1 /* 2 * Copyright (c) 2007, 2017 Oracle and/or its affiliates. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 * 32 */ 33 #include <linux/pagemap.h> 34 #include <linux/slab.h> 35 #include <linux/rbtree.h> 36 #include <linux/dma-mapping.h> /* for DMA_*_DEVICE */ 37 38 #include "rds.h" 39 40 /* 41 * XXX 42 * - build with sparse 43 * - should we detect duplicate keys on a socket? hmm. 44 * - an rdma is an mlock, apply rlimit? 45 */ 46 47 /* 48 * get the number of pages by looking at the page indices that the start and 49 * end addresses fall in. 50 * 51 * Returns 0 if the vec is invalid. It is invalid if the number of bytes 52 * causes the address to wrap or overflows an unsigned int. This comes 53 * from being stored in the 'length' member of 'struct scatterlist'. 54 */ 55 static unsigned int rds_pages_in_vec(struct rds_iovec *vec) 56 { 57 if ((vec->addr + vec->bytes <= vec->addr) || 58 (vec->bytes > (u64)UINT_MAX)) 59 return 0; 60 61 return ((vec->addr + vec->bytes + PAGE_SIZE - 1) >> PAGE_SHIFT) - 62 (vec->addr >> PAGE_SHIFT); 63 } 64 65 static struct rds_mr *rds_mr_tree_walk(struct rb_root *root, u64 key, 66 struct rds_mr *insert) 67 { 68 struct rb_node **p = &root->rb_node; 69 struct rb_node *parent = NULL; 70 struct rds_mr *mr; 71 72 while (*p) { 73 parent = *p; 74 mr = rb_entry(parent, struct rds_mr, r_rb_node); 75 76 if (key < mr->r_key) 77 p = &(*p)->rb_left; 78 else if (key > mr->r_key) 79 p = &(*p)->rb_right; 80 else 81 return mr; 82 } 83 84 if (insert) { 85 rb_link_node(&insert->r_rb_node, parent, p); 86 rb_insert_color(&insert->r_rb_node, root); 87 refcount_inc(&insert->r_refcount); 88 } 89 return NULL; 90 } 91 92 /* 93 * Destroy the transport-specific part of a MR. 94 */ 95 static void rds_destroy_mr(struct rds_mr *mr) 96 { 97 struct rds_sock *rs = mr->r_sock; 98 void *trans_private = NULL; 99 unsigned long flags; 100 101 rdsdebug("RDS: destroy mr key is %x refcnt %u\n", 102 mr->r_key, refcount_read(&mr->r_refcount)); 103 104 if (test_and_set_bit(RDS_MR_DEAD, &mr->r_state)) 105 return; 106 107 spin_lock_irqsave(&rs->rs_rdma_lock, flags); 108 if (!RB_EMPTY_NODE(&mr->r_rb_node)) 109 rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys); 110 trans_private = mr->r_trans_private; 111 mr->r_trans_private = NULL; 112 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); 113 114 if (trans_private) 115 mr->r_trans->free_mr(trans_private, mr->r_invalidate); 116 } 117 118 void __rds_put_mr_final(struct rds_mr *mr) 119 { 120 rds_destroy_mr(mr); 121 kfree(mr); 122 } 123 124 /* 125 * By the time this is called we can't have any more ioctls called on 126 * the socket so we don't need to worry about racing with others. 127 */ 128 void rds_rdma_drop_keys(struct rds_sock *rs) 129 { 130 struct rds_mr *mr; 131 struct rb_node *node; 132 unsigned long flags; 133 134 /* Release any MRs associated with this socket */ 135 spin_lock_irqsave(&rs->rs_rdma_lock, flags); 136 while ((node = rb_first(&rs->rs_rdma_keys))) { 137 mr = rb_entry(node, struct rds_mr, r_rb_node); 138 if (mr->r_trans == rs->rs_transport) 139 mr->r_invalidate = 0; 140 rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys); 141 RB_CLEAR_NODE(&mr->r_rb_node); 142 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); 143 rds_destroy_mr(mr); 144 rds_mr_put(mr); 145 spin_lock_irqsave(&rs->rs_rdma_lock, flags); 146 } 147 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); 148 149 if (rs->rs_transport && rs->rs_transport->flush_mrs) 150 rs->rs_transport->flush_mrs(); 151 } 152 153 /* 154 * Helper function to pin user pages. 155 */ 156 static int rds_pin_pages(unsigned long user_addr, unsigned int nr_pages, 157 struct page **pages, int write) 158 { 159 unsigned int gup_flags = FOLL_LONGTERM; 160 int ret; 161 162 if (write) 163 gup_flags |= FOLL_WRITE; 164 165 ret = get_user_pages_fast(user_addr, nr_pages, gup_flags, pages); 166 if (ret >= 0 && ret < nr_pages) { 167 while (ret--) 168 put_page(pages[ret]); 169 ret = -EFAULT; 170 } 171 172 return ret; 173 } 174 175 static int __rds_rdma_map(struct rds_sock *rs, struct rds_get_mr_args *args, 176 u64 *cookie_ret, struct rds_mr **mr_ret, 177 struct rds_conn_path *cp) 178 { 179 struct rds_mr *mr = NULL, *found; 180 struct scatterlist *sg = NULL; 181 unsigned int nr_pages; 182 struct page **pages = NULL; 183 void *trans_private; 184 unsigned long flags; 185 rds_rdma_cookie_t cookie; 186 unsigned int nents = 0; 187 int need_odp = 0; 188 long i; 189 int ret; 190 191 if (ipv6_addr_any(&rs->rs_bound_addr) || !rs->rs_transport) { 192 ret = -ENOTCONN; /* XXX not a great errno */ 193 goto out; 194 } 195 196 if (!rs->rs_transport->get_mr) { 197 ret = -EOPNOTSUPP; 198 goto out; 199 } 200 201 /* If the combination of the addr and size requested for this memory 202 * region causes an integer overflow, return error. 203 */ 204 if (((args->vec.addr + args->vec.bytes) < args->vec.addr) || 205 PAGE_ALIGN(args->vec.addr + args->vec.bytes) < 206 (args->vec.addr + args->vec.bytes)) { 207 ret = -EINVAL; 208 goto out; 209 } 210 211 if (!can_do_mlock()) { 212 ret = -EPERM; 213 goto out; 214 } 215 216 nr_pages = rds_pages_in_vec(&args->vec); 217 if (nr_pages == 0) { 218 ret = -EINVAL; 219 goto out; 220 } 221 222 /* Restrict the size of mr irrespective of underlying transport 223 * To account for unaligned mr regions, subtract one from nr_pages 224 */ 225 if ((nr_pages - 1) > (RDS_MAX_MSG_SIZE >> PAGE_SHIFT)) { 226 ret = -EMSGSIZE; 227 goto out; 228 } 229 230 rdsdebug("RDS: get_mr addr %llx len %llu nr_pages %u\n", 231 args->vec.addr, args->vec.bytes, nr_pages); 232 233 /* XXX clamp nr_pages to limit the size of this alloc? */ 234 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL); 235 if (!pages) { 236 ret = -ENOMEM; 237 goto out; 238 } 239 240 mr = kzalloc(sizeof(struct rds_mr), GFP_KERNEL); 241 if (!mr) { 242 ret = -ENOMEM; 243 goto out; 244 } 245 246 refcount_set(&mr->r_refcount, 1); 247 RB_CLEAR_NODE(&mr->r_rb_node); 248 mr->r_trans = rs->rs_transport; 249 mr->r_sock = rs; 250 251 if (args->flags & RDS_RDMA_USE_ONCE) 252 mr->r_use_once = 1; 253 if (args->flags & RDS_RDMA_INVALIDATE) 254 mr->r_invalidate = 1; 255 if (args->flags & RDS_RDMA_READWRITE) 256 mr->r_write = 1; 257 258 /* 259 * Pin the pages that make up the user buffer and transfer the page 260 * pointers to the mr's sg array. We check to see if we've mapped 261 * the whole region after transferring the partial page references 262 * to the sg array so that we can have one page ref cleanup path. 263 * 264 * For now we have no flag that tells us whether the mapping is 265 * r/o or r/w. We need to assume r/w, or we'll do a lot of RDMA to 266 * the zero page. 267 */ 268 ret = rds_pin_pages(args->vec.addr, nr_pages, pages, 1); 269 if (ret == -EOPNOTSUPP) { 270 need_odp = 1; 271 } else if (ret <= 0) { 272 goto out; 273 } else { 274 nents = ret; 275 sg = kcalloc(nents, sizeof(*sg), GFP_KERNEL); 276 if (!sg) { 277 ret = -ENOMEM; 278 goto out; 279 } 280 WARN_ON(!nents); 281 sg_init_table(sg, nents); 282 283 /* Stick all pages into the scatterlist */ 284 for (i = 0 ; i < nents; i++) 285 sg_set_page(&sg[i], pages[i], PAGE_SIZE, 0); 286 287 rdsdebug("RDS: trans_private nents is %u\n", nents); 288 } 289 /* Obtain a transport specific MR. If this succeeds, the 290 * s/g list is now owned by the MR. 291 * Note that dma_map() implies that pending writes are 292 * flushed to RAM, so no dma_sync is needed here. */ 293 trans_private = rs->rs_transport->get_mr( 294 sg, nents, rs, &mr->r_key, cp ? cp->cp_conn : NULL, 295 args->vec.addr, args->vec.bytes, 296 need_odp ? ODP_ZEROBASED : ODP_NOT_NEEDED); 297 298 if (IS_ERR(trans_private)) { 299 /* In ODP case, we don't GUP pages, so don't need 300 * to release anything. 301 */ 302 if (!need_odp) { 303 for (i = 0 ; i < nents; i++) 304 put_page(sg_page(&sg[i])); 305 kfree(sg); 306 } 307 ret = PTR_ERR(trans_private); 308 goto out; 309 } 310 311 mr->r_trans_private = trans_private; 312 313 rdsdebug("RDS: get_mr put_user key is %x cookie_addr %p\n", 314 mr->r_key, (void *)(unsigned long) args->cookie_addr); 315 316 /* The user may pass us an unaligned address, but we can only 317 * map page aligned regions. So we keep the offset, and build 318 * a 64bit cookie containing <R_Key, offset> and pass that 319 * around. */ 320 if (need_odp) 321 cookie = rds_rdma_make_cookie(mr->r_key, 0); 322 else 323 cookie = rds_rdma_make_cookie(mr->r_key, 324 args->vec.addr & ~PAGE_MASK); 325 if (cookie_ret) 326 *cookie_ret = cookie; 327 328 if (args->cookie_addr && put_user(cookie, (u64 __user *)(unsigned long) args->cookie_addr)) { 329 ret = -EFAULT; 330 goto out; 331 } 332 333 /* Inserting the new MR into the rbtree bumps its 334 * reference count. */ 335 spin_lock_irqsave(&rs->rs_rdma_lock, flags); 336 found = rds_mr_tree_walk(&rs->rs_rdma_keys, mr->r_key, mr); 337 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); 338 339 BUG_ON(found && found != mr); 340 341 rdsdebug("RDS: get_mr key is %x\n", mr->r_key); 342 if (mr_ret) { 343 refcount_inc(&mr->r_refcount); 344 *mr_ret = mr; 345 } 346 347 ret = 0; 348 out: 349 kfree(pages); 350 if (mr) 351 rds_mr_put(mr); 352 return ret; 353 } 354 355 int rds_get_mr(struct rds_sock *rs, char __user *optval, int optlen) 356 { 357 struct rds_get_mr_args args; 358 359 if (optlen != sizeof(struct rds_get_mr_args)) 360 return -EINVAL; 361 362 if (copy_from_user(&args, (struct rds_get_mr_args __user *)optval, 363 sizeof(struct rds_get_mr_args))) 364 return -EFAULT; 365 366 return __rds_rdma_map(rs, &args, NULL, NULL, NULL); 367 } 368 369 int rds_get_mr_for_dest(struct rds_sock *rs, char __user *optval, int optlen) 370 { 371 struct rds_get_mr_for_dest_args args; 372 struct rds_get_mr_args new_args; 373 374 if (optlen != sizeof(struct rds_get_mr_for_dest_args)) 375 return -EINVAL; 376 377 if (copy_from_user(&args, (struct rds_get_mr_for_dest_args __user *)optval, 378 sizeof(struct rds_get_mr_for_dest_args))) 379 return -EFAULT; 380 381 /* 382 * Initially, just behave like get_mr(). 383 * TODO: Implement get_mr as wrapper around this 384 * and deprecate it. 385 */ 386 new_args.vec = args.vec; 387 new_args.cookie_addr = args.cookie_addr; 388 new_args.flags = args.flags; 389 390 return __rds_rdma_map(rs, &new_args, NULL, NULL, NULL); 391 } 392 393 /* 394 * Free the MR indicated by the given R_Key 395 */ 396 int rds_free_mr(struct rds_sock *rs, char __user *optval, int optlen) 397 { 398 struct rds_free_mr_args args; 399 struct rds_mr *mr; 400 unsigned long flags; 401 402 if (optlen != sizeof(struct rds_free_mr_args)) 403 return -EINVAL; 404 405 if (copy_from_user(&args, (struct rds_free_mr_args __user *)optval, 406 sizeof(struct rds_free_mr_args))) 407 return -EFAULT; 408 409 /* Special case - a null cookie means flush all unused MRs */ 410 if (args.cookie == 0) { 411 if (!rs->rs_transport || !rs->rs_transport->flush_mrs) 412 return -EINVAL; 413 rs->rs_transport->flush_mrs(); 414 return 0; 415 } 416 417 /* Look up the MR given its R_key and remove it from the rbtree 418 * so nobody else finds it. 419 * This should also prevent races with rds_rdma_unuse. 420 */ 421 spin_lock_irqsave(&rs->rs_rdma_lock, flags); 422 mr = rds_mr_tree_walk(&rs->rs_rdma_keys, rds_rdma_cookie_key(args.cookie), NULL); 423 if (mr) { 424 rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys); 425 RB_CLEAR_NODE(&mr->r_rb_node); 426 if (args.flags & RDS_RDMA_INVALIDATE) 427 mr->r_invalidate = 1; 428 } 429 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); 430 431 if (!mr) 432 return -EINVAL; 433 434 /* 435 * call rds_destroy_mr() ourselves so that we're sure it's done by the time 436 * we return. If we let rds_mr_put() do it it might not happen until 437 * someone else drops their ref. 438 */ 439 rds_destroy_mr(mr); 440 rds_mr_put(mr); 441 return 0; 442 } 443 444 /* 445 * This is called when we receive an extension header that 446 * tells us this MR was used. It allows us to implement 447 * use_once semantics 448 */ 449 void rds_rdma_unuse(struct rds_sock *rs, u32 r_key, int force) 450 { 451 struct rds_mr *mr; 452 unsigned long flags; 453 int zot_me = 0; 454 455 spin_lock_irqsave(&rs->rs_rdma_lock, flags); 456 mr = rds_mr_tree_walk(&rs->rs_rdma_keys, r_key, NULL); 457 if (!mr) { 458 pr_debug("rds: trying to unuse MR with unknown r_key %u!\n", 459 r_key); 460 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); 461 return; 462 } 463 464 if (mr->r_use_once || force) { 465 rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys); 466 RB_CLEAR_NODE(&mr->r_rb_node); 467 zot_me = 1; 468 } 469 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); 470 471 /* May have to issue a dma_sync on this memory region. 472 * Note we could avoid this if the operation was a RDMA READ, 473 * but at this point we can't tell. */ 474 if (mr->r_trans->sync_mr) 475 mr->r_trans->sync_mr(mr->r_trans_private, DMA_FROM_DEVICE); 476 477 /* If the MR was marked as invalidate, this will 478 * trigger an async flush. */ 479 if (zot_me) { 480 rds_destroy_mr(mr); 481 rds_mr_put(mr); 482 } 483 } 484 485 void rds_rdma_free_op(struct rm_rdma_op *ro) 486 { 487 unsigned int i; 488 489 if (ro->op_odp_mr) { 490 rds_mr_put(ro->op_odp_mr); 491 } else { 492 for (i = 0; i < ro->op_nents; i++) { 493 struct page *page = sg_page(&ro->op_sg[i]); 494 495 /* Mark page dirty if it was possibly modified, which 496 * is the case for a RDMA_READ which copies from remote 497 * to local memory 498 */ 499 if (!ro->op_write) 500 set_page_dirty(page); 501 put_page(page); 502 } 503 } 504 505 kfree(ro->op_notifier); 506 ro->op_notifier = NULL; 507 ro->op_active = 0; 508 ro->op_odp_mr = NULL; 509 } 510 511 void rds_atomic_free_op(struct rm_atomic_op *ao) 512 { 513 struct page *page = sg_page(ao->op_sg); 514 515 /* Mark page dirty if it was possibly modified, which 516 * is the case for a RDMA_READ which copies from remote 517 * to local memory */ 518 set_page_dirty(page); 519 put_page(page); 520 521 kfree(ao->op_notifier); 522 ao->op_notifier = NULL; 523 ao->op_active = 0; 524 } 525 526 527 /* 528 * Count the number of pages needed to describe an incoming iovec array. 529 */ 530 static int rds_rdma_pages(struct rds_iovec iov[], int nr_iovecs) 531 { 532 int tot_pages = 0; 533 unsigned int nr_pages; 534 unsigned int i; 535 536 /* figure out the number of pages in the vector */ 537 for (i = 0; i < nr_iovecs; i++) { 538 nr_pages = rds_pages_in_vec(&iov[i]); 539 if (nr_pages == 0) 540 return -EINVAL; 541 542 tot_pages += nr_pages; 543 544 /* 545 * nr_pages for one entry is limited to (UINT_MAX>>PAGE_SHIFT)+1, 546 * so tot_pages cannot overflow without first going negative. 547 */ 548 if (tot_pages < 0) 549 return -EINVAL; 550 } 551 552 return tot_pages; 553 } 554 555 int rds_rdma_extra_size(struct rds_rdma_args *args, 556 struct rds_iov_vector *iov) 557 { 558 struct rds_iovec *vec; 559 struct rds_iovec __user *local_vec; 560 int tot_pages = 0; 561 unsigned int nr_pages; 562 unsigned int i; 563 564 local_vec = (struct rds_iovec __user *)(unsigned long) args->local_vec_addr; 565 566 if (args->nr_local == 0) 567 return -EINVAL; 568 569 iov->iov = kcalloc(args->nr_local, 570 sizeof(struct rds_iovec), 571 GFP_KERNEL); 572 if (!iov->iov) 573 return -ENOMEM; 574 575 vec = &iov->iov[0]; 576 577 if (copy_from_user(vec, local_vec, args->nr_local * 578 sizeof(struct rds_iovec))) 579 return -EFAULT; 580 iov->len = args->nr_local; 581 582 /* figure out the number of pages in the vector */ 583 for (i = 0; i < args->nr_local; i++, vec++) { 584 585 nr_pages = rds_pages_in_vec(vec); 586 if (nr_pages == 0) 587 return -EINVAL; 588 589 tot_pages += nr_pages; 590 591 /* 592 * nr_pages for one entry is limited to (UINT_MAX>>PAGE_SHIFT)+1, 593 * so tot_pages cannot overflow without first going negative. 594 */ 595 if (tot_pages < 0) 596 return -EINVAL; 597 } 598 599 return tot_pages * sizeof(struct scatterlist); 600 } 601 602 /* 603 * The application asks for a RDMA transfer. 604 * Extract all arguments and set up the rdma_op 605 */ 606 int rds_cmsg_rdma_args(struct rds_sock *rs, struct rds_message *rm, 607 struct cmsghdr *cmsg, 608 struct rds_iov_vector *vec) 609 { 610 struct rds_rdma_args *args; 611 struct rm_rdma_op *op = &rm->rdma; 612 int nr_pages; 613 unsigned int nr_bytes; 614 struct page **pages = NULL; 615 struct rds_iovec *iovs; 616 unsigned int i, j; 617 int ret = 0; 618 bool odp_supported = true; 619 620 if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_rdma_args)) 621 || rm->rdma.op_active) 622 return -EINVAL; 623 624 args = CMSG_DATA(cmsg); 625 626 if (ipv6_addr_any(&rs->rs_bound_addr)) { 627 ret = -ENOTCONN; /* XXX not a great errno */ 628 goto out_ret; 629 } 630 631 if (args->nr_local > UIO_MAXIOV) { 632 ret = -EMSGSIZE; 633 goto out_ret; 634 } 635 636 if (vec->len != args->nr_local) { 637 ret = -EINVAL; 638 goto out_ret; 639 } 640 /* odp-mr is not supported for multiple requests within one message */ 641 if (args->nr_local != 1) 642 odp_supported = false; 643 644 iovs = vec->iov; 645 646 nr_pages = rds_rdma_pages(iovs, args->nr_local); 647 if (nr_pages < 0) { 648 ret = -EINVAL; 649 goto out_ret; 650 } 651 652 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL); 653 if (!pages) { 654 ret = -ENOMEM; 655 goto out_ret; 656 } 657 658 op->op_write = !!(args->flags & RDS_RDMA_READWRITE); 659 op->op_fence = !!(args->flags & RDS_RDMA_FENCE); 660 op->op_notify = !!(args->flags & RDS_RDMA_NOTIFY_ME); 661 op->op_silent = !!(args->flags & RDS_RDMA_SILENT); 662 op->op_active = 1; 663 op->op_recverr = rs->rs_recverr; 664 op->op_odp_mr = NULL; 665 666 WARN_ON(!nr_pages); 667 op->op_sg = rds_message_alloc_sgs(rm, nr_pages, &ret); 668 if (!op->op_sg) 669 goto out_pages; 670 671 if (op->op_notify || op->op_recverr) { 672 /* We allocate an uninitialized notifier here, because 673 * we don't want to do that in the completion handler. We 674 * would have to use GFP_ATOMIC there, and don't want to deal 675 * with failed allocations. 676 */ 677 op->op_notifier = kmalloc(sizeof(struct rds_notifier), GFP_KERNEL); 678 if (!op->op_notifier) { 679 ret = -ENOMEM; 680 goto out_pages; 681 } 682 op->op_notifier->n_user_token = args->user_token; 683 op->op_notifier->n_status = RDS_RDMA_SUCCESS; 684 } 685 686 /* The cookie contains the R_Key of the remote memory region, and 687 * optionally an offset into it. This is how we implement RDMA into 688 * unaligned memory. 689 * When setting up the RDMA, we need to add that offset to the 690 * destination address (which is really an offset into the MR) 691 * FIXME: We may want to move this into ib_rdma.c 692 */ 693 op->op_rkey = rds_rdma_cookie_key(args->cookie); 694 op->op_remote_addr = args->remote_vec.addr + rds_rdma_cookie_offset(args->cookie); 695 696 nr_bytes = 0; 697 698 rdsdebug("RDS: rdma prepare nr_local %llu rva %llx rkey %x\n", 699 (unsigned long long)args->nr_local, 700 (unsigned long long)args->remote_vec.addr, 701 op->op_rkey); 702 703 for (i = 0; i < args->nr_local; i++) { 704 struct rds_iovec *iov = &iovs[i]; 705 /* don't need to check, rds_rdma_pages() verified nr will be +nonzero */ 706 unsigned int nr = rds_pages_in_vec(iov); 707 708 rs->rs_user_addr = iov->addr; 709 rs->rs_user_bytes = iov->bytes; 710 711 /* If it's a WRITE operation, we want to pin the pages for reading. 712 * If it's a READ operation, we need to pin the pages for writing. 713 */ 714 ret = rds_pin_pages(iov->addr, nr, pages, !op->op_write); 715 if ((!odp_supported && ret <= 0) || 716 (odp_supported && ret <= 0 && ret != -EOPNOTSUPP)) 717 goto out_pages; 718 719 if (ret == -EOPNOTSUPP) { 720 struct rds_mr *local_odp_mr; 721 722 if (!rs->rs_transport->get_mr) { 723 ret = -EOPNOTSUPP; 724 goto out_pages; 725 } 726 local_odp_mr = 727 kzalloc(sizeof(*local_odp_mr), GFP_KERNEL); 728 if (!local_odp_mr) { 729 ret = -ENOMEM; 730 goto out_pages; 731 } 732 RB_CLEAR_NODE(&local_odp_mr->r_rb_node); 733 refcount_set(&local_odp_mr->r_refcount, 1); 734 local_odp_mr->r_trans = rs->rs_transport; 735 local_odp_mr->r_sock = rs; 736 local_odp_mr->r_trans_private = 737 rs->rs_transport->get_mr( 738 NULL, 0, rs, &local_odp_mr->r_key, NULL, 739 iov->addr, iov->bytes, ODP_VIRTUAL); 740 if (IS_ERR(local_odp_mr->r_trans_private)) { 741 ret = IS_ERR(local_odp_mr->r_trans_private); 742 rdsdebug("get_mr ret %d %p\"", ret, 743 local_odp_mr->r_trans_private); 744 kfree(local_odp_mr); 745 ret = -EOPNOTSUPP; 746 goto out_pages; 747 } 748 rdsdebug("Need odp; local_odp_mr %p trans_private %p\n", 749 local_odp_mr, local_odp_mr->r_trans_private); 750 op->op_odp_mr = local_odp_mr; 751 op->op_odp_addr = iov->addr; 752 } 753 754 rdsdebug("RDS: nr_bytes %u nr %u iov->bytes %llu iov->addr %llx\n", 755 nr_bytes, nr, iov->bytes, iov->addr); 756 757 nr_bytes += iov->bytes; 758 759 for (j = 0; j < nr; j++) { 760 unsigned int offset = iov->addr & ~PAGE_MASK; 761 struct scatterlist *sg; 762 763 sg = &op->op_sg[op->op_nents + j]; 764 sg_set_page(sg, pages[j], 765 min_t(unsigned int, iov->bytes, PAGE_SIZE - offset), 766 offset); 767 768 sg_dma_len(sg) = sg->length; 769 rdsdebug("RDS: sg->offset %x sg->len %x iov->addr %llx iov->bytes %llu\n", 770 sg->offset, sg->length, iov->addr, iov->bytes); 771 772 iov->addr += sg->length; 773 iov->bytes -= sg->length; 774 } 775 776 op->op_nents += nr; 777 } 778 779 if (nr_bytes > args->remote_vec.bytes) { 780 rdsdebug("RDS nr_bytes %u remote_bytes %u do not match\n", 781 nr_bytes, 782 (unsigned int) args->remote_vec.bytes); 783 ret = -EINVAL; 784 goto out_pages; 785 } 786 op->op_bytes = nr_bytes; 787 ret = 0; 788 789 out_pages: 790 kfree(pages); 791 out_ret: 792 if (ret) 793 rds_rdma_free_op(op); 794 else 795 rds_stats_inc(s_send_rdma); 796 797 return ret; 798 } 799 800 /* 801 * The application wants us to pass an RDMA destination (aka MR) 802 * to the remote 803 */ 804 int rds_cmsg_rdma_dest(struct rds_sock *rs, struct rds_message *rm, 805 struct cmsghdr *cmsg) 806 { 807 unsigned long flags; 808 struct rds_mr *mr; 809 u32 r_key; 810 int err = 0; 811 812 if (cmsg->cmsg_len < CMSG_LEN(sizeof(rds_rdma_cookie_t)) || 813 rm->m_rdma_cookie != 0) 814 return -EINVAL; 815 816 memcpy(&rm->m_rdma_cookie, CMSG_DATA(cmsg), sizeof(rm->m_rdma_cookie)); 817 818 /* We are reusing a previously mapped MR here. Most likely, the 819 * application has written to the buffer, so we need to explicitly 820 * flush those writes to RAM. Otherwise the HCA may not see them 821 * when doing a DMA from that buffer. 822 */ 823 r_key = rds_rdma_cookie_key(rm->m_rdma_cookie); 824 825 spin_lock_irqsave(&rs->rs_rdma_lock, flags); 826 mr = rds_mr_tree_walk(&rs->rs_rdma_keys, r_key, NULL); 827 if (!mr) 828 err = -EINVAL; /* invalid r_key */ 829 else 830 refcount_inc(&mr->r_refcount); 831 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); 832 833 if (mr) { 834 mr->r_trans->sync_mr(mr->r_trans_private, 835 DMA_TO_DEVICE); 836 rm->rdma.op_rdma_mr = mr; 837 } 838 return err; 839 } 840 841 /* 842 * The application passes us an address range it wants to enable RDMA 843 * to/from. We map the area, and save the <R_Key,offset> pair 844 * in rm->m_rdma_cookie. This causes it to be sent along to the peer 845 * in an extension header. 846 */ 847 int rds_cmsg_rdma_map(struct rds_sock *rs, struct rds_message *rm, 848 struct cmsghdr *cmsg) 849 { 850 if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_get_mr_args)) || 851 rm->m_rdma_cookie != 0) 852 return -EINVAL; 853 854 return __rds_rdma_map(rs, CMSG_DATA(cmsg), &rm->m_rdma_cookie, 855 &rm->rdma.op_rdma_mr, rm->m_conn_path); 856 } 857 858 /* 859 * Fill in rds_message for an atomic request. 860 */ 861 int rds_cmsg_atomic(struct rds_sock *rs, struct rds_message *rm, 862 struct cmsghdr *cmsg) 863 { 864 struct page *page = NULL; 865 struct rds_atomic_args *args; 866 int ret = 0; 867 868 if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_atomic_args)) 869 || rm->atomic.op_active) 870 return -EINVAL; 871 872 args = CMSG_DATA(cmsg); 873 874 /* Nonmasked & masked cmsg ops converted to masked hw ops */ 875 switch (cmsg->cmsg_type) { 876 case RDS_CMSG_ATOMIC_FADD: 877 rm->atomic.op_type = RDS_ATOMIC_TYPE_FADD; 878 rm->atomic.op_m_fadd.add = args->fadd.add; 879 rm->atomic.op_m_fadd.nocarry_mask = 0; 880 break; 881 case RDS_CMSG_MASKED_ATOMIC_FADD: 882 rm->atomic.op_type = RDS_ATOMIC_TYPE_FADD; 883 rm->atomic.op_m_fadd.add = args->m_fadd.add; 884 rm->atomic.op_m_fadd.nocarry_mask = args->m_fadd.nocarry_mask; 885 break; 886 case RDS_CMSG_ATOMIC_CSWP: 887 rm->atomic.op_type = RDS_ATOMIC_TYPE_CSWP; 888 rm->atomic.op_m_cswp.compare = args->cswp.compare; 889 rm->atomic.op_m_cswp.swap = args->cswp.swap; 890 rm->atomic.op_m_cswp.compare_mask = ~0; 891 rm->atomic.op_m_cswp.swap_mask = ~0; 892 break; 893 case RDS_CMSG_MASKED_ATOMIC_CSWP: 894 rm->atomic.op_type = RDS_ATOMIC_TYPE_CSWP; 895 rm->atomic.op_m_cswp.compare = args->m_cswp.compare; 896 rm->atomic.op_m_cswp.swap = args->m_cswp.swap; 897 rm->atomic.op_m_cswp.compare_mask = args->m_cswp.compare_mask; 898 rm->atomic.op_m_cswp.swap_mask = args->m_cswp.swap_mask; 899 break; 900 default: 901 BUG(); /* should never happen */ 902 } 903 904 rm->atomic.op_notify = !!(args->flags & RDS_RDMA_NOTIFY_ME); 905 rm->atomic.op_silent = !!(args->flags & RDS_RDMA_SILENT); 906 rm->atomic.op_active = 1; 907 rm->atomic.op_recverr = rs->rs_recverr; 908 rm->atomic.op_sg = rds_message_alloc_sgs(rm, 1, &ret); 909 if (!rm->atomic.op_sg) 910 goto err; 911 912 /* verify 8 byte-aligned */ 913 if (args->local_addr & 0x7) { 914 ret = -EFAULT; 915 goto err; 916 } 917 918 ret = rds_pin_pages(args->local_addr, 1, &page, 1); 919 if (ret != 1) 920 goto err; 921 ret = 0; 922 923 sg_set_page(rm->atomic.op_sg, page, 8, offset_in_page(args->local_addr)); 924 925 if (rm->atomic.op_notify || rm->atomic.op_recverr) { 926 /* We allocate an uninitialized notifier here, because 927 * we don't want to do that in the completion handler. We 928 * would have to use GFP_ATOMIC there, and don't want to deal 929 * with failed allocations. 930 */ 931 rm->atomic.op_notifier = kmalloc(sizeof(*rm->atomic.op_notifier), GFP_KERNEL); 932 if (!rm->atomic.op_notifier) { 933 ret = -ENOMEM; 934 goto err; 935 } 936 937 rm->atomic.op_notifier->n_user_token = args->user_token; 938 rm->atomic.op_notifier->n_status = RDS_RDMA_SUCCESS; 939 } 940 941 rm->atomic.op_rkey = rds_rdma_cookie_key(args->cookie); 942 rm->atomic.op_remote_addr = args->remote_addr + rds_rdma_cookie_offset(args->cookie); 943 944 return ret; 945 err: 946 if (page) 947 put_page(page); 948 rm->atomic.op_active = 0; 949 kfree(rm->atomic.op_notifier); 950 951 return ret; 952 } 953