_pages_in_vec(&iov[i]); 538 if (nr_pages == 0) 539 return -EINVAL; 540 541 tot_pages += nr_pages; 542 543 /* 544 * nr_pages for one entry is limited to (UINT_MAX>>PAGE_SHIFT)+1, 545 * so tot_pages cannot overflow without first going negative. 546 */ 547 if (tot_pages < 0) 548 return -EINVAL; 549 } 550 551 return tot_pages; 552 } 553 554 int rds_rdma_extra_size(struct rds_rdma_args *args, 555 struct rds_iov_vector *iov) 556 { 557 struct rds_iovec *vec; 558 struct rds_iovec __user *local_vec; 559 int tot_pages = 0; 560 unsigned int nr_pages; 561 unsigned int i; 562 563 local_vec = (struct rds_iovec __user *)(unsigned long) args->local_vec_addr; 564 565 if (args->nr_local == 0) 566 return -EINVAL; 567 568 if (args->nr_local > UIO_MAXIOV) 569 return -EMSGSIZE; 570 571 iov->iov = kcalloc(args->nr_local, 572 sizeof(struct rds_iovec), 573 GFP_KERNEL); 574 if (!iov->iov) 575 return -ENOMEM; 576 577 vec = &iov->iov[0]; 578 579 if (copy_from_user(vec, local_vec, args->nr_local * 580 sizeof(struct rds_iovec))) 581 return -EFAULT; 582 iov->len = args->nr_local; 583 584 /* figure out the number of pages in the vector */ 585 for (i = 0; i < args->nr_local; i++, vec++) { 586 587 nr_pages = rds_pages_in_vec(vec); 588 if (nr_pages == 0) 589 return -EINVAL; 590 591 tot_pages += nr_pages; 592 593 /* 594 * nr_pages for one entry is limited to (UINT_MAX>>PAGE_SHIFT)+1, 595 * so tot_pages cannot overflow without first going negative. 596 */ 597 if (tot_pages < 0) 598 return -EINVAL; 599 } 600 601 return tot_pages * sizeof(struct scatterlist); 602 } 603 604 /* 605 * The application asks for a RDMA transfer. 606 * Extract all arguments and set up the rdma_op 607 */ 608 int rds_cmsg_rdma_args(struct rds_sock *rs, struct rds_message *rm, 609 struct cmsghdr *cmsg, 610 struct rds_iov_vector *vec) 611 { 612 struct rds_rdma_args *args; 613 struct rm_rdma_op *op = &rm->rdma; 614 int nr_pages; 615 unsigned int nr_bytes; 616 struct page **pages = NULL; 617 struct rds_iovec *iovs; 618 unsigned int i, j; 619 int ret = 0; 620 bool odp_supported = true; 621 622 if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_rdma_args)) 623 || rm->rdma.op_active) 624 return -EINVAL; 625 626 args = CMSG_DATA(cmsg); 627 628 if (ipv6_addr_any(&rs->rs_bound_addr)) { 629 ret = -ENOTCONN; /* XXX not a great errno */ 630 goto out_ret; 631 } 632 633 if (args->nr_local > UIO_MAXIOV) { 634 ret = -EMSGSIZE; 635 goto out_ret; 636 } 637 638 if (vec->len != args->nr_local) { 639 ret = -EINVAL; 640 goto out_ret; 641 } 642 /* odp-mr is not supported for multiple requests within one message */ 643 if (args->nr_local != 1) 644 odp_supported = false; 645 646 iovs = vec->iov; 647 648 nr_pages = rds_rdma_pages(iovs, args->nr_local); 649 if (nr_pages < 0) { 650 ret = -EINVAL; 651 goto out_ret; 652 } 653 654 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL); 655 if (!pages) { 656 ret = -ENOMEM; 657 goto out_ret; 658 } 659 660 op->op_write = !!(args->flags & RDS_RDMA_READWRITE); 661 op->op_fence = !!(args->flags & RDS_RDMA_FENCE); 662 op->op_notify = !!(args->flags & RDS_RDMA_NOTIFY_ME); 663 op->op_silent = !!(args->flags & RDS_RDMA_SILENT); 664 op->op_active = 1; 665 op->op_recverr = rs->rs_recverr; 666 op->op_odp_mr = NULL; 667 668 WARN_ON(!nr_pages); 669 op->op_sg = rds_message_alloc_sgs(rm, nr_pages); 670 if (IS_ERR(op->op_sg)) { 671 ret = PTR_ERR(op->op_sg); 672 goto out_pages; 673 } 674 675 if (op->op_notify || op->op_recverr) { 676 /* We allocate an uninitialized notifier here, because 677 * we don't want to do that in the completion handler. We 678 * would have to use GFP_ATOMIC there, and don't want to deal 679 * with failed allocations. 680 */ 681 op->op_notifier = kmalloc(sizeof(struct rds_notifier), GFP_KERNEL); 682 if (!op->op_notifier) { 683 ret = -ENOMEM; 684 goto out_pages; 685 } 686 op->op_notifier->n_user_token = args->user_token; 687 op->op_notifier->n_status = RDS_RDMA_SUCCESS; 688 } 689 690 /* The cookie contains the R_Key of the remote memory region, and 691 * optionally an offset into it. This is how we implement RDMA into 692 * unaligned memory. 693 * When setting up the RDMA, we need to add that offset to the 694 * destination address (which is really an offset into the MR) 695 * FIXME: We may want to move this into ib_rdma.c 696 */ 697 op->op_rkey = rds_rdma_cookie_key(args->cookie); 698 op->op_remote_addr = args->remote_vec.addr + rds_rdma_cookie_offset(args->cookie); 699 700 nr_bytes = 0; 701 702 rdsdebug("RDS: rdma prepare nr_local %llu rva %llx rkey %x\n", 703 (unsigned long long)args->nr_local, 704 (unsigned long long)args->remote_vec.addr, 705 op->op_rkey); 706 707 for (i = 0; i < args->nr_local; i++) { 708 struct rds_iovec *iov = &iovs[i]; 709 /* don't need to check, rds_rdma_pages() verified nr will be +nonzero */ 710 unsigned int nr = rds_pages_in_vec(iov); 711 712 rs->rs_user_addr = iov->addr; 713 rs->rs_user_bytes = iov->bytes; 714 715 /* If it's a WRITE operation, we want to pin the pages for reading. 716 * If it's a READ operation, we need to pin the pages for writing. 717 */ 718 ret = rds_pin_pages(iov->addr, nr, pages, !op->op_write); 719 if ((!odp_supported && ret <= 0) || 720 (odp_supported && ret <= 0 && ret != -EOPNOTSUPP)) 721 goto out_pages; 722 723 if (ret == -EOPNOTSUPP) { 724 struct rds_mr *local_odp_mr; 725 726 if (!rs->rs_transport->get_mr) { 727 ret = -EOPNOTSUPP; 728 goto out_pages; 729 } 730 local_odp_mr = 731 kzalloc(sizeof(*local_odp_mr), GFP_KERNEL); 732 if (!local_odp_mr) { 733 ret = -ENOMEM; 734 goto out_pages; 735 } 736 RB_CLEAR_NODE(&local_odp_mr->r_rb_node); 737 kref_init(&local_odp_mr->r_kref); 738 local_odp_mr->r_trans = rs->rs_transport; 739 local_odp_mr->r_sock = rs; 740 local_odp_mr->r_trans_private = 741 rs->rs_transport->get_mr( 742 NULL, 0, rs, &local_odp_mr->r_key, NULL, 743 iov->addr, iov->bytes, ODP_VIRTUAL); 744 if (IS_ERR(local_odp_mr->r_trans_private)) { 745 ret = IS_ERR(local_odp_mr->r_trans_private); 746 rdsdebug("get_mr ret %d %p\"", ret, 747 local_odp_mr->r_trans_private); 748 kfree(local_odp_mr); 749 ret = -EOPNOTSUPP; 750 goto out_pages; 751 } 752 rdsdebug("Need odp; local_odp_mr %p trans_private %p\n", 753 local_odp_mr, local_odp_mr->r_trans_private); 754 op->op_odp_mr = local_odp_mr; 755 op->op_odp_addr = iov->addr; 756 } 757 758 rdsdebug("RDS: nr_bytes %u nr %u iov->bytes %llu iov->addr %llx\n", 759 nr_bytes, nr, iov->bytes, iov->addr); 760 761 nr_bytes += iov->bytes; 762 763 for (j = 0; j < nr; j++) { 764 unsigned int offset = iov->addr & ~PAGE_MASK; 765 struct scatterlist *sg; 766 767 sg = &op->op_sg[op->op_nents + j]; 768 sg_set_page(sg, pages[j], 769 min_t(unsigned int, iov->bytes, PAGE_SIZE - offset), 770 offset); 771 772 sg_dma_len(sg) = sg->length; 773 rdsdebug("RDS: sg->offset %x sg->len %x iov->addr %llx iov->bytes %llu\n", 774 sg->offset, sg->length, iov->addr, iov->bytes); 775 776 iov->addr += sg->length; 777 iov->bytes -= sg->length; 778 } 779 780 op->op_nents += nr; 781 } 782 783 if (nr_bytes > args->remote_vec.bytes) { 784 rdsdebug("RDS nr_bytes %u remote_bytes %u do not match\n", 785 nr_bytes, 786 (unsigned int) args->remote_vec.bytes); 787 ret = -EINVAL; 788 goto out_pages; 789 } 790 op->op_bytes = nr_bytes; 791 ret = 0; 792 793 out_pages: 794 kfree(pages); 795 out_ret: 796 if (ret) 797 rds_rdma_free_op(op); 798 else 799 rds_stats_inc(s_send_rdma); 800 801 return ret; 802 } 803 804 /* 805 * The application wants us to pass an RDMA destination (aka MR) 806 * to the remote 807 */ 808 int rds_cmsg_rdma_dest(struct rds_sock *rs, struct rds_message *rm, 809 struct cmsghdr *cmsg) 810 { 811 unsigned long flags; 812 struct rds_mr *mr; 813 u32 r_key; 814 int err = 0; 815 816 if (cmsg->cmsg_len < CMSG_LEN(sizeof(rds_rdma_cookie_t)) || 817 rm->m_rdma_cookie != 0) 818 return -EINVAL; 819 820 memcpy(&rm->m_rdma_cookie, CMSG_DATA(cmsg), sizeof(rm->m_rdma_cookie)); 821 822 /* We are reusing a previously mapped MR here. Most likely, the 823 * application has written to the buffer, so we need to explicitly 824 * flush those writes to RAM. Otherwise the HCA may not see them 825 * when doing a DMA from that buffer. 826 */ 827 r_key = rds_rdma_cookie_key(rm->m_rdma_cookie); 828 829 spin_lock_irqsave(&rs->rs_rdma_lock, flags); 830 mr = rds_mr_tree_walk(&rs->rs_rdma_keys, r_key, NULL); 831 if (!mr) 832 err = -EINVAL; /* invalid r_key */ 833 else 834 kref_get(&mr->r_kref); 835 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); 836 837 if (mr) { 838 mr->r_trans->sync_mr(mr->r_trans_private, 839 DMA_TO_DEVICE); 840 rm->rdma.op_rdma_mr = mr; 841 } 842 return err; 843 } 844 845 /* 846 * The application passes us an address range it wants to enable RDMA 847 * to/from. We map the area, and save the <R_Key,offset> pair 848 * in rm->m_rdma_cookie. This causes it to be sent along to the peer 849 * in an extension header. 850 */ 851 int rds_cmsg_rdma_map(struct rds_sock *rs, struct rds_message *rm, 852 struct cmsghdr *cmsg) 853 { 854 if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_get_mr_args)) || 855 rm->m_rdma_cookie != 0) 856 return -EINVAL; 857 858 return __rds_rdma_map(rs, CMSG_DATA(cmsg), &rm->m_rdma_cookie, 859 &rm->rdma.op_rdma_mr, rm->m_conn_path); 860 } 861 862 /* 863 * Fill in rds_message for an atomic request. 864 */ 865 int rds_cmsg_atomic(struct rds_sock *rs, struct rds_message *rm, 866 struct cmsghdr *cmsg) 867 { 868 struct page *page = NULL; 869 struct rds_atomic_args *args; 870 int ret = 0; 871 872 if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_atomic_args)) 873 || rm->atomic.op_active) 874 return -EINVAL; 875 876 args = CMSG_DATA(cmsg); 877 878 /* Nonmasked & masked cmsg ops converted to masked hw ops */ 879 switch (cmsg->cmsg_type) { 880 case RDS_CMSG_ATOMIC_FADD: 881 rm->atomic.op_type = RDS_ATOMIC_TYPE_FADD; 882 rm->atomic.op_m_fadd.add = args->fadd.add; 883 rm->atomic.op_m_fadd.nocarry_mask = 0; 884 break; 885 case RDS_CMSG_MASKED_ATOMIC_FADD: 886 rm->atomic.op_type = RDS_ATOMIC_TYPE_FADD; 887 rm->atomic.op_m_fadd.add = args->m_fadd.add; 888 rm->atomic.op_m_fadd.nocarry_mask = args->m_fadd.nocarry_mask; 889 break; 890 case RDS_CMSG_ATOMIC_CSWP: 891 rm->atomic.op_type = RDS_ATOMIC_TYPE_CSWP; 892 rm->atomic.op_m_cswp.compare = args->cswp.compare; 893 rm->atomic.op_m_cswp.swap = args->cswp.swap; 894 rm->atomic.op_m_cswp.compare_mask = ~0; 895 rm->atomic.op_m_cswp.swap_mask = ~0; 896 break; 897 case RDS_CMSG_MASKED_ATOMIC_CSWP: 898 rm->atomic.op_type = RDS_ATOMIC_TYPE_CSWP; 899 rm->atomic.op_m_cswp.compare = args->m_cswp.compare; 900 rm->atomic.op_m_cswp.swap = args->m_cswp.swap; 901 rm->atomic.op_m_cswp.compare_mask = args->m_cswp.compare_mask; 902 rm->atomic.op_m_cswp.swap_mask = args->m_cswp.swap_mask; 903 break; 904 default: 905 BUG(); /* should never happen */ 906 } 907 908 rm->atomic.op_notify = !!(args->flags & RDS_RDMA_NOTIFY_ME); 909 rm->atomic.op_silent = !!(args->flags & RDS_RDMA_SILENT); 910 rm->atomic.op_active = 1; 911 rm->atomic.op_recverr = rs->rs_recverr; 912 rm->atomic.op_sg = rds_message_alloc_sgs(rm, 1); 913 if (IS_ERR(rm->atomic.op_sg)) { 914 ret = PTR_ERR(rm->atomic.op_sg); 915 goto err; 916 } 917 918 /* verify 8 byte-aligned */ 919 if (args->local_addr & 0x7) { 920 ret = -EFAULT; 921 goto err; 922 } 923 924 ret = rds_pin_pages(args->local_addr, 1, &page, 1); 925 if (ret != 1) 926 goto err; 927 ret = 0; 928 929 sg_set_page(rm->atomic.op_sg, page, 8, offset_in_page(args->local_addr)); 930 931 if (rm->atomic.op_notify || rm->atomic.op_recverr) { 932 /* We allocate an uninitialized notifier here, because 933 * we don't want to do that in the completion handler. We 934 * would have to use GFP_ATOMIC there, and don't want to deal 935 * with failed allocations. 936 */ 937 rm->atomic.op_notifier = kmalloc(sizeof(*rm->atomic.op_notifier), GFP_KERNEL); 938 if (!rm->atomic.op_notifier) { 939 ret = -ENOMEM; 940 goto err; 941 } 942 943 rm->atomic.op_notifier->n_user_token = args->user_token; 944 rm->atomic.op_notifier->n_status = RDS_RDMA_SUCCESS; 945 } 946 947 rm->atomic.op_rkey = rds_rdma_cookie_key(args->cookie); 948 rm->atomic.op_remote_addr = args->remote_addr + rds_rdma_cookie_offset(args->cookie); 949 950 return ret; 951 err: 952 if (page) 953 unpin_user_page(page); 954 rm->atomic.op_active = 0; 955 kfree(rm->atomic.op_notifier); 956 957 return ret; 958 } 959