1 /* 2 * Copyright (c) 2007 Oracle. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 * 32 */ 33 #include <linux/pagemap.h> 34 #include <linux/slab.h> 35 #include <linux/rbtree.h> 36 #include <linux/dma-mapping.h> /* for DMA_*_DEVICE */ 37 38 #include "rds.h" 39 40 /* 41 * XXX 42 * - build with sparse 43 * - should we limit the size of a mr region? let transport return failure? 44 * - should we detect duplicate keys on a socket? hmm. 45 * - an rdma is an mlock, apply rlimit? 46 */ 47 48 /* 49 * get the number of pages by looking at the page indices that the start and 50 * end addresses fall in. 51 * 52 * Returns 0 if the vec is invalid. It is invalid if the number of bytes 53 * causes the address to wrap or overflows an unsigned int. This comes 54 * from being stored in the 'length' member of 'struct scatterlist'. 55 */ 56 static unsigned int rds_pages_in_vec(struct rds_iovec *vec) 57 { 58 if ((vec->addr + vec->bytes <= vec->addr) || 59 (vec->bytes > (u64)UINT_MAX)) 60 return 0; 61 62 return ((vec->addr + vec->bytes + PAGE_SIZE - 1) >> PAGE_SHIFT) - 63 (vec->addr >> PAGE_SHIFT); 64 } 65 66 static struct rds_mr *rds_mr_tree_walk(struct rb_root *root, u64 key, 67 struct rds_mr *insert) 68 { 69 struct rb_node **p = &root->rb_node; 70 struct rb_node *parent = NULL; 71 struct rds_mr *mr; 72 73 while (*p) { 74 parent = *p; 75 mr = rb_entry(parent, struct rds_mr, r_rb_node); 76 77 if (key < mr->r_key) 78 p = &(*p)->rb_left; 79 else if (key > mr->r_key) 80 p = &(*p)->rb_right; 81 else 82 return mr; 83 } 84 85 if (insert) { 86 rb_link_node(&insert->r_rb_node, parent, p); 87 rb_insert_color(&insert->r_rb_node, root); 88 atomic_inc(&insert->r_refcount); 89 } 90 return NULL; 91 } 92 93 /* 94 * Destroy the transport-specific part of a MR. 95 */ 96 static void rds_destroy_mr(struct rds_mr *mr) 97 { 98 struct rds_sock *rs = mr->r_sock; 99 void *trans_private = NULL; 100 unsigned long flags; 101 102 rdsdebug("RDS: destroy mr key is %x refcnt %u\n", 103 mr->r_key, atomic_read(&mr->r_refcount)); 104 105 if (test_and_set_bit(RDS_MR_DEAD, &mr->r_state)) 106 return; 107 108 spin_lock_irqsave(&rs->rs_rdma_lock, flags); 109 if (!RB_EMPTY_NODE(&mr->r_rb_node)) 110 rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys); 111 trans_private = mr->r_trans_private; 112 mr->r_trans_private = NULL; 113 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); 114 115 if (trans_private) 116 mr->r_trans->free_mr(trans_private, mr->r_invalidate); 117 } 118 119 void __rds_put_mr_final(struct rds_mr *mr) 120 { 121 rds_destroy_mr(mr); 122 kfree(mr); 123 } 124 125 /* 126 * By the time this is called we can't have any more ioctls called on 127 * the socket so we don't need to worry about racing with others. 128 */ 129 void rds_rdma_drop_keys(struct rds_sock *rs) 130 { 131 struct rds_mr *mr; 132 struct rb_node *node; 133 unsigned long flags; 134 135 /* Release any MRs associated with this socket */ 136 spin_lock_irqsave(&rs->rs_rdma_lock, flags); 137 while ((node = rb_first(&rs->rs_rdma_keys))) { 138 mr = container_of(node, struct rds_mr, r_rb_node); 139 if (mr->r_trans == rs->rs_transport) 140 mr->r_invalidate = 0; 141 rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys); 142 RB_CLEAR_NODE(&mr->r_rb_node); 143 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); 144 rds_destroy_mr(mr); 145 rds_mr_put(mr); 146 spin_lock_irqsave(&rs->rs_rdma_lock, flags); 147 } 148 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); 149 150 if (rs->rs_transport && rs->rs_transport->flush_mrs) 151 rs->rs_transport->flush_mrs(); 152 } 153 154 /* 155 * Helper function to pin user pages. 156 */ 157 static int rds_pin_pages(unsigned long user_addr, unsigned int nr_pages, 158 struct page **pages, int write) 159 { 160 int ret; 161 162 ret = get_user_pages_fast(user_addr, nr_pages, write, pages); 163 164 if (ret >= 0 && ret < nr_pages) { 165 while (ret--) 166 put_page(pages[ret]); 167 ret = -EFAULT; 168 } 169 170 return ret; 171 } 172 173 static int __rds_rdma_map(struct rds_sock *rs, struct rds_get_mr_args *args, 174 u64 *cookie_ret, struct rds_mr **mr_ret) 175 { 176 struct rds_mr *mr = NULL, *found; 177 unsigned int nr_pages; 178 struct page **pages = NULL; 179 struct scatterlist *sg; 180 void *trans_private; 181 unsigned long flags; 182 rds_rdma_cookie_t cookie; 183 unsigned int nents; 184 long i; 185 int ret; 186 187 if (rs->rs_bound_addr == 0) { 188 ret = -ENOTCONN; /* XXX not a great errno */ 189 goto out; 190 } 191 192 if (!rs->rs_transport->get_mr) { 193 ret = -EOPNOTSUPP; 194 goto out; 195 } 196 197 nr_pages = rds_pages_in_vec(&args->vec); 198 if (nr_pages == 0) { 199 ret = -EINVAL; 200 goto out; 201 } 202 203 rdsdebug("RDS: get_mr addr %llx len %llu nr_pages %u\n", 204 args->vec.addr, args->vec.bytes, nr_pages); 205 206 /* XXX clamp nr_pages to limit the size of this alloc? */ 207 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL); 208 if (!pages) { 209 ret = -ENOMEM; 210 goto out; 211 } 212 213 mr = kzalloc(sizeof(struct rds_mr), GFP_KERNEL); 214 if (!mr) { 215 ret = -ENOMEM; 216 goto out; 217 } 218 219 atomic_set(&mr->r_refcount, 1); 220 RB_CLEAR_NODE(&mr->r_rb_node); 221 mr->r_trans = rs->rs_transport; 222 mr->r_sock = rs; 223 224 if (args->flags & RDS_RDMA_USE_ONCE) 225 mr->r_use_once = 1; 226 if (args->flags & RDS_RDMA_INVALIDATE) 227 mr->r_invalidate = 1; 228 if (args->flags & RDS_RDMA_READWRITE) 229 mr->r_write = 1; 230 231 /* 232 * Pin the pages that make up the user buffer and transfer the page 233 * pointers to the mr's sg array. We check to see if we've mapped 234 * the whole region after transferring the partial page references 235 * to the sg array so that we can have one page ref cleanup path. 236 * 237 * For now we have no flag that tells us whether the mapping is 238 * r/o or r/w. We need to assume r/w, or we'll do a lot of RDMA to 239 * the zero page. 240 */ 241 ret = rds_pin_pages(args->vec.addr, nr_pages, pages, 1); 242 if (ret < 0) 243 goto out; 244 245 nents = ret; 246 sg = kcalloc(nents, sizeof(*sg), GFP_KERNEL); 247 if (!sg) { 248 ret = -ENOMEM; 249 goto out; 250 } 251 WARN_ON(!nents); 252 sg_init_table(sg, nents); 253 254 /* Stick all pages into the scatterlist */ 255 for (i = 0 ; i < nents; i++) 256 sg_set_page(&sg[i], pages[i], PAGE_SIZE, 0); 257 258 rdsdebug("RDS: trans_private nents is %u\n", nents); 259 260 /* Obtain a transport specific MR. If this succeeds, the 261 * s/g list is now owned by the MR. 262 * Note that dma_map() implies that pending writes are 263 * flushed to RAM, so no dma_sync is needed here. */ 264 trans_private = rs->rs_transport->get_mr(sg, nents, rs, 265 &mr->r_key); 266 267 if (IS_ERR(trans_private)) { 268 for (i = 0 ; i < nents; i++) 269 put_page(sg_page(&sg[i])); 270 kfree(sg); 271 ret = PTR_ERR(trans_private); 272 goto out; 273 } 274 275 mr->r_trans_private = trans_private; 276 277 rdsdebug("RDS: get_mr put_user key is %x cookie_addr %p\n", 278 mr->r_key, (void *)(unsigned long) args->cookie_addr); 279 280 /* The user may pass us an unaligned address, but we can only 281 * map page aligned regions. So we keep the offset, and build 282 * a 64bit cookie containing <R_Key, offset> and pass that 283 * around. */ 284 cookie = rds_rdma_make_cookie(mr->r_key, args->vec.addr & ~PAGE_MASK); 285 if (cookie_ret) 286 *cookie_ret = cookie; 287 288 if (args->cookie_addr && put_user(cookie, (u64 __user *)(unsigned long) args->cookie_addr)) { 289 ret = -EFAULT; 290 goto out; 291 } 292 293 /* Inserting the new MR into the rbtree bumps its 294 * reference count. */ 295 spin_lock_irqsave(&rs->rs_rdma_lock, flags); 296 found = rds_mr_tree_walk(&rs->rs_rdma_keys, mr->r_key, mr); 297 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); 298 299 BUG_ON(found && found != mr); 300 301 rdsdebug("RDS: get_mr key is %x\n", mr->r_key); 302 if (mr_ret) { 303 atomic_inc(&mr->r_refcount); 304 *mr_ret = mr; 305 } 306 307 ret = 0; 308 out: 309 kfree(pages); 310 if (mr) 311 rds_mr_put(mr); 312 return ret; 313 } 314 315 int rds_get_mr(struct rds_sock *rs, char __user *optval, int optlen) 316 { 317 struct rds_get_mr_args args; 318 319 if (optlen != sizeof(struct rds_get_mr_args)) 320 return -EINVAL; 321 322 if (copy_from_user(&args, (struct rds_get_mr_args __user *)optval, 323 sizeof(struct rds_get_mr_args))) 324 return -EFAULT; 325 326 return __rds_rdma_map(rs, &args, NULL, NULL); 327 } 328 329 int rds_get_mr_for_dest(struct rds_sock *rs, char __user *optval, int optlen) 330 { 331 struct rds_get_mr_for_dest_args args; 332 struct rds_get_mr_args new_args; 333 334 if (optlen != sizeof(struct rds_get_mr_for_dest_args)) 335 return -EINVAL; 336 337 if (copy_from_user(&args, (struct rds_get_mr_for_dest_args __user *)optval, 338 sizeof(struct rds_get_mr_for_dest_args))) 339 return -EFAULT; 340 341 /* 342 * Initially, just behave like get_mr(). 343 * TODO: Implement get_mr as wrapper around this 344 * and deprecate it. 345 */ 346 new_args.vec = args.vec; 347 new_args.cookie_addr = args.cookie_addr; 348 new_args.flags = args.flags; 349 350 return __rds_rdma_map(rs, &new_args, NULL, NULL); 351 } 352 353 /* 354 * Free the MR indicated by the given R_Key 355 */ 356 int rds_free_mr(struct rds_sock *rs, char __user *optval, int optlen) 357 { 358 struct rds_free_mr_args args; 359 struct rds_mr *mr; 360 unsigned long flags; 361 362 if (optlen != sizeof(struct rds_free_mr_args)) 363 return -EINVAL; 364 365 if (copy_from_user(&args, (struct rds_free_mr_args __user *)optval, 366 sizeof(struct rds_free_mr_args))) 367 return -EFAULT; 368 369 /* Special case - a null cookie means flush all unused MRs */ 370 if (args.cookie == 0) { 371 if (!rs->rs_transport || !rs->rs_transport->flush_mrs) 372 return -EINVAL; 373 rs->rs_transport->flush_mrs(); 374 return 0; 375 } 376 377 /* Look up the MR given its R_key and remove it from the rbtree 378 * so nobody else finds it. 379 * This should also prevent races with rds_rdma_unuse. 380 */ 381 spin_lock_irqsave(&rs->rs_rdma_lock, flags); 382 mr = rds_mr_tree_walk(&rs->rs_rdma_keys, rds_rdma_cookie_key(args.cookie), NULL); 383 if (mr) { 384 rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys); 385 RB_CLEAR_NODE(&mr->r_rb_node); 386 if (args.flags & RDS_RDMA_INVALIDATE) 387 mr->r_invalidate = 1; 388 } 389 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); 390 391 if (!mr) 392 return -EINVAL; 393 394 /* 395 * call rds_destroy_mr() ourselves so that we're sure it's done by the time 396 * we return. If we let rds_mr_put() do it it might not happen until 397 * someone else drops their ref. 398 */ 399 rds_destroy_mr(mr); 400 rds_mr_put(mr); 401 return 0; 402 } 403 404 /* 405 * This is called when we receive an extension header that 406 * tells us this MR was used. It allows us to implement 407 * use_once semantics 408 */ 409 void rds_rdma_unuse(struct rds_sock *rs, u32 r_key, int force) 410 { 411 struct rds_mr *mr; 412 unsigned long flags; 413 int zot_me = 0; 414 415 spin_lock_irqsave(&rs->rs_rdma_lock, flags); 416 mr = rds_mr_tree_walk(&rs->rs_rdma_keys, r_key, NULL); 417 if (!mr) { 418 printk(KERN_ERR "rds: trying to unuse MR with unknown r_key %u!\n", r_key); 419 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); 420 return; 421 } 422 423 if (mr->r_use_once || force) { 424 rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys); 425 RB_CLEAR_NODE(&mr->r_rb_node); 426 zot_me = 1; 427 } 428 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); 429 430 /* May have to issue a dma_sync on this memory region. 431 * Note we could avoid this if the operation was a RDMA READ, 432 * but at this point we can't tell. */ 433 if (mr->r_trans->sync_mr) 434 mr->r_trans->sync_mr(mr->r_trans_private, DMA_FROM_DEVICE); 435 436 /* If the MR was marked as invalidate, this will 437 * trigger an async flush. */ 438 if (zot_me) 439 rds_destroy_mr(mr); 440 rds_mr_put(mr); 441 } 442 443 void rds_rdma_free_op(struct rm_rdma_op *ro) 444 { 445 unsigned int i; 446 447 for (i = 0; i < ro->op_nents; i++) { 448 struct page *page = sg_page(&ro->op_sg[i]); 449 450 /* Mark page dirty if it was possibly modified, which 451 * is the case for a RDMA_READ which copies from remote 452 * to local memory */ 453 if (!ro->op_write) { 454 BUG_ON(irqs_disabled()); 455 set_page_dirty(page); 456 } 457 put_page(page); 458 } 459 460 kfree(ro->op_notifier); 461 ro->op_notifier = NULL; 462 ro->op_active = 0; 463 } 464 465 void rds_atomic_free_op(struct rm_atomic_op *ao) 466 { 467 struct page *page = sg_page(ao->op_sg); 468 469 /* Mark page dirty if it was possibly modified, which 470 * is the case for a RDMA_READ which copies from remote 471 * to local memory */ 472 set_page_dirty(page); 473 put_page(page); 474 475 kfree(ao->op_notifier); 476 ao->op_notifier = NULL; 477 ao->op_active = 0; 478 } 479 480 481 /* 482 * Count the number of pages needed to describe an incoming iovec array. 483 */ 484 static int rds_rdma_pages(struct rds_iovec iov[], int nr_iovecs) 485 { 486 int tot_pages = 0; 487 unsigned int nr_pages; 488 unsigned int i; 489 490 /* figure out the number of pages in the vector */ 491 for (i = 0; i < nr_iovecs; i++) { 492 nr_pages = rds_pages_in_vec(&iov[i]); 493 if (nr_pages == 0) 494 return -EINVAL; 495 496 tot_pages += nr_pages; 497 498 /* 499 * nr_pages for one entry is limited to (UINT_MAX>>PAGE_SHIFT)+1, 500 * so tot_pages cannot overflow without first going negative. 501 */ 502 if (tot_pages < 0) 503 return -EINVAL; 504 } 505 506 return tot_pages; 507 } 508 509 int rds_rdma_extra_size(struct rds_rdma_args *args) 510 { 511 struct rds_iovec vec; 512 struct rds_iovec __user *local_vec; 513 int tot_pages = 0; 514 unsigned int nr_pages; 515 unsigned int i; 516 517 local_vec = (struct rds_iovec __user *)(unsigned long) args->local_vec_addr; 518 519 /* figure out the number of pages in the vector */ 520 for (i = 0; i < args->nr_local; i++) { 521 if (copy_from_user(&vec, &local_vec[i], 522 sizeof(struct rds_iovec))) 523 return -EFAULT; 524 525 nr_pages = rds_pages_in_vec(&vec); 526 if (nr_pages == 0) 527 return -EINVAL; 528 529 tot_pages += nr_pages; 530 531 /* 532 * nr_pages for one entry is limited to (UINT_MAX>>PAGE_SHIFT)+1, 533 * so tot_pages cannot overflow without first going negative. 534 */ 535 if (tot_pages < 0) 536 return -EINVAL; 537 } 538 539 return tot_pages * sizeof(struct scatterlist); 540 } 541 542 /* 543 * The application asks for a RDMA transfer. 544 * Extract all arguments and set up the rdma_op 545 */ 546 int rds_cmsg_rdma_args(struct rds_sock *rs, struct rds_message *rm, 547 struct cmsghdr *cmsg) 548 { 549 struct rds_rdma_args *args; 550 struct rm_rdma_op *op = &rm->rdma; 551 int nr_pages; 552 unsigned int nr_bytes; 553 struct page **pages = NULL; 554 struct rds_iovec iovstack[UIO_FASTIOV], *iovs = iovstack; 555 int iov_size; 556 unsigned int i, j; 557 int ret = 0; 558 559 if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_rdma_args)) 560 || rm->rdma.op_active) 561 return -EINVAL; 562 563 args = CMSG_DATA(cmsg); 564 565 if (rs->rs_bound_addr == 0) { 566 ret = -ENOTCONN; /* XXX not a great errno */ 567 goto out; 568 } 569 570 if (args->nr_local > UIO_MAXIOV) { 571 ret = -EMSGSIZE; 572 goto out; 573 } 574 575 /* Check whether to allocate the iovec area */ 576 iov_size = args->nr_local * sizeof(struct rds_iovec); 577 if (args->nr_local > UIO_FASTIOV) { 578 iovs = sock_kmalloc(rds_rs_to_sk(rs), iov_size, GFP_KERNEL); 579 if (!iovs) { 580 ret = -ENOMEM; 581 goto out; 582 } 583 } 584 585 if (copy_from_user(iovs, (struct rds_iovec __user *)(unsigned long) args->local_vec_addr, iov_size)) { 586 ret = -EFAULT; 587 goto out; 588 } 589 590 nr_pages = rds_rdma_pages(iovs, args->nr_local); 591 if (nr_pages < 0) { 592 ret = -EINVAL; 593 goto out; 594 } 595 596 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL); 597 if (!pages) { 598 ret = -ENOMEM; 599 goto out; 600 } 601 602 op->op_write = !!(args->flags & RDS_RDMA_READWRITE); 603 op->op_fence = !!(args->flags & RDS_RDMA_FENCE); 604 op->op_notify = !!(args->flags & RDS_RDMA_NOTIFY_ME); 605 op->op_silent = !!(args->flags & RDS_RDMA_SILENT); 606 op->op_active = 1; 607 op->op_recverr = rs->rs_recverr; 608 WARN_ON(!nr_pages); 609 op->op_sg = rds_message_alloc_sgs(rm, nr_pages); 610 if (!op->op_sg) { 611 ret = -ENOMEM; 612 goto out; 613 } 614 615 if (op->op_notify || op->op_recverr) { 616 /* We allocate an uninitialized notifier here, because 617 * we don't want to do that in the completion handler. We 618 * would have to use GFP_ATOMIC there, and don't want to deal 619 * with failed allocations. 620 */ 621 op->op_notifier = kmalloc(sizeof(struct rds_notifier), GFP_KERNEL); 622 if (!op->op_notifier) { 623 ret = -ENOMEM; 624 goto out; 625 } 626 op->op_notifier->n_user_token = args->user_token; 627 op->op_notifier->n_status = RDS_RDMA_SUCCESS; 628 } 629 630 /* The cookie contains the R_Key of the remote memory region, and 631 * optionally an offset into it. This is how we implement RDMA into 632 * unaligned memory. 633 * When setting up the RDMA, we need to add that offset to the 634 * destination address (which is really an offset into the MR) 635 * FIXME: We may want to move this into ib_rdma.c 636 */ 637 op->op_rkey = rds_rdma_cookie_key(args->cookie); 638 op->op_remote_addr = args->remote_vec.addr + rds_rdma_cookie_offset(args->cookie); 639 640 nr_bytes = 0; 641 642 rdsdebug("RDS: rdma prepare nr_local %llu rva %llx rkey %x\n", 643 (unsigned long long)args->nr_local, 644 (unsigned long long)args->remote_vec.addr, 645 op->op_rkey); 646 647 for (i = 0; i < args->nr_local; i++) { 648 struct rds_iovec *iov = &iovs[i]; 649 /* don't need to check, rds_rdma_pages() verified nr will be +nonzero */ 650 unsigned int nr = rds_pages_in_vec(iov); 651 652 rs->rs_user_addr = iov->addr; 653 rs->rs_user_bytes = iov->bytes; 654 655 /* If it's a WRITE operation, we want to pin the pages for reading. 656 * If it's a READ operation, we need to pin the pages for writing. 657 */ 658 ret = rds_pin_pages(iov->addr, nr, pages, !op->op_write); 659 if (ret < 0) 660 goto out; 661 662 rdsdebug("RDS: nr_bytes %u nr %u iov->bytes %llu iov->addr %llx\n", 663 nr_bytes, nr, iov->bytes, iov->addr); 664 665 nr_bytes += iov->bytes; 666 667 for (j = 0; j < nr; j++) { 668 unsigned int offset = iov->addr & ~PAGE_MASK; 669 struct scatterlist *sg; 670 671 sg = &op->op_sg[op->op_nents + j]; 672 sg_set_page(sg, pages[j], 673 min_t(unsigned int, iov->bytes, PAGE_SIZE - offset), 674 offset); 675 676 rdsdebug("RDS: sg->offset %x sg->len %x iov->addr %llx iov->bytes %llu\n", 677 sg->offset, sg->length, iov->addr, iov->bytes); 678 679 iov->addr += sg->length; 680 iov->bytes -= sg->length; 681 } 682 683 op->op_nents += nr; 684 } 685 686 if (nr_bytes > args->remote_vec.bytes) { 687 rdsdebug("RDS nr_bytes %u remote_bytes %u do not match\n", 688 nr_bytes, 689 (unsigned int) args->remote_vec.bytes); 690 ret = -EINVAL; 691 goto out; 692 } 693 op->op_bytes = nr_bytes; 694 695 out: 696 if (iovs != iovstack) 697 sock_kfree_s(rds_rs_to_sk(rs), iovs, iov_size); 698 kfree(pages); 699 if (ret) 700 rds_rdma_free_op(op); 701 else 702 rds_stats_inc(s_send_rdma); 703 704 return ret; 705 } 706 707 /* 708 * The application wants us to pass an RDMA destination (aka MR) 709 * to the remote 710 */ 711 int rds_cmsg_rdma_dest(struct rds_sock *rs, struct rds_message *rm, 712 struct cmsghdr *cmsg) 713 { 714 unsigned long flags; 715 struct rds_mr *mr; 716 u32 r_key; 717 int err = 0; 718 719 if (cmsg->cmsg_len < CMSG_LEN(sizeof(rds_rdma_cookie_t)) || 720 rm->m_rdma_cookie != 0) 721 return -EINVAL; 722 723 memcpy(&rm->m_rdma_cookie, CMSG_DATA(cmsg), sizeof(rm->m_rdma_cookie)); 724 725 /* We are reusing a previously mapped MR here. Most likely, the 726 * application has written to the buffer, so we need to explicitly 727 * flush those writes to RAM. Otherwise the HCA may not see them 728 * when doing a DMA from that buffer. 729 */ 730 r_key = rds_rdma_cookie_key(rm->m_rdma_cookie); 731 732 spin_lock_irqsave(&rs->rs_rdma_lock, flags); 733 mr = rds_mr_tree_walk(&rs->rs_rdma_keys, r_key, NULL); 734 if (!mr) 735 err = -EINVAL; /* invalid r_key */ 736 else 737 atomic_inc(&mr->r_refcount); 738 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); 739 740 if (mr) { 741 mr->r_trans->sync_mr(mr->r_trans_private, DMA_TO_DEVICE); 742 rm->rdma.op_rdma_mr = mr; 743 } 744 return err; 745 } 746 747 /* 748 * The application passes us an address range it wants to enable RDMA 749 * to/from. We map the area, and save the <R_Key,offset> pair 750 * in rm->m_rdma_cookie. This causes it to be sent along to the peer 751 * in an extension header. 752 */ 753 int rds_cmsg_rdma_map(struct rds_sock *rs, struct rds_message *rm, 754 struct cmsghdr *cmsg) 755 { 756 if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_get_mr_args)) || 757 rm->m_rdma_cookie != 0) 758 return -EINVAL; 759 760 return __rds_rdma_map(rs, CMSG_DATA(cmsg), &rm->m_rdma_cookie, &rm->rdma.op_rdma_mr); 761 } 762 763 /* 764 * Fill in rds_message for an atomic request. 765 */ 766 int rds_cmsg_atomic(struct rds_sock *rs, struct rds_message *rm, 767 struct cmsghdr *cmsg) 768 { 769 struct page *page = NULL; 770 struct rds_atomic_args *args; 771 int ret = 0; 772 773 if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_atomic_args)) 774 || rm->atomic.op_active) 775 return -EINVAL; 776 777 args = CMSG_DATA(cmsg); 778 779 /* Nonmasked & masked cmsg ops converted to masked hw ops */ 780 switch (cmsg->cmsg_type) { 781 case RDS_CMSG_ATOMIC_FADD: 782 rm->atomic.op_type = RDS_ATOMIC_TYPE_FADD; 783 rm->atomic.op_m_fadd.add = args->fadd.add; 784 rm->atomic.op_m_fadd.nocarry_mask = 0; 785 break; 786 case RDS_CMSG_MASKED_ATOMIC_FADD: 787 rm->atomic.op_type = RDS_ATOMIC_TYPE_FADD; 788 rm->atomic.op_m_fadd.add = args->m_fadd.add; 789 rm->atomic.op_m_fadd.nocarry_mask = args->m_fadd.nocarry_mask; 790 break; 791 case RDS_CMSG_ATOMIC_CSWP: 792 rm->atomic.op_type = RDS_ATOMIC_TYPE_CSWP; 793 rm->atomic.op_m_cswp.compare = args->cswp.compare; 794 rm->atomic.op_m_cswp.swap = args->cswp.swap; 795 rm->atomic.op_m_cswp.compare_mask = ~0; 796 rm->atomic.op_m_cswp.swap_mask = ~0; 797 break; 798 case RDS_CMSG_MASKED_ATOMIC_CSWP: 799 rm->atomic.op_type = RDS_ATOMIC_TYPE_CSWP; 800 rm->atomic.op_m_cswp.compare = args->m_cswp.compare; 801 rm->atomic.op_m_cswp.swap = args->m_cswp.swap; 802 rm->atomic.op_m_cswp.compare_mask = args->m_cswp.compare_mask; 803 rm->atomic.op_m_cswp.swap_mask = args->m_cswp.swap_mask; 804 break; 805 default: 806 BUG(); /* should never happen */ 807 } 808 809 rm->atomic.op_notify = !!(args->flags & RDS_RDMA_NOTIFY_ME); 810 rm->atomic.op_silent = !!(args->flags & RDS_RDMA_SILENT); 811 rm->atomic.op_active = 1; 812 rm->atomic.op_recverr = rs->rs_recverr; 813 rm->atomic.op_sg = rds_message_alloc_sgs(rm, 1); 814 if (!rm->atomic.op_sg) { 815 ret = -ENOMEM; 816 goto err; 817 } 818 819 /* verify 8 byte-aligned */ 820 if (args->local_addr & 0x7) { 821 ret = -EFAULT; 822 goto err; 823 } 824 825 ret = rds_pin_pages(args->local_addr, 1, &page, 1); 826 if (ret != 1) 827 goto err; 828 ret = 0; 829 830 sg_set_page(rm->atomic.op_sg, page, 8, offset_in_page(args->local_addr)); 831 832 if (rm->atomic.op_notify || rm->atomic.op_recverr) { 833 /* We allocate an uninitialized notifier here, because 834 * we don't want to do that in the completion handler. We 835 * would have to use GFP_ATOMIC there, and don't want to deal 836 * with failed allocations. 837 */ 838 rm->atomic.op_notifier = kmalloc(sizeof(*rm->atomic.op_notifier), GFP_KERNEL); 839 if (!rm->atomic.op_notifier) { 840 ret = -ENOMEM; 841 goto err; 842 } 843 844 rm->atomic.op_notifier->n_user_token = args->user_token; 845 rm->atomic.op_notifier->n_status = RDS_RDMA_SUCCESS; 846 } 847 848 rm->atomic.op_rkey = rds_rdma_cookie_key(args->cookie); 849 rm->atomic.op_remote_addr = args->remote_addr + rds_rdma_cookie_offset(args->cookie); 850 851 return ret; 852 err: 853 if (page) 854 put_page(page); 855 kfree(rm->atomic.op_notifier); 856 857 return ret; 858 } 859