1 /* 2 * Copyright (c) 2007, 2017 Oracle and/or its affiliates. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 * 32 */ 33 #include <linux/pagemap.h> 34 #include <linux/slab.h> 35 #include <linux/rbtree.h> 36 #include <linux/dma-mapping.h> /* for DMA_*_DEVICE */ 37 38 #include "rds.h" 39 40 /* 41 * XXX 42 * - build with sparse 43 * - should we detect duplicate keys on a socket? hmm. 44 * - an rdma is an mlock, apply rlimit? 45 */ 46 47 /* 48 * get the number of pages by looking at the page indices that the start and 49 * end addresses fall in. 50 * 51 * Returns 0 if the vec is invalid. It is invalid if the number of bytes 52 * causes the address to wrap or overflows an unsigned int. This comes 53 * from being stored in the 'length' member of 'struct scatterlist'. 54 */ 55 static unsigned int rds_pages_in_vec(struct rds_iovec *vec) 56 { 57 if ((vec->addr + vec->bytes <= vec->addr) || 58 (vec->bytes > (u64)UINT_MAX)) 59 return 0; 60 61 return ((vec->addr + vec->bytes + PAGE_SIZE - 1) >> PAGE_SHIFT) - 62 (vec->addr >> PAGE_SHIFT); 63 } 64 65 static struct rds_mr *rds_mr_tree_walk(struct rb_root *root, u64 key, 66 struct rds_mr *insert) 67 { 68 struct rb_node **p = &root->rb_node; 69 struct rb_node *parent = NULL; 70 struct rds_mr *mr; 71 72 while (*p) { 73 parent = *p; 74 mr = rb_entry(parent, struct rds_mr, r_rb_node); 75 76 if (key < mr->r_key) 77 p = &(*p)->rb_left; 78 else if (key > mr->r_key) 79 p = &(*p)->rb_right; 80 else 81 return mr; 82 } 83 84 if (insert) { 85 rb_link_node(&insert->r_rb_node, parent, p); 86 rb_insert_color(&insert->r_rb_node, root); 87 refcount_inc(&insert->r_refcount); 88 } 89 return NULL; 90 } 91 92 /* 93 * Destroy the transport-specific part of a MR. 94 */ 95 static void rds_destroy_mr(struct rds_mr *mr) 96 { 97 struct rds_sock *rs = mr->r_sock; 98 void *trans_private = NULL; 99 unsigned long flags; 100 101 rdsdebug("RDS: destroy mr key is %x refcnt %u\n", 102 mr->r_key, refcount_read(&mr->r_refcount)); 103 104 if (test_and_set_bit(RDS_MR_DEAD, &mr->r_state)) 105 return; 106 107 spin_lock_irqsave(&rs->rs_rdma_lock, flags); 108 if (!RB_EMPTY_NODE(&mr->r_rb_node)) 109 rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys); 110 trans_private = mr->r_trans_private; 111 mr->r_trans_private = NULL; 112 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); 113 114 if (trans_private) 115 mr->r_trans->free_mr(trans_private, mr->r_invalidate); 116 } 117 118 void __rds_put_mr_final(struct rds_mr *mr) 119 { 120 rds_destroy_mr(mr); 121 kfree(mr); 122 } 123 124 /* 125 * By the time this is called we can't have any more ioctls called on 126 * the socket so we don't need to worry about racing with others. 127 */ 128 void rds_rdma_drop_keys(struct rds_sock *rs) 129 { 130 struct rds_mr *mr; 131 struct rb_node *node; 132 unsigned long flags; 133 134 /* Release any MRs associated with this socket */ 135 spin_lock_irqsave(&rs->rs_rdma_lock, flags); 136 while ((node = rb_first(&rs->rs_rdma_keys))) { 137 mr = rb_entry(node, struct rds_mr, r_rb_node); 138 if (mr->r_trans == rs->rs_transport) 139 mr->r_invalidate = 0; 140 rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys); 141 RB_CLEAR_NODE(&mr->r_rb_node); 142 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); 143 rds_destroy_mr(mr); 144 rds_mr_put(mr); 145 spin_lock_irqsave(&rs->rs_rdma_lock, flags); 146 } 147 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); 148 149 if (rs->rs_transport && rs->rs_transport->flush_mrs) 150 rs->rs_transport->flush_mrs(); 151 } 152 153 /* 154 * Helper function to pin user pages. 155 */ 156 static int rds_pin_pages(unsigned long user_addr, unsigned int nr_pages, 157 struct page **pages, int write) 158 { 159 int ret; 160 161 ret = get_user_pages_fast(user_addr, nr_pages, write, pages); 162 163 if (ret >= 0 && ret < nr_pages) { 164 while (ret--) 165 put_page(pages[ret]); 166 ret = -EFAULT; 167 } 168 169 return ret; 170 } 171 172 static int __rds_rdma_map(struct rds_sock *rs, struct rds_get_mr_args *args, 173 u64 *cookie_ret, struct rds_mr **mr_ret) 174 { 175 struct rds_mr *mr = NULL, *found; 176 unsigned int nr_pages; 177 struct page **pages = NULL; 178 struct scatterlist *sg; 179 void *trans_private; 180 unsigned long flags; 181 rds_rdma_cookie_t cookie; 182 unsigned int nents; 183 long i; 184 int ret; 185 186 if (ipv6_addr_any(&rs->rs_bound_addr) || !rs->rs_transport) { 187 ret = -ENOTCONN; /* XXX not a great errno */ 188 goto out; 189 } 190 191 if (!rs->rs_transport->get_mr) { 192 ret = -EOPNOTSUPP; 193 goto out; 194 } 195 196 nr_pages = rds_pages_in_vec(&args->vec); 197 if (nr_pages == 0) { 198 ret = -EINVAL; 199 goto out; 200 } 201 202 /* Restrict the size of mr irrespective of underlying transport 203 * To account for unaligned mr regions, subtract one from nr_pages 204 */ 205 if ((nr_pages - 1) > (RDS_MAX_MSG_SIZE >> PAGE_SHIFT)) { 206 ret = -EMSGSIZE; 207 goto out; 208 } 209 210 rdsdebug("RDS: get_mr addr %llx len %llu nr_pages %u\n", 211 args->vec.addr, args->vec.bytes, nr_pages); 212 213 /* XXX clamp nr_pages to limit the size of this alloc? */ 214 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL); 215 if (!pages) { 216 ret = -ENOMEM; 217 goto out; 218 } 219 220 mr = kzalloc(sizeof(struct rds_mr), GFP_KERNEL); 221 if (!mr) { 222 ret = -ENOMEM; 223 goto out; 224 } 225 226 refcount_set(&mr->r_refcount, 1); 227 RB_CLEAR_NODE(&mr->r_rb_node); 228 mr->r_trans = rs->rs_transport; 229 mr->r_sock = rs; 230 231 if (args->flags & RDS_RDMA_USE_ONCE) 232 mr->r_use_once = 1; 233 if (args->flags & RDS_RDMA_INVALIDATE) 234 mr->r_invalidate = 1; 235 if (args->flags & RDS_RDMA_READWRITE) 236 mr->r_write = 1; 237 238 /* 239 * Pin the pages that make up the user buffer and transfer the page 240 * pointers to the mr's sg array. We check to see if we've mapped 241 * the whole region after transferring the partial page references 242 * to the sg array so that we can have one page ref cleanup path. 243 * 244 * For now we have no flag that tells us whether the mapping is 245 * r/o or r/w. We need to assume r/w, or we'll do a lot of RDMA to 246 * the zero page. 247 */ 248 ret = rds_pin_pages(args->vec.addr, nr_pages, pages, 1); 249 if (ret < 0) 250 goto out; 251 252 nents = ret; 253 sg = kcalloc(nents, sizeof(*sg), GFP_KERNEL); 254 if (!sg) { 255 ret = -ENOMEM; 256 goto out; 257 } 258 WARN_ON(!nents); 259 sg_init_table(sg, nents); 260 261 /* Stick all pages into the scatterlist */ 262 for (i = 0 ; i < nents; i++) 263 sg_set_page(&sg[i], pages[i], PAGE_SIZE, 0); 264 265 rdsdebug("RDS: trans_private nents is %u\n", nents); 266 267 /* Obtain a transport specific MR. If this succeeds, the 268 * s/g list is now owned by the MR. 269 * Note that dma_map() implies that pending writes are 270 * flushed to RAM, so no dma_sync is needed here. */ 271 trans_private = rs->rs_transport->get_mr(sg, nents, rs, 272 &mr->r_key); 273 274 if (IS_ERR(trans_private)) { 275 for (i = 0 ; i < nents; i++) 276 put_page(sg_page(&sg[i])); 277 kfree(sg); 278 ret = PTR_ERR(trans_private); 279 goto out; 280 } 281 282 mr->r_trans_private = trans_private; 283 284 rdsdebug("RDS: get_mr put_user key is %x cookie_addr %p\n", 285 mr->r_key, (void *)(unsigned long) args->cookie_addr); 286 287 /* The user may pass us an unaligned address, but we can only 288 * map page aligned regions. So we keep the offset, and build 289 * a 64bit cookie containing <R_Key, offset> and pass that 290 * around. */ 291 cookie = rds_rdma_make_cookie(mr->r_key, args->vec.addr & ~PAGE_MASK); 292 if (cookie_ret) 293 *cookie_ret = cookie; 294 295 if (args->cookie_addr && put_user(cookie, (u64 __user *)(unsigned long) args->cookie_addr)) { 296 ret = -EFAULT; 297 goto out; 298 } 299 300 /* Inserting the new MR into the rbtree bumps its 301 * reference count. */ 302 spin_lock_irqsave(&rs->rs_rdma_lock, flags); 303 found = rds_mr_tree_walk(&rs->rs_rdma_keys, mr->r_key, mr); 304 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); 305 306 BUG_ON(found && found != mr); 307 308 rdsdebug("RDS: get_mr key is %x\n", mr->r_key); 309 if (mr_ret) { 310 refcount_inc(&mr->r_refcount); 311 *mr_ret = mr; 312 } 313 314 ret = 0; 315 out: 316 kfree(pages); 317 if (mr) 318 rds_mr_put(mr); 319 return ret; 320 } 321 322 int rds_get_mr(struct rds_sock *rs, char __user *optval, int optlen) 323 { 324 struct rds_get_mr_args args; 325 326 if (optlen != sizeof(struct rds_get_mr_args)) 327 return -EINVAL; 328 329 if (copy_from_user(&args, (struct rds_get_mr_args __user *)optval, 330 sizeof(struct rds_get_mr_args))) 331 return -EFAULT; 332 333 return __rds_rdma_map(rs, &args, NULL, NULL); 334 } 335 336 int rds_get_mr_for_dest(struct rds_sock *rs, char __user *optval, int optlen) 337 { 338 struct rds_get_mr_for_dest_args args; 339 struct rds_get_mr_args new_args; 340 341 if (optlen != sizeof(struct rds_get_mr_for_dest_args)) 342 return -EINVAL; 343 344 if (copy_from_user(&args, (struct rds_get_mr_for_dest_args __user *)optval, 345 sizeof(struct rds_get_mr_for_dest_args))) 346 return -EFAULT; 347 348 /* 349 * Initially, just behave like get_mr(). 350 * TODO: Implement get_mr as wrapper around this 351 * and deprecate it. 352 */ 353 new_args.vec = args.vec; 354 new_args.cookie_addr = args.cookie_addr; 355 new_args.flags = args.flags; 356 357 return __rds_rdma_map(rs, &new_args, NULL, NULL); 358 } 359 360 /* 361 * Free the MR indicated by the given R_Key 362 */ 363 int rds_free_mr(struct rds_sock *rs, char __user *optval, int optlen) 364 { 365 struct rds_free_mr_args args; 366 struct rds_mr *mr; 367 unsigned long flags; 368 369 if (optlen != sizeof(struct rds_free_mr_args)) 370 return -EINVAL; 371 372 if (copy_from_user(&args, (struct rds_free_mr_args __user *)optval, 373 sizeof(struct rds_free_mr_args))) 374 return -EFAULT; 375 376 /* Special case - a null cookie means flush all unused MRs */ 377 if (args.cookie == 0) { 378 if (!rs->rs_transport || !rs->rs_transport->flush_mrs) 379 return -EINVAL; 380 rs->rs_transport->flush_mrs(); 381 return 0; 382 } 383 384 /* Look up the MR given its R_key and remove it from the rbtree 385 * so nobody else finds it. 386 * This should also prevent races with rds_rdma_unuse. 387 */ 388 spin_lock_irqsave(&rs->rs_rdma_lock, flags); 389 mr = rds_mr_tree_walk(&rs->rs_rdma_keys, rds_rdma_cookie_key(args.cookie), NULL); 390 if (mr) { 391 rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys); 392 RB_CLEAR_NODE(&mr->r_rb_node); 393 if (args.flags & RDS_RDMA_INVALIDATE) 394 mr->r_invalidate = 1; 395 } 396 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); 397 398 if (!mr) 399 return -EINVAL; 400 401 /* 402 * call rds_destroy_mr() ourselves so that we're sure it's done by the time 403 * we return. If we let rds_mr_put() do it it might not happen until 404 * someone else drops their ref. 405 */ 406 rds_destroy_mr(mr); 407 rds_mr_put(mr); 408 return 0; 409 } 410 411 /* 412 * This is called when we receive an extension header that 413 * tells us this MR was used. It allows us to implement 414 * use_once semantics 415 */ 416 void rds_rdma_unuse(struct rds_sock *rs, u32 r_key, int force) 417 { 418 struct rds_mr *mr; 419 unsigned long flags; 420 int zot_me = 0; 421 422 spin_lock_irqsave(&rs->rs_rdma_lock, flags); 423 mr = rds_mr_tree_walk(&rs->rs_rdma_keys, r_key, NULL); 424 if (!mr) { 425 pr_debug("rds: trying to unuse MR with unknown r_key %u!\n", 426 r_key); 427 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); 428 return; 429 } 430 431 if (mr->r_use_once || force) { 432 rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys); 433 RB_CLEAR_NODE(&mr->r_rb_node); 434 zot_me = 1; 435 } 436 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); 437 438 /* May have to issue a dma_sync on this memory region. 439 * Note we could avoid this if the operation was a RDMA READ, 440 * but at this point we can't tell. */ 441 if (mr->r_trans->sync_mr) 442 mr->r_trans->sync_mr(mr->r_trans_private, DMA_FROM_DEVICE); 443 444 /* If the MR was marked as invalidate, this will 445 * trigger an async flush. */ 446 if (zot_me) { 447 rds_destroy_mr(mr); 448 rds_mr_put(mr); 449 } 450 } 451 452 void rds_rdma_free_op(struct rm_rdma_op *ro) 453 { 454 unsigned int i; 455 456 for (i = 0; i < ro->op_nents; i++) { 457 struct page *page = sg_page(&ro->op_sg[i]); 458 459 /* Mark page dirty if it was possibly modified, which 460 * is the case for a RDMA_READ which copies from remote 461 * to local memory */ 462 if (!ro->op_write) { 463 WARN_ON(!page->mapping && irqs_disabled()); 464 set_page_dirty(page); 465 } 466 put_page(page); 467 } 468 469 kfree(ro->op_notifier); 470 ro->op_notifier = NULL; 471 ro->op_active = 0; 472 } 473 474 void rds_atomic_free_op(struct rm_atomic_op *ao) 475 { 476 struct page *page = sg_page(ao->op_sg); 477 478 /* Mark page dirty if it was possibly modified, which 479 * is the case for a RDMA_READ which copies from remote 480 * to local memory */ 481 set_page_dirty(page); 482 put_page(page); 483 484 kfree(ao->op_notifier); 485 ao->op_notifier = NULL; 486 ao->op_active = 0; 487 } 488 489 490 /* 491 * Count the number of pages needed to describe an incoming iovec array. 492 */ 493 static int rds_rdma_pages(struct rds_iovec iov[], int nr_iovecs) 494 { 495 int tot_pages = 0; 496 unsigned int nr_pages; 497 unsigned int i; 498 499 /* figure out the number of pages in the vector */ 500 for (i = 0; i < nr_iovecs; i++) { 501 nr_pages = rds_pages_in_vec(&iov[i]); 502 if (nr_pages == 0) 503 return -EINVAL; 504 505 tot_pages += nr_pages; 506 507 /* 508 * nr_pages for one entry is limited to (UINT_MAX>>PAGE_SHIFT)+1, 509 * so tot_pages cannot overflow without first going negative. 510 */ 511 if (tot_pages < 0) 512 return -EINVAL; 513 } 514 515 return tot_pages; 516 } 517 518 int rds_rdma_extra_size(struct rds_rdma_args *args) 519 { 520 struct rds_iovec vec; 521 struct rds_iovec __user *local_vec; 522 int tot_pages = 0; 523 unsigned int nr_pages; 524 unsigned int i; 525 526 local_vec = (struct rds_iovec __user *)(unsigned long) args->local_vec_addr; 527 528 if (args->nr_local == 0) 529 return -EINVAL; 530 531 /* figure out the number of pages in the vector */ 532 for (i = 0; i < args->nr_local; i++) { 533 if (copy_from_user(&vec, &local_vec[i], 534 sizeof(struct rds_iovec))) 535 return -EFAULT; 536 537 nr_pages = rds_pages_in_vec(&vec); 538 if (nr_pages == 0) 539 return -EINVAL; 540 541 tot_pages += nr_pages; 542 543 /* 544 * nr_pages for one entry is limited to (UINT_MAX>>PAGE_SHIFT)+1, 545 * so tot_pages cannot overflow without first going negative. 546 */ 547 if (tot_pages < 0) 548 return -EINVAL; 549 } 550 551 return tot_pages * sizeof(struct scatterlist); 552 } 553 554 /* 555 * The application asks for a RDMA transfer. 556 * Extract all arguments and set up the rdma_op 557 */ 558 int rds_cmsg_rdma_args(struct rds_sock *rs, struct rds_message *rm, 559 struct cmsghdr *cmsg) 560 { 561 struct rds_rdma_args *args; 562 struct rm_rdma_op *op = &rm->rdma; 563 int nr_pages; 564 unsigned int nr_bytes; 565 struct page **pages = NULL; 566 struct rds_iovec iovstack[UIO_FASTIOV], *iovs = iovstack; 567 int iov_size; 568 unsigned int i, j; 569 int ret = 0; 570 571 if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_rdma_args)) 572 || rm->rdma.op_active) 573 return -EINVAL; 574 575 args = CMSG_DATA(cmsg); 576 577 if (ipv6_addr_any(&rs->rs_bound_addr)) { 578 ret = -ENOTCONN; /* XXX not a great errno */ 579 goto out_ret; 580 } 581 582 if (args->nr_local > UIO_MAXIOV) { 583 ret = -EMSGSIZE; 584 goto out_ret; 585 } 586 587 /* Check whether to allocate the iovec area */ 588 iov_size = args->nr_local * sizeof(struct rds_iovec); 589 if (args->nr_local > UIO_FASTIOV) { 590 iovs = sock_kmalloc(rds_rs_to_sk(rs), iov_size, GFP_KERNEL); 591 if (!iovs) { 592 ret = -ENOMEM; 593 goto out_ret; 594 } 595 } 596 597 if (copy_from_user(iovs, (struct rds_iovec __user *)(unsigned long) args->local_vec_addr, iov_size)) { 598 ret = -EFAULT; 599 goto out; 600 } 601 602 nr_pages = rds_rdma_pages(iovs, args->nr_local); 603 if (nr_pages < 0) { 604 ret = -EINVAL; 605 goto out; 606 } 607 608 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL); 609 if (!pages) { 610 ret = -ENOMEM; 611 goto out; 612 } 613 614 op->op_write = !!(args->flags & RDS_RDMA_READWRITE); 615 op->op_fence = !!(args->flags & RDS_RDMA_FENCE); 616 op->op_notify = !!(args->flags & RDS_RDMA_NOTIFY_ME); 617 op->op_silent = !!(args->flags & RDS_RDMA_SILENT); 618 op->op_active = 1; 619 op->op_recverr = rs->rs_recverr; 620 WARN_ON(!nr_pages); 621 op->op_sg = rds_message_alloc_sgs(rm, nr_pages); 622 if (!op->op_sg) { 623 ret = -ENOMEM; 624 goto out; 625 } 626 627 if (op->op_notify || op->op_recverr) { 628 /* We allocate an uninitialized notifier here, because 629 * we don't want to do that in the completion handler. We 630 * would have to use GFP_ATOMIC there, and don't want to deal 631 * with failed allocations. 632 */ 633 op->op_notifier = kmalloc(sizeof(struct rds_notifier), GFP_KERNEL); 634 if (!op->op_notifier) { 635 ret = -ENOMEM; 636 goto out; 637 } 638 op->op_notifier->n_user_token = args->user_token; 639 op->op_notifier->n_status = RDS_RDMA_SUCCESS; 640 641 /* Enable rmda notification on data operation for composite 642 * rds messages and make sure notification is enabled only 643 * for the data operation which follows it so that application 644 * gets notified only after full message gets delivered. 645 */ 646 if (rm->data.op_sg) { 647 rm->rdma.op_notify = 0; 648 rm->data.op_notify = !!(args->flags & RDS_RDMA_NOTIFY_ME); 649 } 650 } 651 652 /* The cookie contains the R_Key of the remote memory region, and 653 * optionally an offset into it. This is how we implement RDMA into 654 * unaligned memory. 655 * When setting up the RDMA, we need to add that offset to the 656 * destination address (which is really an offset into the MR) 657 * FIXME: We may want to move this into ib_rdma.c 658 */ 659 op->op_rkey = rds_rdma_cookie_key(args->cookie); 660 op->op_remote_addr = args->remote_vec.addr + rds_rdma_cookie_offset(args->cookie); 661 662 nr_bytes = 0; 663 664 rdsdebug("RDS: rdma prepare nr_local %llu rva %llx rkey %x\n", 665 (unsigned long long)args->nr_local, 666 (unsigned long long)args->remote_vec.addr, 667 op->op_rkey); 668 669 for (i = 0; i < args->nr_local; i++) { 670 struct rds_iovec *iov = &iovs[i]; 671 /* don't need to check, rds_rdma_pages() verified nr will be +nonzero */ 672 unsigned int nr = rds_pages_in_vec(iov); 673 674 rs->rs_user_addr = iov->addr; 675 rs->rs_user_bytes = iov->bytes; 676 677 /* If it's a WRITE operation, we want to pin the pages for reading. 678 * If it's a READ operation, we need to pin the pages for writing. 679 */ 680 ret = rds_pin_pages(iov->addr, nr, pages, !op->op_write); 681 if (ret < 0) 682 goto out; 683 else 684 ret = 0; 685 686 rdsdebug("RDS: nr_bytes %u nr %u iov->bytes %llu iov->addr %llx\n", 687 nr_bytes, nr, iov->bytes, iov->addr); 688 689 nr_bytes += iov->bytes; 690 691 for (j = 0; j < nr; j++) { 692 unsigned int offset = iov->addr & ~PAGE_MASK; 693 struct scatterlist *sg; 694 695 sg = &op->op_sg[op->op_nents + j]; 696 sg_set_page(sg, pages[j], 697 min_t(unsigned int, iov->bytes, PAGE_SIZE - offset), 698 offset); 699 700 rdsdebug("RDS: sg->offset %x sg->len %x iov->addr %llx iov->bytes %llu\n", 701 sg->offset, sg->length, iov->addr, iov->bytes); 702 703 iov->addr += sg->length; 704 iov->bytes -= sg->length; 705 } 706 707 op->op_nents += nr; 708 } 709 710 if (nr_bytes > args->remote_vec.bytes) { 711 rdsdebug("RDS nr_bytes %u remote_bytes %u do not match\n", 712 nr_bytes, 713 (unsigned int) args->remote_vec.bytes); 714 ret = -EINVAL; 715 goto out; 716 } 717 op->op_bytes = nr_bytes; 718 719 out: 720 if (iovs != iovstack) 721 sock_kfree_s(rds_rs_to_sk(rs), iovs, iov_size); 722 kfree(pages); 723 out_ret: 724 if (ret) 725 rds_rdma_free_op(op); 726 else 727 rds_stats_inc(s_send_rdma); 728 729 return ret; 730 } 731 732 /* 733 * The application wants us to pass an RDMA destination (aka MR) 734 * to the remote 735 */ 736 int rds_cmsg_rdma_dest(struct rds_sock *rs, struct rds_message *rm, 737 struct cmsghdr *cmsg) 738 { 739 unsigned long flags; 740 struct rds_mr *mr; 741 u32 r_key; 742 int err = 0; 743 744 if (cmsg->cmsg_len < CMSG_LEN(sizeof(rds_rdma_cookie_t)) || 745 rm->m_rdma_cookie != 0) 746 return -EINVAL; 747 748 memcpy(&rm->m_rdma_cookie, CMSG_DATA(cmsg), sizeof(rm->m_rdma_cookie)); 749 750 /* We are reusing a previously mapped MR here. Most likely, the 751 * application has written to the buffer, so we need to explicitly 752 * flush those writes to RAM. Otherwise the HCA may not see them 753 * when doing a DMA from that buffer. 754 */ 755 r_key = rds_rdma_cookie_key(rm->m_rdma_cookie); 756 757 spin_lock_irqsave(&rs->rs_rdma_lock, flags); 758 mr = rds_mr_tree_walk(&rs->rs_rdma_keys, r_key, NULL); 759 if (!mr) 760 err = -EINVAL; /* invalid r_key */ 761 else 762 refcount_inc(&mr->r_refcount); 763 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); 764 765 if (mr) { 766 mr->r_trans->sync_mr(mr->r_trans_private, DMA_TO_DEVICE); 767 rm->rdma.op_rdma_mr = mr; 768 } 769 return err; 770 } 771 772 /* 773 * The application passes us an address range it wants to enable RDMA 774 * to/from. We map the area, and save the <R_Key,offset> pair 775 * in rm->m_rdma_cookie. This causes it to be sent along to the peer 776 * in an extension header. 777 */ 778 int rds_cmsg_rdma_map(struct rds_sock *rs, struct rds_message *rm, 779 struct cmsghdr *cmsg) 780 { 781 if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_get_mr_args)) || 782 rm->m_rdma_cookie != 0) 783 return -EINVAL; 784 785 return __rds_rdma_map(rs, CMSG_DATA(cmsg), &rm->m_rdma_cookie, &rm->rdma.op_rdma_mr); 786 } 787 788 /* 789 * Fill in rds_message for an atomic request. 790 */ 791 int rds_cmsg_atomic(struct rds_sock *rs, struct rds_message *rm, 792 struct cmsghdr *cmsg) 793 { 794 struct page *page = NULL; 795 struct rds_atomic_args *args; 796 int ret = 0; 797 798 if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_atomic_args)) 799 || rm->atomic.op_active) 800 return -EINVAL; 801 802 args = CMSG_DATA(cmsg); 803 804 /* Nonmasked & masked cmsg ops converted to masked hw ops */ 805 switch (cmsg->cmsg_type) { 806 case RDS_CMSG_ATOMIC_FADD: 807 rm->atomic.op_type = RDS_ATOMIC_TYPE_FADD; 808 rm->atomic.op_m_fadd.add = args->fadd.add; 809 rm->atomic.op_m_fadd.nocarry_mask = 0; 810 break; 811 case RDS_CMSG_MASKED_ATOMIC_FADD: 812 rm->atomic.op_type = RDS_ATOMIC_TYPE_FADD; 813 rm->atomic.op_m_fadd.add = args->m_fadd.add; 814 rm->atomic.op_m_fadd.nocarry_mask = args->m_fadd.nocarry_mask; 815 break; 816 case RDS_CMSG_ATOMIC_CSWP: 817 rm->atomic.op_type = RDS_ATOMIC_TYPE_CSWP; 818 rm->atomic.op_m_cswp.compare = args->cswp.compare; 819 rm->atomic.op_m_cswp.swap = args->cswp.swap; 820 rm->atomic.op_m_cswp.compare_mask = ~0; 821 rm->atomic.op_m_cswp.swap_mask = ~0; 822 break; 823 case RDS_CMSG_MASKED_ATOMIC_CSWP: 824 rm->atomic.op_type = RDS_ATOMIC_TYPE_CSWP; 825 rm->atomic.op_m_cswp.compare = args->m_cswp.compare; 826 rm->atomic.op_m_cswp.swap = args->m_cswp.swap; 827 rm->atomic.op_m_cswp.compare_mask = args->m_cswp.compare_mask; 828 rm->atomic.op_m_cswp.swap_mask = args->m_cswp.swap_mask; 829 break; 830 default: 831 BUG(); /* should never happen */ 832 } 833 834 rm->atomic.op_notify = !!(args->flags & RDS_RDMA_NOTIFY_ME); 835 rm->atomic.op_silent = !!(args->flags & RDS_RDMA_SILENT); 836 rm->atomic.op_active = 1; 837 rm->atomic.op_recverr = rs->rs_recverr; 838 rm->atomic.op_sg = rds_message_alloc_sgs(rm, 1); 839 if (!rm->atomic.op_sg) { 840 ret = -ENOMEM; 841 goto err; 842 } 843 844 /* verify 8 byte-aligned */ 845 if (args->local_addr & 0x7) { 846 ret = -EFAULT; 847 goto err; 848 } 849 850 ret = rds_pin_pages(args->local_addr, 1, &page, 1); 851 if (ret != 1) 852 goto err; 853 ret = 0; 854 855 sg_set_page(rm->atomic.op_sg, page, 8, offset_in_page(args->local_addr)); 856 857 if (rm->atomic.op_notify || rm->atomic.op_recverr) { 858 /* We allocate an uninitialized notifier here, because 859 * we don't want to do that in the completion handler. We 860 * would have to use GFP_ATOMIC there, and don't want to deal 861 * with failed allocations. 862 */ 863 rm->atomic.op_notifier = kmalloc(sizeof(*rm->atomic.op_notifier), GFP_KERNEL); 864 if (!rm->atomic.op_notifier) { 865 ret = -ENOMEM; 866 goto err; 867 } 868 869 rm->atomic.op_notifier->n_user_token = args->user_token; 870 rm->atomic.op_notifier->n_status = RDS_RDMA_SUCCESS; 871 } 872 873 rm->atomic.op_rkey = rds_rdma_cookie_key(args->cookie); 874 rm->atomic.op_remote_addr = args->remote_addr + rds_rdma_cookie_offset(args->cookie); 875 876 return ret; 877 err: 878 if (page) 879 put_page(page); 880 rm->atomic.op_active = 0; 881 kfree(rm->atomic.op_notifier); 882 883 return ret; 884 } 885