1 /* 2 * Copyright (c) 2007, 2020 Oracle and/or its affiliates. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 * 32 */ 33 #include <linux/pagemap.h> 34 #include <linux/slab.h> 35 #include <linux/rbtree.h> 36 #include <linux/dma-mapping.h> /* for DMA_*_DEVICE */ 37 38 #include "rds.h" 39 40 /* 41 * XXX 42 * - build with sparse 43 * - should we detect duplicate keys on a socket? hmm. 44 * - an rdma is an mlock, apply rlimit? 45 */ 46 47 /* 48 * get the number of pages by looking at the page indices that the start and 49 * end addresses fall in. 50 * 51 * Returns 0 if the vec is invalid. It is invalid if the number of bytes 52 * causes the address to wrap or overflows an unsigned int. This comes 53 * from being stored in the 'length' member of 'struct scatterlist'. 54 */ 55 static unsigned int rds_pages_in_vec(struct rds_iovec *vec) 56 { 57 if ((vec->addr + vec->bytes <= vec->addr) || 58 (vec->bytes > (u64)UINT_MAX)) 59 return 0; 60 61 return ((vec->addr + vec->bytes + PAGE_SIZE - 1) >> PAGE_SHIFT) - 62 (vec->addr >> PAGE_SHIFT); 63 } 64 65 static struct rds_mr *rds_mr_tree_walk(struct rb_root *root, u64 key, 66 struct rds_mr *insert) 67 { 68 struct rb_node **p = &root->rb_node; 69 struct rb_node *parent = NULL; 70 struct rds_mr *mr; 71 72 while (*p) { 73 parent = *p; 74 mr = rb_entry(parent, struct rds_mr, r_rb_node); 75 76 if (key < mr->r_key) 77 p = &(*p)->rb_left; 78 else if (key > mr->r_key) 79 p = &(*p)->rb_right; 80 else 81 return mr; 82 } 83 84 if (insert) { 85 rb_link_node(&insert->r_rb_node, parent, p); 86 rb_insert_color(&insert->r_rb_node, root); 87 kref_get(&insert->r_kref); 88 } 89 return NULL; 90 } 91 92 /* 93 * Destroy the transport-specific part of a MR. 94 */ 95 static void rds_destroy_mr(struct rds_mr *mr) 96 { 97 struct rds_sock *rs = mr->r_sock; 98 void *trans_private = NULL; 99 unsigned long flags; 100 101 rdsdebug("RDS: destroy mr key is %x refcnt %u\n", 102 mr->r_key, kref_read(&mr->r_kref)); 103 104 spin_lock_irqsave(&rs->rs_rdma_lock, flags); 105 if (!RB_EMPTY_NODE(&mr->r_rb_node)) 106 rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys); 107 trans_private = mr->r_trans_private; 108 mr->r_trans_private = NULL; 109 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); 110 111 if (trans_private) 112 mr->r_trans->free_mr(trans_private, mr->r_invalidate); 113 } 114 115 void __rds_put_mr_final(struct kref *kref) 116 { 117 struct rds_mr *mr = container_of(kref, struct rds_mr, r_kref); 118 119 rds_destroy_mr(mr); 120 kfree(mr); 121 } 122 123 /* 124 * By the time this is called we can't have any more ioctls called on 125 * the socket so we don't need to worry about racing with others. 126 */ 127 void rds_rdma_drop_keys(struct rds_sock *rs) 128 { 129 struct rds_mr *mr; 130 struct rb_node *node; 131 unsigned long flags; 132 133 /* Release any MRs associated with this socket */ 134 spin_lock_irqsave(&rs->rs_rdma_lock, flags); 135 while ((node = rb_first(&rs->rs_rdma_keys))) { 136 mr = rb_entry(node, struct rds_mr, r_rb_node); 137 if (mr->r_trans == rs->rs_transport) 138 mr->r_invalidate = 0; 139 rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys); 140 RB_CLEAR_NODE(&mr->r_rb_node); 141 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); 142 kref_put(&mr->r_kref, __rds_put_mr_final); 143 spin_lock_irqsave(&rs->rs_rdma_lock, flags); 144 } 145 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); 146 147 if (rs->rs_transport && rs->rs_transport->flush_mrs) 148 rs->rs_transport->flush_mrs(); 149 } 150 151 /* 152 * Helper function to pin user pages. 153 */ 154 static int rds_pin_pages(unsigned long user_addr, unsigned int nr_pages, 155 struct page **pages, int write) 156 { 157 unsigned int gup_flags = FOLL_LONGTERM; 158 int ret; 159 160 if (write) 161 gup_flags |= FOLL_WRITE; 162 163 ret = pin_user_pages_fast(user_addr, nr_pages, gup_flags, pages); 164 if (ret >= 0 && ret < nr_pages) { 165 unpin_user_pages(pages, ret); 166 ret = -EFAULT; 167 } 168 169 return ret; 170 } 171 172 static int __rds_rdma_map(struct rds_sock *rs, struct rds_get_mr_args *args, 173 u64 *cookie_ret, struct rds_mr **mr_ret, 174 struct rds_conn_path *cp) 175 { 176 struct rds_mr *mr = NULL, *found; 177 struct scatterlist *sg = NULL; 178 unsigned int nr_pages; 179 struct page **pages = NULL; 180 void *trans_private; 181 unsigned long flags; 182 rds_rdma_cookie_t cookie; 183 unsigned int nents = 0; 184 int need_odp = 0; 185 long i; 186 int ret; 187 188 if (ipv6_addr_any(&rs->rs_bound_addr) || !rs->rs_transport) { 189 ret = -ENOTCONN; /* XXX not a great errno */ 190 goto out; 191 } 192 193 if (!rs->rs_transport->get_mr) { 194 ret = -EOPNOTSUPP; 195 goto out; 196 } 197 198 /* If the combination of the addr and size requested for this memory 199 * region causes an integer overflow, return error. 200 */ 201 if (((args->vec.addr + args->vec.bytes) < args->vec.addr) || 202 PAGE_ALIGN(args->vec.addr + args->vec.bytes) < 203 (args->vec.addr + args->vec.bytes)) { 204 ret = -EINVAL; 205 goto out; 206 } 207 208 if (!can_do_mlock()) { 209 ret = -EPERM; 210 goto out; 211 } 212 213 nr_pages = rds_pages_in_vec(&args->vec); 214 if (nr_pages == 0) { 215 ret = -EINVAL; 216 goto out; 217 } 218 219 /* Restrict the size of mr irrespective of underlying transport 220 * To account for unaligned mr regions, subtract one from nr_pages 221 */ 222 if ((nr_pages - 1) > (RDS_MAX_MSG_SIZE >> PAGE_SHIFT)) { 223 ret = -EMSGSIZE; 224 goto out; 225 } 226 227 rdsdebug("RDS: get_mr addr %llx len %llu nr_pages %u\n", 228 args->vec.addr, args->vec.bytes, nr_pages); 229 230 /* XXX clamp nr_pages to limit the size of this alloc? */ 231 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL); 232 if (!pages) { 233 ret = -ENOMEM; 234 goto out; 235 } 236 237 mr = kzalloc(sizeof(struct rds_mr), GFP_KERNEL); 238 if (!mr) { 239 ret = -ENOMEM; 240 goto out; 241 } 242 243 kref_init(&mr->r_kref); 244 RB_CLEAR_NODE(&mr->r_rb_node); 245 mr->r_trans = rs->rs_transport; 246 mr->r_sock = rs; 247 248 if (args->flags & RDS_RDMA_USE_ONCE) 249 mr->r_use_once = 1; 250 if (args->flags & RDS_RDMA_INVALIDATE) 251 mr->r_invalidate = 1; 252 if (args->flags & RDS_RDMA_READWRITE) 253 mr->r_write = 1; 254 255 /* 256 * Pin the pages that make up the user buffer and transfer the page 257 * pointers to the mr's sg array. We check to see if we've mapped 258 * the whole region after transferring the partial page references 259 * to the sg array so that we can have one page ref cleanup path. 260 * 261 * For now we have no flag that tells us whether the mapping is 262 * r/o or r/w. We need to assume r/w, or we'll do a lot of RDMA to 263 * the zero page. 264 */ 265 ret = rds_pin_pages(args->vec.addr, nr_pages, pages, 1); 266 if (ret == -EOPNOTSUPP) { 267 need_odp = 1; 268 } else if (ret <= 0) { 269 goto out; 270 } else { 271 nents = ret; 272 sg = kcalloc(nents, sizeof(*sg), GFP_KERNEL); 273 if (!sg) { 274 ret = -ENOMEM; 275 goto out; 276 } 277 WARN_ON(!nents); 278 sg_init_table(sg, nents); 279 280 /* Stick all pages into the scatterlist */ 281 for (i = 0 ; i < nents; i++) 282 sg_set_page(&sg[i], pages[i], PAGE_SIZE, 0); 283 284 rdsdebug("RDS: trans_private nents is %u\n", nents); 285 } 286 /* Obtain a transport specific MR. If this succeeds, the 287 * s/g list is now owned by the MR. 288 * Note that dma_map() implies that pending writes are 289 * flushed to RAM, so no dma_sync is needed here. */ 290 trans_private = rs->rs_transport->get_mr( 291 sg, nents, rs, &mr->r_key, cp ? cp->cp_conn : NULL, 292 args->vec.addr, args->vec.bytes, 293 need_odp ? ODP_ZEROBASED : ODP_NOT_NEEDED); 294 295 if (IS_ERR(trans_private)) { 296 /* In ODP case, we don't GUP pages, so don't need 297 * to release anything. 298 */ 299 if (!need_odp) { 300 unpin_user_pages(pages, nr_pages); 301 kfree(sg); 302 } 303 ret = PTR_ERR(trans_private); 304 goto out; 305 } 306 307 mr->r_trans_private = trans_private; 308 309 rdsdebug("RDS: get_mr put_user key is %x cookie_addr %p\n", 310 mr->r_key, (void *)(unsigned long) args->cookie_addr); 311 312 /* The user may pass us an unaligned address, but we can only 313 * map page aligned regions. So we keep the offset, and build 314 * a 64bit cookie containing <R_Key, offset> and pass that 315 * around. */ 316 if (need_odp) 317 cookie = rds_rdma_make_cookie(mr->r_key, 0); 318 else 319 cookie = rds_rdma_make_cookie(mr->r_key, 320 args->vec.addr & ~PAGE_MASK); 321 if (cookie_ret) 322 *cookie_ret = cookie; 323 324 if (args->cookie_addr && 325 put_user(cookie, (u64 __user *)(unsigned long)args->cookie_addr)) { 326 if (!need_odp) { 327 unpin_user_pages(pages, nr_pages); 328 kfree(sg); 329 } 330 ret = -EFAULT; 331 goto out; 332 } 333 334 /* Inserting the new MR into the rbtree bumps its 335 * reference count. */ 336 spin_lock_irqsave(&rs->rs_rdma_lock, flags); 337 found = rds_mr_tree_walk(&rs->rs_rdma_keys, mr->r_key, mr); 338 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); 339 340 BUG_ON(found && found != mr); 341 342 rdsdebug("RDS: get_mr key is %x\n", mr->r_key); 343 if (mr_ret) { 344 kref_get(&mr->r_kref); 345 *mr_ret = mr; 346 } 347 348 ret = 0; 349 out: 350 kfree(pages); 351 if (mr) 352 kref_put(&mr->r_kref, __rds_put_mr_final); 353 return ret; 354 } 355 356 int rds_get_mr(struct rds_sock *rs, char __user *optval, int optlen) 357 { 358 struct rds_get_mr_args args; 359 360 if (optlen != sizeof(struct rds_get_mr_args)) 361 return -EINVAL; 362 363 if (copy_from_user(&args, (struct rds_get_mr_args __user *)optval, 364 sizeof(struct rds_get_mr_args))) 365 return -EFAULT; 366 367 return __rds_rdma_map(rs, &args, NULL, NULL, NULL); 368 } 369 370 int rds_get_mr_for_dest(struct rds_sock *rs, char __user *optval, int optlen) 371 { 372 struct rds_get_mr_for_dest_args args; 373 struct rds_get_mr_args new_args; 374 375 if (optlen != sizeof(struct rds_get_mr_for_dest_args)) 376 return -EINVAL; 377 378 if (copy_from_user(&args, (struct rds_get_mr_for_dest_args __user *)optval, 379 sizeof(struct rds_get_mr_for_dest_args))) 380 return -EFAULT; 381 382 /* 383 * Initially, just behave like get_mr(). 384 * TODO: Implement get_mr as wrapper around this 385 * and deprecate it. 386 */ 387 new_args.vec = args.vec; 388 new_args.cookie_addr = args.cookie_addr; 389 new_args.flags = args.flags; 390 391 return __rds_rdma_map(rs, &new_args, NULL, NULL, NULL); 392 } 393 394 /* 395 * Free the MR indicated by the given R_Key 396 */ 397 int rds_free_mr(struct rds_sock *rs, char __user *optval, int optlen) 398 { 399 struct rds_free_mr_args args; 400 struct rds_mr *mr; 401 unsigned long flags; 402 403 if (optlen != sizeof(struct rds_free_mr_args)) 404 return -EINVAL; 405 406 if (copy_from_user(&args, (struct rds_free_mr_args __user *)optval, 407 sizeof(struct rds_free_mr_args))) 408 return -EFAULT; 409 410 /* Special case - a null cookie means flush all unused MRs */ 411 if (args.cookie == 0) { 412 if (!rs->rs_transport || !rs->rs_transport->flush_mrs) 413 return -EINVAL; 414 rs->rs_transport->flush_mrs(); 415 return 0; 416 } 417 418 /* Look up the MR given its R_key and remove it from the rbtree 419 * so nobody else finds it. 420 * This should also prevent races with rds_rdma_unuse. 421 */ 422 spin_lock_irqsave(&rs->rs_rdma_lock, flags); 423 mr = rds_mr_tree_walk(&rs->rs_rdma_keys, rds_rdma_cookie_key(args.cookie), NULL); 424 if (mr) { 425 rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys); 426 RB_CLEAR_NODE(&mr->r_rb_node); 427 if (args.flags & RDS_RDMA_INVALIDATE) 428 mr->r_invalidate = 1; 429 } 430 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); 431 432 if (!mr) 433 return -EINVAL; 434 435 kref_put(&mr->r_kref, __rds_put_mr_final); 436 return 0; 437 } 438 439 /* 440 * This is called when we receive an extension header that 441 * tells us this MR was used. It allows us to implement 442 * use_once semantics 443 */ 444 void rds_rdma_unuse(struct rds_sock *rs, u32 r_key, int force) 445 { 446 struct rds_mr *mr; 447 unsigned long flags; 448 int zot_me = 0; 449 450 spin_lock_irqsave(&rs->rs_rdma_lock, flags); 451 mr = rds_mr_tree_walk(&rs->rs_rdma_keys, r_key, NULL); 452 if (!mr) { 453 pr_debug("rds: trying to unuse MR with unknown r_key %u!\n", 454 r_key); 455 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); 456 return; 457 } 458 459 /* Get a reference so that the MR won't go away before calling 460 * sync_mr() below. 461 */ 462 kref_get(&mr->r_kref); 463 464 /* If it is going to be freed, remove it from the tree now so 465 * that no other thread can find it and free it. 466 */ 467 if (mr->r_use_once || force) { 468 rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys); 469 RB_CLEAR_NODE(&mr->r_rb_node); 470 zot_me = 1; 471 } 472 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); 473 474 /* May have to issue a dma_sync on this memory region. 475 * Note we could avoid this if the operation was a RDMA READ, 476 * but at this point we can't tell. */ 477 if (mr->r_trans->sync_mr) 478 mr->r_trans->sync_mr(mr->r_trans_private, DMA_FROM_DEVICE); 479 480 /* Release the reference held above. */ 481 kref_put(&mr->r_kref, __rds_put_mr_final); 482 483 /* If the MR was marked as invalidate, this will 484 * trigger an async flush. */ 485 if (zot_me) 486 kref_put(&mr->r_kref, __rds_put_mr_final); 487 } 488 489 void rds_rdma_free_op(struct rm_rdma_op *ro) 490 { 491 unsigned int i; 492 493 if (ro->op_odp_mr) { 494 kref_put(&ro->op_odp_mr->r_kref, __rds_put_mr_final); 495 } else { 496 for (i = 0; i < ro->op_nents; i++) { 497 struct page *page = sg_page(&ro->op_sg[i]); 498 499 /* Mark page dirty if it was possibly modified, which 500 * is the case for a RDMA_READ which copies from remote 501 * to local memory 502 */ 503 unpin_user_pages_dirty_lock(&page, 1, !ro->op_write); 504 } 505 } 506 507 kfree(ro->op_notifier); 508 ro->op_notifier = NULL; 509 ro->op_active = 0; 510 ro->op_odp_mr = NULL; 511 } 512 513 void rds_atomic_free_op(struct rm_atomic_op *ao) 514 { 515 struct page *page = sg_page(ao->op_sg); 516 517 /* Mark page dirty if it was possibly modified, which 518 * is the case for a RDMA_READ which copies from remote 519 * to local memory */ 520 unpin_user_pages_dirty_lock(&page, 1, true); 521 522 kfree(ao->op_notifier); 523 ao->op_notifier = NULL; 524 ao->op_active = 0; 525 } 526 527 528 /* 529 * Count the number of pages needed to describe an incoming iovec array. 530 */ 531 static int rds_rdma_pages(struct rds_iovec iov[], int nr_iovecs) 532 { 533 int tot_pages = 0; 534 unsigned int nr_pages; 535 unsigned int i; 536 537 /* figure out the number of pages in the vector */ 538 for (i = 0; i < nr_iovecs; i++) { 539 nr_pages = rds_pages_in_vec(&iov[i]); 540 if (nr_pages == 0) 541 return -EINVAL; 542 543 tot_pages += nr_pages; 544 545 /* 546 * nr_pages for one entry is limited to (UINT_MAX>>PAGE_SHIFT)+1, 547 * so tot_pages cannot overflow without first going negative. 548 */ 549 if (tot_pages < 0) 550 return -EINVAL; 551 } 552 553 return tot_pages; 554 } 555 556 int rds_rdma_extra_size(struct rds_rdma_args *args, 557 struct rds_iov_vector *iov) 558 { 559 struct rds_iovec *vec; 560 struct rds_iovec __user *local_vec; 561 int tot_pages = 0; 562 unsigned int nr_pages; 563 unsigned int i; 564 565 local_vec = (struct rds_iovec __user *)(unsigned long) args->local_vec_addr; 566 567 if (args->nr_local == 0) 568 return -EINVAL; 569 570 iov->iov = kcalloc(args->nr_local, 571 sizeof(struct rds_iovec), 572 GFP_KERNEL); 573 if (!iov->iov) 574 return -ENOMEM; 575 576 vec = &iov->iov[0]; 577 578 if (copy_from_user(vec, local_vec, args->nr_local * 579 sizeof(struct rds_iovec))) 580 return -EFAULT; 581 iov->len = args->nr_local; 582 583 /* figure out the number of pages in the vector */ 584 for (i = 0; i < args->nr_local; i++, vec++) { 585 586 nr_pages = rds_pages_in_vec(vec); 587 if (nr_pages == 0) 588 return -EINVAL; 589 590 tot_pages += nr_pages; 591 592 /* 593 * nr_pages for one entry is limited to (UINT_MAX>>PAGE_SHIFT)+1, 594 * so tot_pages cannot overflow without first going negative. 595 */ 596 if (tot_pages < 0) 597 return -EINVAL; 598 } 599 600 return tot_pages * sizeof(struct scatterlist); 601 } 602 603 /* 604 * The application asks for a RDMA transfer. 605 * Extract all arguments and set up the rdma_op 606 */ 607 int rds_cmsg_rdma_args(struct rds_sock *rs, struct rds_message *rm, 608 struct cmsghdr *cmsg, 609 struct rds_iov_vector *vec) 610 { 611 struct rds_rdma_args *args; 612 struct rm_rdma_op *op = &rm->rdma; 613 int nr_pages; 614 unsigned int nr_bytes; 615 struct page **pages = NULL; 616 struct rds_iovec *iovs; 617 unsigned int i, j; 618 int ret = 0; 619 bool odp_supported = true; 620 621 if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_rdma_args)) 622 || rm->rdma.op_active) 623 return -EINVAL; 624 625 args = CMSG_DATA(cmsg); 626 627 if (ipv6_addr_any(&rs->rs_bound_addr)) { 628 ret = -ENOTCONN; /* XXX not a great errno */ 629 goto out_ret; 630 } 631 632 if (args->nr_local > UIO_MAXIOV) { 633 ret = -EMSGSIZE; 634 goto out_ret; 635 } 636 637 if (vec->len != args->nr_local) { 638 ret = -EINVAL; 639 goto out_ret; 640 } 641 /* odp-mr is not supported for multiple requests within one message */ 642 if (args->nr_local != 1) 643 odp_supported = false; 644 645 iovs = vec->iov; 646 647 nr_pages = rds_rdma_pages(iovs, args->nr_local); 648 if (nr_pages < 0) { 649 ret = -EINVAL; 650 goto out_ret; 651 } 652 653 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL); 654 if (!pages) { 655 ret = -ENOMEM; 656 goto out_ret; 657 } 658 659 op->op_write = !!(args->flags & RDS_RDMA_READWRITE); 660 op->op_fence = !!(args->flags & RDS_RDMA_FENCE); 661 op->op_notify = !!(args->flags & RDS_RDMA_NOTIFY_ME); 662 op->op_silent = !!(args->flags & RDS_RDMA_SILENT); 663 op->op_active = 1; 664 op->op_recverr = rs->rs_recverr; 665 op->op_odp_mr = NULL; 666 667 WARN_ON(!nr_pages); 668 op->op_sg = rds_message_alloc_sgs(rm, nr_pages); 669 if (IS_ERR(op->op_sg)) { 670 ret = PTR_ERR(op->op_sg); 671 goto out_pages; 672 } 673 674 if (op->op_notify || op->op_recverr) { 675 /* We allocate an uninitialized notifier here, because 676 * we don't want to do that in the completion handler. We 677 * would have to use GFP_ATOMIC there, and don't want to deal 678 * with failed allocations. 679 */ 680 op->op_notifier = kmalloc(sizeof(struct rds_notifier), GFP_KERNEL); 681 if (!op->op_notifier) { 682 ret = -ENOMEM; 683 goto out_pages; 684 } 685 op->op_notifier->n_user_token = args->user_token; 686 op->op_notifier->n_status = RDS_RDMA_SUCCESS; 687 } 688 689 /* The cookie contains the R_Key of the remote memory region, and 690 * optionally an offset into it. This is how we implement RDMA into 691 * unaligned memory. 692 * When setting up the RDMA, we need to add that offset to the 693 * destination address (which is really an offset into the MR) 694 * FIXME: We may want to move this into ib_rdma.c 695 */ 696 op->op_rkey = rds_rdma_cookie_key(args->cookie); 697 op->op_remote_addr = args->remote_vec.addr + rds_rdma_cookie_offset(args->cookie); 698 699 nr_bytes = 0; 700 701 rdsdebug("RDS: rdma prepare nr_local %llu rva %llx rkey %x\n", 702 (unsigned long long)args->nr_local, 703 (unsigned long long)args->remote_vec.addr, 704 op->op_rkey); 705 706 for (i = 0; i < args->nr_local; i++) { 707 struct rds_iovec *iov = &iovs[i]; 708 /* don't need to check, rds_rdma_pages() verified nr will be +nonzero */ 709 unsigned int nr = rds_pages_in_vec(iov); 710 711 rs->rs_user_addr = iov->addr; 712 rs->rs_user_bytes = iov->bytes; 713 714 /* If it's a WRITE operation, we want to pin the pages for reading. 715 * If it's a READ operation, we need to pin the pages for writing. 716 */ 717 ret = rds_pin_pages(iov->addr, nr, pages, !op->op_write); 718 if ((!odp_supported && ret <= 0) || 719 (odp_supported && ret <= 0 && ret != -EOPNOTSUPP)) 720 goto out_pages; 721 722 if (ret == -EOPNOTSUPP) { 723 struct rds_mr *local_odp_mr; 724 725 if (!rs->rs_transport->get_mr) { 726 ret = -EOPNOTSUPP; 727 goto out_pages; 728 } 729 local_odp_mr = 730 kzalloc(sizeof(*local_odp_mr), GFP_KERNEL); 731 if (!local_odp_mr) { 732 ret = -ENOMEM; 733 goto out_pages; 734 } 735 RB_CLEAR_NODE(&local_odp_mr->r_rb_node); 736 kref_init(&local_odp_mr->r_kref); 737 local_odp_mr->r_trans = rs->rs_transport; 738 local_odp_mr->r_sock = rs; 739 local_odp_mr->r_trans_private = 740 rs->rs_transport->get_mr( 741 NULL, 0, rs, &local_odp_mr->r_key, NULL, 742 iov->addr, iov->bytes, ODP_VIRTUAL); 743 if (IS_ERR(local_odp_mr->r_trans_private)) { 744 ret = IS_ERR(local_odp_mr->r_trans_private); 745 rdsdebug("get_mr ret %d %p\"", ret, 746 local_odp_mr->r_trans_private); 747 kfree(local_odp_mr); 748 ret = -EOPNOTSUPP; 749 goto out_pages; 750 } 751 rdsdebug("Need odp; local_odp_mr %p trans_private %p\n", 752 local_odp_mr, local_odp_mr->r_trans_private); 753 op->op_odp_mr = local_odp_mr; 754 op->op_odp_addr = iov->addr; 755 } 756 757 rdsdebug("RDS: nr_bytes %u nr %u iov->bytes %llu iov->addr %llx\n", 758 nr_bytes, nr, iov->bytes, iov->addr); 759 760 nr_bytes += iov->bytes; 761 762 for (j = 0; j < nr; j++) { 763 unsigned int offset = iov->addr & ~PAGE_MASK; 764 struct scatterlist *sg; 765 766 sg = &op->op_sg[op->op_nents + j]; 767 sg_set_page(sg, pages[j], 768 min_t(unsigned int, iov->bytes, PAGE_SIZE - offset), 769 offset); 770 771 sg_dma_len(sg) = sg->length; 772 rdsdebug("RDS: sg->offset %x sg->len %x iov->addr %llx iov->bytes %llu\n", 773 sg->offset, sg->length, iov->addr, iov->bytes); 774 775 iov->addr += sg->length; 776 iov->bytes -= sg->length; 777 } 778 779 op->op_nents += nr; 780 } 781 782 if (nr_bytes > args->remote_vec.bytes) { 783 rdsdebug("RDS nr_bytes %u remote_bytes %u do not match\n", 784 nr_bytes, 785 (unsigned int) args->remote_vec.bytes); 786 ret = -EINVAL; 787 goto out_pages; 788 } 789 op->op_bytes = nr_bytes; 790 ret = 0; 791 792 out_pages: 793 kfree(pages); 794 out_ret: 795 if (ret) 796 rds_rdma_free_op(op); 797 else 798 rds_stats_inc(s_send_rdma); 799 800 return ret; 801 } 802 803 /* 804 * The application wants us to pass an RDMA destination (aka MR) 805 * to the remote 806 */ 807 int rds_cmsg_rdma_dest(struct rds_sock *rs, struct rds_message *rm, 808 struct cmsghdr *cmsg) 809 { 810 unsigned long flags; 811 struct rds_mr *mr; 812 u32 r_key; 813 int err = 0; 814 815 if (cmsg->cmsg_len < CMSG_LEN(sizeof(rds_rdma_cookie_t)) || 816 rm->m_rdma_cookie != 0) 817 return -EINVAL; 818 819 memcpy(&rm->m_rdma_cookie, CMSG_DATA(cmsg), sizeof(rm->m_rdma_cookie)); 820 821 /* We are reusing a previously mapped MR here. Most likely, the 822 * application has written to the buffer, so we need to explicitly 823 * flush those writes to RAM. Otherwise the HCA may not see them 824 * when doing a DMA from that buffer. 825 */ 826 r_key = rds_rdma_cookie_key(rm->m_rdma_cookie); 827 828 spin_lock_irqsave(&rs->rs_rdma_lock, flags); 829 mr = rds_mr_tree_walk(&rs->rs_rdma_keys, r_key, NULL); 830 if (!mr) 831 err = -EINVAL; /* invalid r_key */ 832 else 833 kref_get(&mr->r_kref); 834 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); 835 836 if (mr) { 837 mr->r_trans->sync_mr(mr->r_trans_private, 838 DMA_TO_DEVICE); 839 rm->rdma.op_rdma_mr = mr; 840 } 841 return err; 842 } 843 844 /* 845 * The application passes us an address range it wants to enable RDMA 846 * to/from. We map the area, and save the <R_Key,offset> pair 847 * in rm->m_rdma_cookie. This causes it to be sent along to the peer 848 * in an extension header. 849 */ 850 int rds_cmsg_rdma_map(struct rds_sock *rs, struct rds_message *rm, 851 struct cmsghdr *cmsg) 852 { 853 if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_get_mr_args)) || 854 rm->m_rdma_cookie != 0) 855 return -EINVAL; 856 857 return __rds_rdma_map(rs, CMSG_DATA(cmsg), &rm->m_rdma_cookie, 858 &rm->rdma.op_rdma_mr, rm->m_conn_path); 859 } 860 861 /* 862 * Fill in rds_message for an atomic request. 863 */ 864 int rds_cmsg_atomic(struct rds_sock *rs, struct rds_message *rm, 865 struct cmsghdr *cmsg) 866 { 867 struct page *page = NULL; 868 struct rds_atomic_args *args; 869 int ret = 0; 870 871 if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_atomic_args)) 872 || rm->atomic.op_active) 873 return -EINVAL; 874 875 args = CMSG_DATA(cmsg); 876 877 /* Nonmasked & masked cmsg ops converted to masked hw ops */ 878 switch (cmsg->cmsg_type) { 879 case RDS_CMSG_ATOMIC_FADD: 880 rm->atomic.op_type = RDS_ATOMIC_TYPE_FADD; 881 rm->atomic.op_m_fadd.add = args->fadd.add; 882 rm->atomic.op_m_fadd.nocarry_mask = 0; 883 break; 884 case RDS_CMSG_MASKED_ATOMIC_FADD: 885 rm->atomic.op_type = RDS_ATOMIC_TYPE_FADD; 886 rm->atomic.op_m_fadd.add = args->m_fadd.add; 887 rm->atomic.op_m_fadd.nocarry_mask = args->m_fadd.nocarry_mask; 888 break; 889 case RDS_CMSG_ATOMIC_CSWP: 890 rm->atomic.op_type = RDS_ATOMIC_TYPE_CSWP; 891 rm->atomic.op_m_cswp.compare = args->cswp.compare; 892 rm->atomic.op_m_cswp.swap = args->cswp.swap; 893 rm->atomic.op_m_cswp.compare_mask = ~0; 894 rm->atomic.op_m_cswp.swap_mask = ~0; 895 break; 896 case RDS_CMSG_MASKED_ATOMIC_CSWP: 897 rm->atomic.op_type = RDS_ATOMIC_TYPE_CSWP; 898 rm->atomic.op_m_cswp.compare = args->m_cswp.compare; 899 rm->atomic.op_m_cswp.swap = args->m_cswp.swap; 900 rm->atomic.op_m_cswp.compare_mask = args->m_cswp.compare_mask; 901 rm->atomic.op_m_cswp.swap_mask = args->m_cswp.swap_mask; 902 break; 903 default: 904 BUG(); /* should never happen */ 905 } 906 907 rm->atomic.op_notify = !!(args->flags & RDS_RDMA_NOTIFY_ME); 908 rm->atomic.op_silent = !!(args->flags & RDS_RDMA_SILENT); 909 rm->atomic.op_active = 1; 910 rm->atomic.op_recverr = rs->rs_recverr; 911 rm->atomic.op_sg = rds_message_alloc_sgs(rm, 1); 912 if (IS_ERR(rm->atomic.op_sg)) { 913 ret = PTR_ERR(rm->atomic.op_sg); 914 goto err; 915 } 916 917 /* verify 8 byte-aligned */ 918 if (args->local_addr & 0x7) { 919 ret = -EFAULT; 920 goto err; 921 } 922 923 ret = rds_pin_pages(args->local_addr, 1, &page, 1); 924 if (ret != 1) 925 goto err; 926 ret = 0; 927 928 sg_set_page(rm->atomic.op_sg, page, 8, offset_in_page(args->local_addr)); 929 930 if (rm->atomic.op_notify || rm->atomic.op_recverr) { 931 /* We allocate an uninitialized notifier here, because 932 * we don't want to do that in the completion handler. We 933 * would have to use GFP_ATOMIC there, and don't want to deal 934 * with failed allocations. 935 */ 936 rm->atomic.op_notifier = kmalloc(sizeof(*rm->atomic.op_notifier), GFP_KERNEL); 937 if (!rm->atomic.op_notifier) { 938 ret = -ENOMEM; 939 goto err; 940 } 941 942 rm->atomic.op_notifier->n_user_token = args->user_token; 943 rm->atomic.op_notifier->n_status = RDS_RDMA_SUCCESS; 944 } 945 946 rm->atomic.op_rkey = rds_rdma_cookie_key(args->cookie); 947 rm->atomic.op_remote_addr = args->remote_addr + rds_rdma_cookie_offset(args->cookie); 948 949 return ret; 950 err: 951 if (page) 952 unpin_user_page(page); 953 rm->atomic.op_active = 0; 954 kfree(rm->atomic.op_notifier); 955 956 return ret; 957 } 958