1 /* 2 * Copyright (c) 2007 Oracle. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 * 32 */ 33 #include <linux/pagemap.h> 34 #include <linux/rbtree.h> 35 #include <linux/dma-mapping.h> /* for DMA_*_DEVICE */ 36 37 #include "rdma.h" 38 39 /* 40 * XXX 41 * - build with sparse 42 * - should we limit the size of a mr region? let transport return failure? 43 * - should we detect duplicate keys on a socket? hmm. 44 * - an rdma is an mlock, apply rlimit? 45 */ 46 47 /* 48 * get the number of pages by looking at the page indices that the start and 49 * end addresses fall in. 50 * 51 * Returns 0 if the vec is invalid. It is invalid if the number of bytes 52 * causes the address to wrap or overflows an unsigned int. This comes 53 * from being stored in the 'length' member of 'struct scatterlist'. 54 */ 55 static unsigned int rds_pages_in_vec(struct rds_iovec *vec) 56 { 57 if ((vec->addr + vec->bytes <= vec->addr) || 58 (vec->bytes > (u64)UINT_MAX)) 59 return 0; 60 61 return ((vec->addr + vec->bytes + PAGE_SIZE - 1) >> PAGE_SHIFT) - 62 (vec->addr >> PAGE_SHIFT); 63 } 64 65 static struct rds_mr *rds_mr_tree_walk(struct rb_root *root, u64 key, 66 struct rds_mr *insert) 67 { 68 struct rb_node **p = &root->rb_node; 69 struct rb_node *parent = NULL; 70 struct rds_mr *mr; 71 72 while (*p) { 73 parent = *p; 74 mr = rb_entry(parent, struct rds_mr, r_rb_node); 75 76 if (key < mr->r_key) 77 p = &(*p)->rb_left; 78 else if (key > mr->r_key) 79 p = &(*p)->rb_right; 80 else 81 return mr; 82 } 83 84 if (insert) { 85 rb_link_node(&insert->r_rb_node, parent, p); 86 rb_insert_color(&insert->r_rb_node, root); 87 atomic_inc(&insert->r_refcount); 88 } 89 return NULL; 90 } 91 92 /* 93 * Destroy the transport-specific part of a MR. 94 */ 95 static void rds_destroy_mr(struct rds_mr *mr) 96 { 97 struct rds_sock *rs = mr->r_sock; 98 void *trans_private = NULL; 99 unsigned long flags; 100 101 rdsdebug("RDS: destroy mr key is %x refcnt %u\n", 102 mr->r_key, atomic_read(&mr->r_refcount)); 103 104 if (test_and_set_bit(RDS_MR_DEAD, &mr->r_state)) 105 return; 106 107 spin_lock_irqsave(&rs->rs_rdma_lock, flags); 108 if (!RB_EMPTY_NODE(&mr->r_rb_node)) 109 rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys); 110 trans_private = mr->r_trans_private; 111 mr->r_trans_private = NULL; 112 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); 113 114 if (trans_private) 115 mr->r_trans->free_mr(trans_private, mr->r_invalidate); 116 } 117 118 void __rds_put_mr_final(struct rds_mr *mr) 119 { 120 rds_destroy_mr(mr); 121 kfree(mr); 122 } 123 124 /* 125 * By the time this is called we can't have any more ioctls called on 126 * the socket so we don't need to worry about racing with others. 127 */ 128 void rds_rdma_drop_keys(struct rds_sock *rs) 129 { 130 struct rds_mr *mr; 131 struct rb_node *node; 132 133 /* Release any MRs associated with this socket */ 134 while ((node = rb_first(&rs->rs_rdma_keys))) { 135 mr = container_of(node, struct rds_mr, r_rb_node); 136 if (mr->r_trans == rs->rs_transport) 137 mr->r_invalidate = 0; 138 rds_mr_put(mr); 139 } 140 141 if (rs->rs_transport && rs->rs_transport->flush_mrs) 142 rs->rs_transport->flush_mrs(); 143 } 144 145 /* 146 * Helper function to pin user pages. 147 */ 148 static int rds_pin_pages(unsigned long user_addr, unsigned int nr_pages, 149 struct page **pages, int write) 150 { 151 int ret; 152 153 ret = get_user_pages_fast(user_addr, nr_pages, write, pages); 154 155 if (ret >= 0 && ret < nr_pages) { 156 while (ret--) 157 put_page(pages[ret]); 158 ret = -EFAULT; 159 } 160 161 return ret; 162 } 163 164 static int __rds_rdma_map(struct rds_sock *rs, struct rds_get_mr_args *args, 165 u64 *cookie_ret, struct rds_mr **mr_ret) 166 { 167 struct rds_mr *mr = NULL, *found; 168 unsigned int nr_pages; 169 struct page **pages = NULL; 170 struct scatterlist *sg; 171 void *trans_private; 172 unsigned long flags; 173 rds_rdma_cookie_t cookie; 174 unsigned int nents; 175 long i; 176 int ret; 177 178 if (rs->rs_bound_addr == 0) { 179 ret = -ENOTCONN; /* XXX not a great errno */ 180 goto out; 181 } 182 183 if (rs->rs_transport->get_mr == NULL) { 184 ret = -EOPNOTSUPP; 185 goto out; 186 } 187 188 nr_pages = rds_pages_in_vec(&args->vec); 189 if (nr_pages == 0) { 190 ret = -EINVAL; 191 goto out; 192 } 193 194 rdsdebug("RDS: get_mr addr %llx len %llu nr_pages %u\n", 195 args->vec.addr, args->vec.bytes, nr_pages); 196 197 /* XXX clamp nr_pages to limit the size of this alloc? */ 198 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL); 199 if (pages == NULL) { 200 ret = -ENOMEM; 201 goto out; 202 } 203 204 mr = kzalloc(sizeof(struct rds_mr), GFP_KERNEL); 205 if (mr == NULL) { 206 ret = -ENOMEM; 207 goto out; 208 } 209 210 atomic_set(&mr->r_refcount, 1); 211 RB_CLEAR_NODE(&mr->r_rb_node); 212 mr->r_trans = rs->rs_transport; 213 mr->r_sock = rs; 214 215 if (args->flags & RDS_RDMA_USE_ONCE) 216 mr->r_use_once = 1; 217 if (args->flags & RDS_RDMA_INVALIDATE) 218 mr->r_invalidate = 1; 219 if (args->flags & RDS_RDMA_READWRITE) 220 mr->r_write = 1; 221 222 /* 223 * Pin the pages that make up the user buffer and transfer the page 224 * pointers to the mr's sg array. We check to see if we've mapped 225 * the whole region after transferring the partial page references 226 * to the sg array so that we can have one page ref cleanup path. 227 * 228 * For now we have no flag that tells us whether the mapping is 229 * r/o or r/w. We need to assume r/w, or we'll do a lot of RDMA to 230 * the zero page. 231 */ 232 ret = rds_pin_pages(args->vec.addr & PAGE_MASK, nr_pages, pages, 1); 233 if (ret < 0) 234 goto out; 235 236 nents = ret; 237 sg = kcalloc(nents, sizeof(*sg), GFP_KERNEL); 238 if (sg == NULL) { 239 ret = -ENOMEM; 240 goto out; 241 } 242 WARN_ON(!nents); 243 sg_init_table(sg, nents); 244 245 /* Stick all pages into the scatterlist */ 246 for (i = 0 ; i < nents; i++) 247 sg_set_page(&sg[i], pages[i], PAGE_SIZE, 0); 248 249 rdsdebug("RDS: trans_private nents is %u\n", nents); 250 251 /* Obtain a transport specific MR. If this succeeds, the 252 * s/g list is now owned by the MR. 253 * Note that dma_map() implies that pending writes are 254 * flushed to RAM, so no dma_sync is needed here. */ 255 trans_private = rs->rs_transport->get_mr(sg, nents, rs, 256 &mr->r_key); 257 258 if (IS_ERR(trans_private)) { 259 for (i = 0 ; i < nents; i++) 260 put_page(sg_page(&sg[i])); 261 kfree(sg); 262 ret = PTR_ERR(trans_private); 263 goto out; 264 } 265 266 mr->r_trans_private = trans_private; 267 268 rdsdebug("RDS: get_mr put_user key is %x cookie_addr %p\n", 269 mr->r_key, (void *)(unsigned long) args->cookie_addr); 270 271 /* The user may pass us an unaligned address, but we can only 272 * map page aligned regions. So we keep the offset, and build 273 * a 64bit cookie containing <R_Key, offset> and pass that 274 * around. */ 275 cookie = rds_rdma_make_cookie(mr->r_key, args->vec.addr & ~PAGE_MASK); 276 if (cookie_ret) 277 *cookie_ret = cookie; 278 279 if (args->cookie_addr && put_user(cookie, (u64 __user *)(unsigned long) args->cookie_addr)) { 280 ret = -EFAULT; 281 goto out; 282 } 283 284 /* Inserting the new MR into the rbtree bumps its 285 * reference count. */ 286 spin_lock_irqsave(&rs->rs_rdma_lock, flags); 287 found = rds_mr_tree_walk(&rs->rs_rdma_keys, mr->r_key, mr); 288 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); 289 290 BUG_ON(found && found != mr); 291 292 rdsdebug("RDS: get_mr key is %x\n", mr->r_key); 293 if (mr_ret) { 294 atomic_inc(&mr->r_refcount); 295 *mr_ret = mr; 296 } 297 298 ret = 0; 299 out: 300 kfree(pages); 301 if (mr) 302 rds_mr_put(mr); 303 return ret; 304 } 305 306 int rds_get_mr(struct rds_sock *rs, char __user *optval, int optlen) 307 { 308 struct rds_get_mr_args args; 309 310 if (optlen != sizeof(struct rds_get_mr_args)) 311 return -EINVAL; 312 313 if (copy_from_user(&args, (struct rds_get_mr_args __user *)optval, 314 sizeof(struct rds_get_mr_args))) 315 return -EFAULT; 316 317 return __rds_rdma_map(rs, &args, NULL, NULL); 318 } 319 320 int rds_get_mr_for_dest(struct rds_sock *rs, char __user *optval, int optlen) 321 { 322 struct rds_get_mr_for_dest_args args; 323 struct rds_get_mr_args new_args; 324 325 if (optlen != sizeof(struct rds_get_mr_for_dest_args)) 326 return -EINVAL; 327 328 if (copy_from_user(&args, (struct rds_get_mr_for_dest_args __user *)optval, 329 sizeof(struct rds_get_mr_for_dest_args))) 330 return -EFAULT; 331 332 /* 333 * Initially, just behave like get_mr(). 334 * TODO: Implement get_mr as wrapper around this 335 * and deprecate it. 336 */ 337 new_args.vec = args.vec; 338 new_args.cookie_addr = args.cookie_addr; 339 new_args.flags = args.flags; 340 341 return __rds_rdma_map(rs, &new_args, NULL, NULL); 342 } 343 344 /* 345 * Free the MR indicated by the given R_Key 346 */ 347 int rds_free_mr(struct rds_sock *rs, char __user *optval, int optlen) 348 { 349 struct rds_free_mr_args args; 350 struct rds_mr *mr; 351 unsigned long flags; 352 353 if (optlen != sizeof(struct rds_free_mr_args)) 354 return -EINVAL; 355 356 if (copy_from_user(&args, (struct rds_free_mr_args __user *)optval, 357 sizeof(struct rds_free_mr_args))) 358 return -EFAULT; 359 360 /* Special case - a null cookie means flush all unused MRs */ 361 if (args.cookie == 0) { 362 if (!rs->rs_transport || !rs->rs_transport->flush_mrs) 363 return -EINVAL; 364 rs->rs_transport->flush_mrs(); 365 return 0; 366 } 367 368 /* Look up the MR given its R_key and remove it from the rbtree 369 * so nobody else finds it. 370 * This should also prevent races with rds_rdma_unuse. 371 */ 372 spin_lock_irqsave(&rs->rs_rdma_lock, flags); 373 mr = rds_mr_tree_walk(&rs->rs_rdma_keys, rds_rdma_cookie_key(args.cookie), NULL); 374 if (mr) { 375 rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys); 376 RB_CLEAR_NODE(&mr->r_rb_node); 377 if (args.flags & RDS_RDMA_INVALIDATE) 378 mr->r_invalidate = 1; 379 } 380 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); 381 382 if (!mr) 383 return -EINVAL; 384 385 /* 386 * call rds_destroy_mr() ourselves so that we're sure it's done by the time 387 * we return. If we let rds_mr_put() do it it might not happen until 388 * someone else drops their ref. 389 */ 390 rds_destroy_mr(mr); 391 rds_mr_put(mr); 392 return 0; 393 } 394 395 /* 396 * This is called when we receive an extension header that 397 * tells us this MR was used. It allows us to implement 398 * use_once semantics 399 */ 400 void rds_rdma_unuse(struct rds_sock *rs, u32 r_key, int force) 401 { 402 struct rds_mr *mr; 403 unsigned long flags; 404 int zot_me = 0; 405 406 spin_lock_irqsave(&rs->rs_rdma_lock, flags); 407 mr = rds_mr_tree_walk(&rs->rs_rdma_keys, r_key, NULL); 408 if (mr && (mr->r_use_once || force)) { 409 rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys); 410 RB_CLEAR_NODE(&mr->r_rb_node); 411 zot_me = 1; 412 } else if (mr) 413 atomic_inc(&mr->r_refcount); 414 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); 415 416 /* May have to issue a dma_sync on this memory region. 417 * Note we could avoid this if the operation was a RDMA READ, 418 * but at this point we can't tell. */ 419 if (mr != NULL) { 420 if (mr->r_trans->sync_mr) 421 mr->r_trans->sync_mr(mr->r_trans_private, DMA_FROM_DEVICE); 422 423 /* If the MR was marked as invalidate, this will 424 * trigger an async flush. */ 425 if (zot_me) 426 rds_destroy_mr(mr); 427 rds_mr_put(mr); 428 } 429 } 430 431 void rds_rdma_free_op(struct rds_rdma_op *ro) 432 { 433 unsigned int i; 434 435 for (i = 0; i < ro->r_nents; i++) { 436 struct page *page = sg_page(&ro->r_sg[i]); 437 438 /* Mark page dirty if it was possibly modified, which 439 * is the case for a RDMA_READ which copies from remote 440 * to local memory */ 441 if (!ro->r_write) 442 set_page_dirty(page); 443 put_page(page); 444 } 445 446 kfree(ro->r_notifier); 447 kfree(ro); 448 } 449 450 /* 451 * args is a pointer to an in-kernel copy in the sendmsg cmsg. 452 */ 453 static struct rds_rdma_op *rds_rdma_prepare(struct rds_sock *rs, 454 struct rds_rdma_args *args) 455 { 456 struct rds_iovec vec; 457 struct rds_rdma_op *op = NULL; 458 unsigned int nr_pages; 459 unsigned int max_pages; 460 unsigned int nr_bytes; 461 struct page **pages = NULL; 462 struct rds_iovec __user *local_vec; 463 struct scatterlist *sg; 464 unsigned int nr; 465 unsigned int i, j; 466 int ret; 467 468 469 if (rs->rs_bound_addr == 0) { 470 ret = -ENOTCONN; /* XXX not a great errno */ 471 goto out; 472 } 473 474 if (args->nr_local > (u64)UINT_MAX) { 475 ret = -EMSGSIZE; 476 goto out; 477 } 478 479 nr_pages = 0; 480 max_pages = 0; 481 482 local_vec = (struct rds_iovec __user *)(unsigned long) args->local_vec_addr; 483 484 /* figure out the number of pages in the vector */ 485 for (i = 0; i < args->nr_local; i++) { 486 if (copy_from_user(&vec, &local_vec[i], 487 sizeof(struct rds_iovec))) { 488 ret = -EFAULT; 489 goto out; 490 } 491 492 nr = rds_pages_in_vec(&vec); 493 if (nr == 0) { 494 ret = -EINVAL; 495 goto out; 496 } 497 498 max_pages = max(nr, max_pages); 499 nr_pages += nr; 500 } 501 502 pages = kcalloc(max_pages, sizeof(struct page *), GFP_KERNEL); 503 if (pages == NULL) { 504 ret = -ENOMEM; 505 goto out; 506 } 507 508 op = kzalloc(offsetof(struct rds_rdma_op, r_sg[nr_pages]), GFP_KERNEL); 509 if (op == NULL) { 510 ret = -ENOMEM; 511 goto out; 512 } 513 514 op->r_write = !!(args->flags & RDS_RDMA_READWRITE); 515 op->r_fence = !!(args->flags & RDS_RDMA_FENCE); 516 op->r_notify = !!(args->flags & RDS_RDMA_NOTIFY_ME); 517 op->r_recverr = rs->rs_recverr; 518 WARN_ON(!nr_pages); 519 sg_init_table(op->r_sg, nr_pages); 520 521 if (op->r_notify || op->r_recverr) { 522 /* We allocate an uninitialized notifier here, because 523 * we don't want to do that in the completion handler. We 524 * would have to use GFP_ATOMIC there, and don't want to deal 525 * with failed allocations. 526 */ 527 op->r_notifier = kmalloc(sizeof(struct rds_notifier), GFP_KERNEL); 528 if (!op->r_notifier) { 529 ret = -ENOMEM; 530 goto out; 531 } 532 op->r_notifier->n_user_token = args->user_token; 533 op->r_notifier->n_status = RDS_RDMA_SUCCESS; 534 } 535 536 /* The cookie contains the R_Key of the remote memory region, and 537 * optionally an offset into it. This is how we implement RDMA into 538 * unaligned memory. 539 * When setting up the RDMA, we need to add that offset to the 540 * destination address (which is really an offset into the MR) 541 * FIXME: We may want to move this into ib_rdma.c 542 */ 543 op->r_key = rds_rdma_cookie_key(args->cookie); 544 op->r_remote_addr = args->remote_vec.addr + rds_rdma_cookie_offset(args->cookie); 545 546 nr_bytes = 0; 547 548 rdsdebug("RDS: rdma prepare nr_local %llu rva %llx rkey %x\n", 549 (unsigned long long)args->nr_local, 550 (unsigned long long)args->remote_vec.addr, 551 op->r_key); 552 553 for (i = 0; i < args->nr_local; i++) { 554 if (copy_from_user(&vec, &local_vec[i], 555 sizeof(struct rds_iovec))) { 556 ret = -EFAULT; 557 goto out; 558 } 559 560 nr = rds_pages_in_vec(&vec); 561 if (nr == 0) { 562 ret = -EINVAL; 563 goto out; 564 } 565 566 rs->rs_user_addr = vec.addr; 567 rs->rs_user_bytes = vec.bytes; 568 569 /* did the user change the vec under us? */ 570 if (nr > max_pages || op->r_nents + nr > nr_pages) { 571 ret = -EINVAL; 572 goto out; 573 } 574 /* If it's a WRITE operation, we want to pin the pages for reading. 575 * If it's a READ operation, we need to pin the pages for writing. 576 */ 577 ret = rds_pin_pages(vec.addr & PAGE_MASK, nr, pages, !op->r_write); 578 if (ret < 0) 579 goto out; 580 581 rdsdebug("RDS: nr_bytes %u nr %u vec.bytes %llu vec.addr %llx\n", 582 nr_bytes, nr, vec.bytes, vec.addr); 583 584 nr_bytes += vec.bytes; 585 586 for (j = 0; j < nr; j++) { 587 unsigned int offset = vec.addr & ~PAGE_MASK; 588 589 sg = &op->r_sg[op->r_nents + j]; 590 sg_set_page(sg, pages[j], 591 min_t(unsigned int, vec.bytes, PAGE_SIZE - offset), 592 offset); 593 594 rdsdebug("RDS: sg->offset %x sg->len %x vec.addr %llx vec.bytes %llu\n", 595 sg->offset, sg->length, vec.addr, vec.bytes); 596 597 vec.addr += sg->length; 598 vec.bytes -= sg->length; 599 } 600 601 op->r_nents += nr; 602 } 603 604 605 if (nr_bytes > args->remote_vec.bytes) { 606 rdsdebug("RDS nr_bytes %u remote_bytes %u do not match\n", 607 nr_bytes, 608 (unsigned int) args->remote_vec.bytes); 609 ret = -EINVAL; 610 goto out; 611 } 612 op->r_bytes = nr_bytes; 613 614 ret = 0; 615 out: 616 kfree(pages); 617 if (ret) { 618 if (op) 619 rds_rdma_free_op(op); 620 op = ERR_PTR(ret); 621 } 622 return op; 623 } 624 625 /* 626 * The application asks for a RDMA transfer. 627 * Extract all arguments and set up the rdma_op 628 */ 629 int rds_cmsg_rdma_args(struct rds_sock *rs, struct rds_message *rm, 630 struct cmsghdr *cmsg) 631 { 632 struct rds_rdma_op *op; 633 634 if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_rdma_args)) || 635 rm->m_rdma_op != NULL) 636 return -EINVAL; 637 638 op = rds_rdma_prepare(rs, CMSG_DATA(cmsg)); 639 if (IS_ERR(op)) 640 return PTR_ERR(op); 641 rds_stats_inc(s_send_rdma); 642 rm->m_rdma_op = op; 643 return 0; 644 } 645 646 /* 647 * The application wants us to pass an RDMA destination (aka MR) 648 * to the remote 649 */ 650 int rds_cmsg_rdma_dest(struct rds_sock *rs, struct rds_message *rm, 651 struct cmsghdr *cmsg) 652 { 653 unsigned long flags; 654 struct rds_mr *mr; 655 u32 r_key; 656 int err = 0; 657 658 if (cmsg->cmsg_len < CMSG_LEN(sizeof(rds_rdma_cookie_t)) || 659 rm->m_rdma_cookie != 0) 660 return -EINVAL; 661 662 memcpy(&rm->m_rdma_cookie, CMSG_DATA(cmsg), sizeof(rm->m_rdma_cookie)); 663 664 /* We are reusing a previously mapped MR here. Most likely, the 665 * application has written to the buffer, so we need to explicitly 666 * flush those writes to RAM. Otherwise the HCA may not see them 667 * when doing a DMA from that buffer. 668 */ 669 r_key = rds_rdma_cookie_key(rm->m_rdma_cookie); 670 671 spin_lock_irqsave(&rs->rs_rdma_lock, flags); 672 mr = rds_mr_tree_walk(&rs->rs_rdma_keys, r_key, NULL); 673 if (mr == NULL) 674 err = -EINVAL; /* invalid r_key */ 675 else 676 atomic_inc(&mr->r_refcount); 677 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); 678 679 if (mr) { 680 mr->r_trans->sync_mr(mr->r_trans_private, DMA_TO_DEVICE); 681 rm->m_rdma_mr = mr; 682 } 683 return err; 684 } 685 686 /* 687 * The application passes us an address range it wants to enable RDMA 688 * to/from. We map the area, and save the <R_Key,offset> pair 689 * in rm->m_rdma_cookie. This causes it to be sent along to the peer 690 * in an extension header. 691 */ 692 int rds_cmsg_rdma_map(struct rds_sock *rs, struct rds_message *rm, 693 struct cmsghdr *cmsg) 694 { 695 if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_get_mr_args)) || 696 rm->m_rdma_cookie != 0) 697 return -EINVAL; 698 699 return __rds_rdma_map(rs, CMSG_DATA(cmsg), &rm->m_rdma_cookie, &rm->m_rdma_mr); 700 } 701