1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * net-sysfs.c - network device class and attributes 4 * 5 * Copyright (c) 2003 Stephen Hemminger <shemminger@osdl.org> 6 */ 7 8 #include <linux/capability.h> 9 #include <linux/kernel.h> 10 #include <linux/netdevice.h> 11 #include <linux/if_arp.h> 12 #include <linux/slab.h> 13 #include <linux/sched/signal.h> 14 #include <linux/sched/isolation.h> 15 #include <linux/nsproxy.h> 16 #include <net/sock.h> 17 #include <net/net_namespace.h> 18 #include <linux/rtnetlink.h> 19 #include <linux/vmalloc.h> 20 #include <linux/export.h> 21 #include <linux/jiffies.h> 22 #include <linux/pm_runtime.h> 23 #include <linux/of.h> 24 #include <linux/of_net.h> 25 #include <linux/cpu.h> 26 27 #include "dev.h" 28 #include "net-sysfs.h" 29 30 #ifdef CONFIG_SYSFS 31 static const char fmt_hex[] = "%#x\n"; 32 static const char fmt_dec[] = "%d\n"; 33 static const char fmt_ulong[] = "%lu\n"; 34 static const char fmt_u64[] = "%llu\n"; 35 36 static inline int dev_isalive(const struct net_device *dev) 37 { 38 return dev->reg_state <= NETREG_REGISTERED; 39 } 40 41 /* use same locking rules as GIF* ioctl's */ 42 static ssize_t netdev_show(const struct device *dev, 43 struct device_attribute *attr, char *buf, 44 ssize_t (*format)(const struct net_device *, char *)) 45 { 46 struct net_device *ndev = to_net_dev(dev); 47 ssize_t ret = -EINVAL; 48 49 read_lock(&dev_base_lock); 50 if (dev_isalive(ndev)) 51 ret = (*format)(ndev, buf); 52 read_unlock(&dev_base_lock); 53 54 return ret; 55 } 56 57 /* generate a show function for simple field */ 58 #define NETDEVICE_SHOW(field, format_string) \ 59 static ssize_t format_##field(const struct net_device *dev, char *buf) \ 60 { \ 61 return sprintf(buf, format_string, dev->field); \ 62 } \ 63 static ssize_t field##_show(struct device *dev, \ 64 struct device_attribute *attr, char *buf) \ 65 { \ 66 return netdev_show(dev, attr, buf, format_##field); \ 67 } \ 68 69 #define NETDEVICE_SHOW_RO(field, format_string) \ 70 NETDEVICE_SHOW(field, format_string); \ 71 static DEVICE_ATTR_RO(field) 72 73 #define NETDEVICE_SHOW_RW(field, format_string) \ 74 NETDEVICE_SHOW(field, format_string); \ 75 static DEVICE_ATTR_RW(field) 76 77 /* use same locking and permission rules as SIF* ioctl's */ 78 static ssize_t netdev_store(struct device *dev, struct device_attribute *attr, 79 const char *buf, size_t len, 80 int (*set)(struct net_device *, unsigned long)) 81 { 82 struct net_device *netdev = to_net_dev(dev); 83 struct net *net = dev_net(netdev); 84 unsigned long new; 85 int ret; 86 87 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 88 return -EPERM; 89 90 ret = kstrtoul(buf, 0, &new); 91 if (ret) 92 goto err; 93 94 if (!rtnl_trylock()) 95 return restart_syscall(); 96 97 if (dev_isalive(netdev)) { 98 ret = (*set)(netdev, new); 99 if (ret == 0) 100 ret = len; 101 } 102 rtnl_unlock(); 103 err: 104 return ret; 105 } 106 107 NETDEVICE_SHOW_RO(dev_id, fmt_hex); 108 NETDEVICE_SHOW_RO(dev_port, fmt_dec); 109 NETDEVICE_SHOW_RO(addr_assign_type, fmt_dec); 110 NETDEVICE_SHOW_RO(addr_len, fmt_dec); 111 NETDEVICE_SHOW_RO(ifindex, fmt_dec); 112 NETDEVICE_SHOW_RO(type, fmt_dec); 113 NETDEVICE_SHOW_RO(link_mode, fmt_dec); 114 115 static ssize_t iflink_show(struct device *dev, struct device_attribute *attr, 116 char *buf) 117 { 118 struct net_device *ndev = to_net_dev(dev); 119 120 return sprintf(buf, fmt_dec, dev_get_iflink(ndev)); 121 } 122 static DEVICE_ATTR_RO(iflink); 123 124 static ssize_t format_name_assign_type(const struct net_device *dev, char *buf) 125 { 126 return sprintf(buf, fmt_dec, dev->name_assign_type); 127 } 128 129 static ssize_t name_assign_type_show(struct device *dev, 130 struct device_attribute *attr, 131 char *buf) 132 { 133 struct net_device *ndev = to_net_dev(dev); 134 ssize_t ret = -EINVAL; 135 136 if (ndev->name_assign_type != NET_NAME_UNKNOWN) 137 ret = netdev_show(dev, attr, buf, format_name_assign_type); 138 139 return ret; 140 } 141 static DEVICE_ATTR_RO(name_assign_type); 142 143 /* use same locking rules as GIFHWADDR ioctl's */ 144 static ssize_t address_show(struct device *dev, struct device_attribute *attr, 145 char *buf) 146 { 147 struct net_device *ndev = to_net_dev(dev); 148 ssize_t ret = -EINVAL; 149 150 read_lock(&dev_base_lock); 151 if (dev_isalive(ndev)) 152 ret = sysfs_format_mac(buf, ndev->dev_addr, ndev->addr_len); 153 read_unlock(&dev_base_lock); 154 return ret; 155 } 156 static DEVICE_ATTR_RO(address); 157 158 static ssize_t broadcast_show(struct device *dev, 159 struct device_attribute *attr, char *buf) 160 { 161 struct net_device *ndev = to_net_dev(dev); 162 163 if (dev_isalive(ndev)) 164 return sysfs_format_mac(buf, ndev->broadcast, ndev->addr_len); 165 return -EINVAL; 166 } 167 static DEVICE_ATTR_RO(broadcast); 168 169 static int change_carrier(struct net_device *dev, unsigned long new_carrier) 170 { 171 if (!netif_running(dev)) 172 return -EINVAL; 173 return dev_change_carrier(dev, (bool)new_carrier); 174 } 175 176 static ssize_t carrier_store(struct device *dev, struct device_attribute *attr, 177 const char *buf, size_t len) 178 { 179 struct net_device *netdev = to_net_dev(dev); 180 181 /* The check is also done in change_carrier; this helps returning early 182 * without hitting the trylock/restart in netdev_store. 183 */ 184 if (!netdev->netdev_ops->ndo_change_carrier) 185 return -EOPNOTSUPP; 186 187 return netdev_store(dev, attr, buf, len, change_carrier); 188 } 189 190 static ssize_t carrier_show(struct device *dev, 191 struct device_attribute *attr, char *buf) 192 { 193 struct net_device *netdev = to_net_dev(dev); 194 195 if (netif_running(netdev)) 196 return sprintf(buf, fmt_dec, !!netif_carrier_ok(netdev)); 197 198 return -EINVAL; 199 } 200 static DEVICE_ATTR_RW(carrier); 201 202 static ssize_t speed_show(struct device *dev, 203 struct device_attribute *attr, char *buf) 204 { 205 struct net_device *netdev = to_net_dev(dev); 206 int ret = -EINVAL; 207 208 /* The check is also done in __ethtool_get_link_ksettings; this helps 209 * returning early without hitting the trylock/restart below. 210 */ 211 if (!netdev->ethtool_ops->get_link_ksettings) 212 return ret; 213 214 if (!rtnl_trylock()) 215 return restart_syscall(); 216 217 if (netif_running(netdev) && netif_device_present(netdev)) { 218 struct ethtool_link_ksettings cmd; 219 220 if (!__ethtool_get_link_ksettings(netdev, &cmd)) 221 ret = sprintf(buf, fmt_dec, cmd.base.speed); 222 } 223 rtnl_unlock(); 224 return ret; 225 } 226 static DEVICE_ATTR_RO(speed); 227 228 static ssize_t duplex_show(struct device *dev, 229 struct device_attribute *attr, char *buf) 230 { 231 struct net_device *netdev = to_net_dev(dev); 232 int ret = -EINVAL; 233 234 /* The check is also done in __ethtool_get_link_ksettings; this helps 235 * returning early without hitting the trylock/restart below. 236 */ 237 if (!netdev->ethtool_ops->get_link_ksettings) 238 return ret; 239 240 if (!rtnl_trylock()) 241 return restart_syscall(); 242 243 if (netif_running(netdev)) { 244 struct ethtool_link_ksettings cmd; 245 246 if (!__ethtool_get_link_ksettings(netdev, &cmd)) { 247 const char *duplex; 248 249 switch (cmd.base.duplex) { 250 case DUPLEX_HALF: 251 duplex = "half"; 252 break; 253 case DUPLEX_FULL: 254 duplex = "full"; 255 break; 256 default: 257 duplex = "unknown"; 258 break; 259 } 260 ret = sprintf(buf, "%s\n", duplex); 261 } 262 } 263 rtnl_unlock(); 264 return ret; 265 } 266 static DEVICE_ATTR_RO(duplex); 267 268 static ssize_t testing_show(struct device *dev, 269 struct device_attribute *attr, char *buf) 270 { 271 struct net_device *netdev = to_net_dev(dev); 272 273 if (netif_running(netdev)) 274 return sprintf(buf, fmt_dec, !!netif_testing(netdev)); 275 276 return -EINVAL; 277 } 278 static DEVICE_ATTR_RO(testing); 279 280 static ssize_t dormant_show(struct device *dev, 281 struct device_attribute *attr, char *buf) 282 { 283 struct net_device *netdev = to_net_dev(dev); 284 285 if (netif_running(netdev)) 286 return sprintf(buf, fmt_dec, !!netif_dormant(netdev)); 287 288 return -EINVAL; 289 } 290 static DEVICE_ATTR_RO(dormant); 291 292 static const char *const operstates[] = { 293 "unknown", 294 "notpresent", /* currently unused */ 295 "down", 296 "lowerlayerdown", 297 "testing", 298 "dormant", 299 "up" 300 }; 301 302 static ssize_t operstate_show(struct device *dev, 303 struct device_attribute *attr, char *buf) 304 { 305 const struct net_device *netdev = to_net_dev(dev); 306 unsigned char operstate; 307 308 read_lock(&dev_base_lock); 309 operstate = netdev->operstate; 310 if (!netif_running(netdev)) 311 operstate = IF_OPER_DOWN; 312 read_unlock(&dev_base_lock); 313 314 if (operstate >= ARRAY_SIZE(operstates)) 315 return -EINVAL; /* should not happen */ 316 317 return sprintf(buf, "%s\n", operstates[operstate]); 318 } 319 static DEVICE_ATTR_RO(operstate); 320 321 static ssize_t carrier_changes_show(struct device *dev, 322 struct device_attribute *attr, 323 char *buf) 324 { 325 struct net_device *netdev = to_net_dev(dev); 326 327 return sprintf(buf, fmt_dec, 328 atomic_read(&netdev->carrier_up_count) + 329 atomic_read(&netdev->carrier_down_count)); 330 } 331 static DEVICE_ATTR_RO(carrier_changes); 332 333 static ssize_t carrier_up_count_show(struct device *dev, 334 struct device_attribute *attr, 335 char *buf) 336 { 337 struct net_device *netdev = to_net_dev(dev); 338 339 return sprintf(buf, fmt_dec, atomic_read(&netdev->carrier_up_count)); 340 } 341 static DEVICE_ATTR_RO(carrier_up_count); 342 343 static ssize_t carrier_down_count_show(struct device *dev, 344 struct device_attribute *attr, 345 char *buf) 346 { 347 struct net_device *netdev = to_net_dev(dev); 348 349 return sprintf(buf, fmt_dec, atomic_read(&netdev->carrier_down_count)); 350 } 351 static DEVICE_ATTR_RO(carrier_down_count); 352 353 /* read-write attributes */ 354 355 static int change_mtu(struct net_device *dev, unsigned long new_mtu) 356 { 357 return dev_set_mtu(dev, (int)new_mtu); 358 } 359 360 static ssize_t mtu_store(struct device *dev, struct device_attribute *attr, 361 const char *buf, size_t len) 362 { 363 return netdev_store(dev, attr, buf, len, change_mtu); 364 } 365 NETDEVICE_SHOW_RW(mtu, fmt_dec); 366 367 static int change_flags(struct net_device *dev, unsigned long new_flags) 368 { 369 return dev_change_flags(dev, (unsigned int)new_flags, NULL); 370 } 371 372 static ssize_t flags_store(struct device *dev, struct device_attribute *attr, 373 const char *buf, size_t len) 374 { 375 return netdev_store(dev, attr, buf, len, change_flags); 376 } 377 NETDEVICE_SHOW_RW(flags, fmt_hex); 378 379 static ssize_t tx_queue_len_store(struct device *dev, 380 struct device_attribute *attr, 381 const char *buf, size_t len) 382 { 383 if (!capable(CAP_NET_ADMIN)) 384 return -EPERM; 385 386 return netdev_store(dev, attr, buf, len, dev_change_tx_queue_len); 387 } 388 NETDEVICE_SHOW_RW(tx_queue_len, fmt_dec); 389 390 static int change_gro_flush_timeout(struct net_device *dev, unsigned long val) 391 { 392 WRITE_ONCE(dev->gro_flush_timeout, val); 393 return 0; 394 } 395 396 static ssize_t gro_flush_timeout_store(struct device *dev, 397 struct device_attribute *attr, 398 const char *buf, size_t len) 399 { 400 if (!capable(CAP_NET_ADMIN)) 401 return -EPERM; 402 403 return netdev_store(dev, attr, buf, len, change_gro_flush_timeout); 404 } 405 NETDEVICE_SHOW_RW(gro_flush_timeout, fmt_ulong); 406 407 static int change_napi_defer_hard_irqs(struct net_device *dev, unsigned long val) 408 { 409 WRITE_ONCE(dev->napi_defer_hard_irqs, val); 410 return 0; 411 } 412 413 static ssize_t napi_defer_hard_irqs_store(struct device *dev, 414 struct device_attribute *attr, 415 const char *buf, size_t len) 416 { 417 if (!capable(CAP_NET_ADMIN)) 418 return -EPERM; 419 420 return netdev_store(dev, attr, buf, len, change_napi_defer_hard_irqs); 421 } 422 NETDEVICE_SHOW_RW(napi_defer_hard_irqs, fmt_dec); 423 424 static ssize_t ifalias_store(struct device *dev, struct device_attribute *attr, 425 const char *buf, size_t len) 426 { 427 struct net_device *netdev = to_net_dev(dev); 428 struct net *net = dev_net(netdev); 429 size_t count = len; 430 ssize_t ret = 0; 431 432 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 433 return -EPERM; 434 435 /* ignore trailing newline */ 436 if (len > 0 && buf[len - 1] == '\n') 437 --count; 438 439 if (!rtnl_trylock()) 440 return restart_syscall(); 441 442 if (dev_isalive(netdev)) { 443 ret = dev_set_alias(netdev, buf, count); 444 if (ret < 0) 445 goto err; 446 ret = len; 447 netdev_state_change(netdev); 448 } 449 err: 450 rtnl_unlock(); 451 452 return ret; 453 } 454 455 static ssize_t ifalias_show(struct device *dev, 456 struct device_attribute *attr, char *buf) 457 { 458 const struct net_device *netdev = to_net_dev(dev); 459 char tmp[IFALIASZ]; 460 ssize_t ret = 0; 461 462 ret = dev_get_alias(netdev, tmp, sizeof(tmp)); 463 if (ret > 0) 464 ret = sprintf(buf, "%s\n", tmp); 465 return ret; 466 } 467 static DEVICE_ATTR_RW(ifalias); 468 469 static int change_group(struct net_device *dev, unsigned long new_group) 470 { 471 dev_set_group(dev, (int)new_group); 472 return 0; 473 } 474 475 static ssize_t group_store(struct device *dev, struct device_attribute *attr, 476 const char *buf, size_t len) 477 { 478 return netdev_store(dev, attr, buf, len, change_group); 479 } 480 NETDEVICE_SHOW(group, fmt_dec); 481 static DEVICE_ATTR(netdev_group, 0644, group_show, group_store); 482 483 static int change_proto_down(struct net_device *dev, unsigned long proto_down) 484 { 485 return dev_change_proto_down(dev, (bool)proto_down); 486 } 487 488 static ssize_t proto_down_store(struct device *dev, 489 struct device_attribute *attr, 490 const char *buf, size_t len) 491 { 492 return netdev_store(dev, attr, buf, len, change_proto_down); 493 } 494 NETDEVICE_SHOW_RW(proto_down, fmt_dec); 495 496 static ssize_t phys_port_id_show(struct device *dev, 497 struct device_attribute *attr, char *buf) 498 { 499 struct net_device *netdev = to_net_dev(dev); 500 ssize_t ret = -EINVAL; 501 502 /* The check is also done in dev_get_phys_port_id; this helps returning 503 * early without hitting the trylock/restart below. 504 */ 505 if (!netdev->netdev_ops->ndo_get_phys_port_id) 506 return -EOPNOTSUPP; 507 508 if (!rtnl_trylock()) 509 return restart_syscall(); 510 511 if (dev_isalive(netdev)) { 512 struct netdev_phys_item_id ppid; 513 514 ret = dev_get_phys_port_id(netdev, &ppid); 515 if (!ret) 516 ret = sprintf(buf, "%*phN\n", ppid.id_len, ppid.id); 517 } 518 rtnl_unlock(); 519 520 return ret; 521 } 522 static DEVICE_ATTR_RO(phys_port_id); 523 524 static ssize_t phys_port_name_show(struct device *dev, 525 struct device_attribute *attr, char *buf) 526 { 527 struct net_device *netdev = to_net_dev(dev); 528 ssize_t ret = -EINVAL; 529 530 /* The checks are also done in dev_get_phys_port_name; this helps 531 * returning early without hitting the trylock/restart below. 532 */ 533 if (!netdev->netdev_ops->ndo_get_phys_port_name && 534 !netdev->netdev_ops->ndo_get_devlink_port) 535 return -EOPNOTSUPP; 536 537 if (!rtnl_trylock()) 538 return restart_syscall(); 539 540 if (dev_isalive(netdev)) { 541 char name[IFNAMSIZ]; 542 543 ret = dev_get_phys_port_name(netdev, name, sizeof(name)); 544 if (!ret) 545 ret = sprintf(buf, "%s\n", name); 546 } 547 rtnl_unlock(); 548 549 return ret; 550 } 551 static DEVICE_ATTR_RO(phys_port_name); 552 553 static ssize_t phys_switch_id_show(struct device *dev, 554 struct device_attribute *attr, char *buf) 555 { 556 struct net_device *netdev = to_net_dev(dev); 557 ssize_t ret = -EINVAL; 558 559 /* The checks are also done in dev_get_phys_port_name; this helps 560 * returning early without hitting the trylock/restart below. This works 561 * because recurse is false when calling dev_get_port_parent_id. 562 */ 563 if (!netdev->netdev_ops->ndo_get_port_parent_id && 564 !netdev->netdev_ops->ndo_get_devlink_port) 565 return -EOPNOTSUPP; 566 567 if (!rtnl_trylock()) 568 return restart_syscall(); 569 570 if (dev_isalive(netdev)) { 571 struct netdev_phys_item_id ppid = { }; 572 573 ret = dev_get_port_parent_id(netdev, &ppid, false); 574 if (!ret) 575 ret = sprintf(buf, "%*phN\n", ppid.id_len, ppid.id); 576 } 577 rtnl_unlock(); 578 579 return ret; 580 } 581 static DEVICE_ATTR_RO(phys_switch_id); 582 583 static ssize_t threaded_show(struct device *dev, 584 struct device_attribute *attr, char *buf) 585 { 586 struct net_device *netdev = to_net_dev(dev); 587 ssize_t ret = -EINVAL; 588 589 if (!rtnl_trylock()) 590 return restart_syscall(); 591 592 if (dev_isalive(netdev)) 593 ret = sprintf(buf, fmt_dec, netdev->threaded); 594 595 rtnl_unlock(); 596 return ret; 597 } 598 599 static int modify_napi_threaded(struct net_device *dev, unsigned long val) 600 { 601 int ret; 602 603 if (list_empty(&dev->napi_list)) 604 return -EOPNOTSUPP; 605 606 if (val != 0 && val != 1) 607 return -EOPNOTSUPP; 608 609 ret = dev_set_threaded(dev, val); 610 611 return ret; 612 } 613 614 static ssize_t threaded_store(struct device *dev, 615 struct device_attribute *attr, 616 const char *buf, size_t len) 617 { 618 return netdev_store(dev, attr, buf, len, modify_napi_threaded); 619 } 620 static DEVICE_ATTR_RW(threaded); 621 622 static struct attribute *net_class_attrs[] __ro_after_init = { 623 &dev_attr_netdev_group.attr, 624 &dev_attr_type.attr, 625 &dev_attr_dev_id.attr, 626 &dev_attr_dev_port.attr, 627 &dev_attr_iflink.attr, 628 &dev_attr_ifindex.attr, 629 &dev_attr_name_assign_type.attr, 630 &dev_attr_addr_assign_type.attr, 631 &dev_attr_addr_len.attr, 632 &dev_attr_link_mode.attr, 633 &dev_attr_address.attr, 634 &dev_attr_broadcast.attr, 635 &dev_attr_speed.attr, 636 &dev_attr_duplex.attr, 637 &dev_attr_dormant.attr, 638 &dev_attr_testing.attr, 639 &dev_attr_operstate.attr, 640 &dev_attr_carrier_changes.attr, 641 &dev_attr_ifalias.attr, 642 &dev_attr_carrier.attr, 643 &dev_attr_mtu.attr, 644 &dev_attr_flags.attr, 645 &dev_attr_tx_queue_len.attr, 646 &dev_attr_gro_flush_timeout.attr, 647 &dev_attr_napi_defer_hard_irqs.attr, 648 &dev_attr_phys_port_id.attr, 649 &dev_attr_phys_port_name.attr, 650 &dev_attr_phys_switch_id.attr, 651 &dev_attr_proto_down.attr, 652 &dev_attr_carrier_up_count.attr, 653 &dev_attr_carrier_down_count.attr, 654 &dev_attr_threaded.attr, 655 NULL, 656 }; 657 ATTRIBUTE_GROUPS(net_class); 658 659 /* Show a given an attribute in the statistics group */ 660 static ssize_t netstat_show(const struct device *d, 661 struct device_attribute *attr, char *buf, 662 unsigned long offset) 663 { 664 struct net_device *dev = to_net_dev(d); 665 ssize_t ret = -EINVAL; 666 667 WARN_ON(offset > sizeof(struct rtnl_link_stats64) || 668 offset % sizeof(u64) != 0); 669 670 read_lock(&dev_base_lock); 671 if (dev_isalive(dev)) { 672 struct rtnl_link_stats64 temp; 673 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp); 674 675 ret = sprintf(buf, fmt_u64, *(u64 *)(((u8 *)stats) + offset)); 676 } 677 read_unlock(&dev_base_lock); 678 return ret; 679 } 680 681 /* generate a read-only statistics attribute */ 682 #define NETSTAT_ENTRY(name) \ 683 static ssize_t name##_show(struct device *d, \ 684 struct device_attribute *attr, char *buf) \ 685 { \ 686 return netstat_show(d, attr, buf, \ 687 offsetof(struct rtnl_link_stats64, name)); \ 688 } \ 689 static DEVICE_ATTR_RO(name) 690 691 NETSTAT_ENTRY(rx_packets); 692 NETSTAT_ENTRY(tx_packets); 693 NETSTAT_ENTRY(rx_bytes); 694 NETSTAT_ENTRY(tx_bytes); 695 NETSTAT_ENTRY(rx_errors); 696 NETSTAT_ENTRY(tx_errors); 697 NETSTAT_ENTRY(rx_dropped); 698 NETSTAT_ENTRY(tx_dropped); 699 NETSTAT_ENTRY(multicast); 700 NETSTAT_ENTRY(collisions); 701 NETSTAT_ENTRY(rx_length_errors); 702 NETSTAT_ENTRY(rx_over_errors); 703 NETSTAT_ENTRY(rx_crc_errors); 704 NETSTAT_ENTRY(rx_frame_errors); 705 NETSTAT_ENTRY(rx_fifo_errors); 706 NETSTAT_ENTRY(rx_missed_errors); 707 NETSTAT_ENTRY(tx_aborted_errors); 708 NETSTAT_ENTRY(tx_carrier_errors); 709 NETSTAT_ENTRY(tx_fifo_errors); 710 NETSTAT_ENTRY(tx_heartbeat_errors); 711 NETSTAT_ENTRY(tx_window_errors); 712 NETSTAT_ENTRY(rx_compressed); 713 NETSTAT_ENTRY(tx_compressed); 714 NETSTAT_ENTRY(rx_nohandler); 715 716 static struct attribute *netstat_attrs[] __ro_after_init = { 717 &dev_attr_rx_packets.attr, 718 &dev_attr_tx_packets.attr, 719 &dev_attr_rx_bytes.attr, 720 &dev_attr_tx_bytes.attr, 721 &dev_attr_rx_errors.attr, 722 &dev_attr_tx_errors.attr, 723 &dev_attr_rx_dropped.attr, 724 &dev_attr_tx_dropped.attr, 725 &dev_attr_multicast.attr, 726 &dev_attr_collisions.attr, 727 &dev_attr_rx_length_errors.attr, 728 &dev_attr_rx_over_errors.attr, 729 &dev_attr_rx_crc_errors.attr, 730 &dev_attr_rx_frame_errors.attr, 731 &dev_attr_rx_fifo_errors.attr, 732 &dev_attr_rx_missed_errors.attr, 733 &dev_attr_tx_aborted_errors.attr, 734 &dev_attr_tx_carrier_errors.attr, 735 &dev_attr_tx_fifo_errors.attr, 736 &dev_attr_tx_heartbeat_errors.attr, 737 &dev_attr_tx_window_errors.attr, 738 &dev_attr_rx_compressed.attr, 739 &dev_attr_tx_compressed.attr, 740 &dev_attr_rx_nohandler.attr, 741 NULL 742 }; 743 744 static const struct attribute_group netstat_group = { 745 .name = "statistics", 746 .attrs = netstat_attrs, 747 }; 748 749 static struct attribute *wireless_attrs[] = { 750 NULL 751 }; 752 753 static const struct attribute_group wireless_group = { 754 .name = "wireless", 755 .attrs = wireless_attrs, 756 }; 757 758 static bool wireless_group_needed(struct net_device *ndev) 759 { 760 #if IS_ENABLED(CONFIG_CFG80211) 761 if (ndev->ieee80211_ptr) 762 return true; 763 #endif 764 #if IS_ENABLED(CONFIG_WIRELESS_EXT) 765 if (ndev->wireless_handlers) 766 return true; 767 #endif 768 return false; 769 } 770 771 #else /* CONFIG_SYSFS */ 772 #define net_class_groups NULL 773 #endif /* CONFIG_SYSFS */ 774 775 #ifdef CONFIG_SYSFS 776 #define to_rx_queue_attr(_attr) \ 777 container_of(_attr, struct rx_queue_attribute, attr) 778 779 #define to_rx_queue(obj) container_of(obj, struct netdev_rx_queue, kobj) 780 781 static ssize_t rx_queue_attr_show(struct kobject *kobj, struct attribute *attr, 782 char *buf) 783 { 784 const struct rx_queue_attribute *attribute = to_rx_queue_attr(attr); 785 struct netdev_rx_queue *queue = to_rx_queue(kobj); 786 787 if (!attribute->show) 788 return -EIO; 789 790 return attribute->show(queue, buf); 791 } 792 793 static ssize_t rx_queue_attr_store(struct kobject *kobj, struct attribute *attr, 794 const char *buf, size_t count) 795 { 796 const struct rx_queue_attribute *attribute = to_rx_queue_attr(attr); 797 struct netdev_rx_queue *queue = to_rx_queue(kobj); 798 799 if (!attribute->store) 800 return -EIO; 801 802 return attribute->store(queue, buf, count); 803 } 804 805 static const struct sysfs_ops rx_queue_sysfs_ops = { 806 .show = rx_queue_attr_show, 807 .store = rx_queue_attr_store, 808 }; 809 810 #ifdef CONFIG_RPS 811 static ssize_t show_rps_map(struct netdev_rx_queue *queue, char *buf) 812 { 813 struct rps_map *map; 814 cpumask_var_t mask; 815 int i, len; 816 817 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) 818 return -ENOMEM; 819 820 rcu_read_lock(); 821 map = rcu_dereference(queue->rps_map); 822 if (map) 823 for (i = 0; i < map->len; i++) 824 cpumask_set_cpu(map->cpus[i], mask); 825 826 len = snprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask)); 827 rcu_read_unlock(); 828 free_cpumask_var(mask); 829 830 return len < PAGE_SIZE ? len : -EINVAL; 831 } 832 833 static ssize_t store_rps_map(struct netdev_rx_queue *queue, 834 const char *buf, size_t len) 835 { 836 struct rps_map *old_map, *map; 837 cpumask_var_t mask; 838 int err, cpu, i; 839 static DEFINE_MUTEX(rps_map_mutex); 840 841 if (!capable(CAP_NET_ADMIN)) 842 return -EPERM; 843 844 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 845 return -ENOMEM; 846 847 err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits); 848 if (err) { 849 free_cpumask_var(mask); 850 return err; 851 } 852 853 if (!cpumask_empty(mask)) { 854 cpumask_and(mask, mask, housekeeping_cpumask(HK_TYPE_DOMAIN)); 855 cpumask_and(mask, mask, housekeeping_cpumask(HK_TYPE_WQ)); 856 if (cpumask_empty(mask)) { 857 free_cpumask_var(mask); 858 return -EINVAL; 859 } 860 } 861 862 map = kzalloc(max_t(unsigned int, 863 RPS_MAP_SIZE(cpumask_weight(mask)), L1_CACHE_BYTES), 864 GFP_KERNEL); 865 if (!map) { 866 free_cpumask_var(mask); 867 return -ENOMEM; 868 } 869 870 i = 0; 871 for_each_cpu_and(cpu, mask, cpu_online_mask) 872 map->cpus[i++] = cpu; 873 874 if (i) { 875 map->len = i; 876 } else { 877 kfree(map); 878 map = NULL; 879 } 880 881 mutex_lock(&rps_map_mutex); 882 old_map = rcu_dereference_protected(queue->rps_map, 883 mutex_is_locked(&rps_map_mutex)); 884 rcu_assign_pointer(queue->rps_map, map); 885 886 if (map) 887 static_branch_inc(&rps_needed); 888 if (old_map) 889 static_branch_dec(&rps_needed); 890 891 mutex_unlock(&rps_map_mutex); 892 893 if (old_map) 894 kfree_rcu(old_map, rcu); 895 896 free_cpumask_var(mask); 897 return len; 898 } 899 900 static ssize_t show_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue, 901 char *buf) 902 { 903 struct rps_dev_flow_table *flow_table; 904 unsigned long val = 0; 905 906 rcu_read_lock(); 907 flow_table = rcu_dereference(queue->rps_flow_table); 908 if (flow_table) 909 val = (unsigned long)flow_table->mask + 1; 910 rcu_read_unlock(); 911 912 return sprintf(buf, "%lu\n", val); 913 } 914 915 static void rps_dev_flow_table_release(struct rcu_head *rcu) 916 { 917 struct rps_dev_flow_table *table = container_of(rcu, 918 struct rps_dev_flow_table, rcu); 919 vfree(table); 920 } 921 922 static ssize_t store_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue, 923 const char *buf, size_t len) 924 { 925 unsigned long mask, count; 926 struct rps_dev_flow_table *table, *old_table; 927 static DEFINE_SPINLOCK(rps_dev_flow_lock); 928 int rc; 929 930 if (!capable(CAP_NET_ADMIN)) 931 return -EPERM; 932 933 rc = kstrtoul(buf, 0, &count); 934 if (rc < 0) 935 return rc; 936 937 if (count) { 938 mask = count - 1; 939 /* mask = roundup_pow_of_two(count) - 1; 940 * without overflows... 941 */ 942 while ((mask | (mask >> 1)) != mask) 943 mask |= (mask >> 1); 944 /* On 64 bit arches, must check mask fits in table->mask (u32), 945 * and on 32bit arches, must check 946 * RPS_DEV_FLOW_TABLE_SIZE(mask + 1) doesn't overflow. 947 */ 948 #if BITS_PER_LONG > 32 949 if (mask > (unsigned long)(u32)mask) 950 return -EINVAL; 951 #else 952 if (mask > (ULONG_MAX - RPS_DEV_FLOW_TABLE_SIZE(1)) 953 / sizeof(struct rps_dev_flow)) { 954 /* Enforce a limit to prevent overflow */ 955 return -EINVAL; 956 } 957 #endif 958 table = vmalloc(RPS_DEV_FLOW_TABLE_SIZE(mask + 1)); 959 if (!table) 960 return -ENOMEM; 961 962 table->mask = mask; 963 for (count = 0; count <= mask; count++) 964 table->flows[count].cpu = RPS_NO_CPU; 965 } else { 966 table = NULL; 967 } 968 969 spin_lock(&rps_dev_flow_lock); 970 old_table = rcu_dereference_protected(queue->rps_flow_table, 971 lockdep_is_held(&rps_dev_flow_lock)); 972 rcu_assign_pointer(queue->rps_flow_table, table); 973 spin_unlock(&rps_dev_flow_lock); 974 975 if (old_table) 976 call_rcu(&old_table->rcu, rps_dev_flow_table_release); 977 978 return len; 979 } 980 981 static struct rx_queue_attribute rps_cpus_attribute __ro_after_init 982 = __ATTR(rps_cpus, 0644, show_rps_map, store_rps_map); 983 984 static struct rx_queue_attribute rps_dev_flow_table_cnt_attribute __ro_after_init 985 = __ATTR(rps_flow_cnt, 0644, 986 show_rps_dev_flow_table_cnt, store_rps_dev_flow_table_cnt); 987 #endif /* CONFIG_RPS */ 988 989 static struct attribute *rx_queue_default_attrs[] __ro_after_init = { 990 #ifdef CONFIG_RPS 991 &rps_cpus_attribute.attr, 992 &rps_dev_flow_table_cnt_attribute.attr, 993 #endif 994 NULL 995 }; 996 ATTRIBUTE_GROUPS(rx_queue_default); 997 998 static void rx_queue_release(struct kobject *kobj) 999 { 1000 struct netdev_rx_queue *queue = to_rx_queue(kobj); 1001 #ifdef CONFIG_RPS 1002 struct rps_map *map; 1003 struct rps_dev_flow_table *flow_table; 1004 1005 map = rcu_dereference_protected(queue->rps_map, 1); 1006 if (map) { 1007 RCU_INIT_POINTER(queue->rps_map, NULL); 1008 kfree_rcu(map, rcu); 1009 } 1010 1011 flow_table = rcu_dereference_protected(queue->rps_flow_table, 1); 1012 if (flow_table) { 1013 RCU_INIT_POINTER(queue->rps_flow_table, NULL); 1014 call_rcu(&flow_table->rcu, rps_dev_flow_table_release); 1015 } 1016 #endif 1017 1018 memset(kobj, 0, sizeof(*kobj)); 1019 netdev_put(queue->dev, &queue->dev_tracker); 1020 } 1021 1022 static const void *rx_queue_namespace(struct kobject *kobj) 1023 { 1024 struct netdev_rx_queue *queue = to_rx_queue(kobj); 1025 struct device *dev = &queue->dev->dev; 1026 const void *ns = NULL; 1027 1028 if (dev->class && dev->class->ns_type) 1029 ns = dev->class->namespace(dev); 1030 1031 return ns; 1032 } 1033 1034 static void rx_queue_get_ownership(struct kobject *kobj, 1035 kuid_t *uid, kgid_t *gid) 1036 { 1037 const struct net *net = rx_queue_namespace(kobj); 1038 1039 net_ns_get_ownership(net, uid, gid); 1040 } 1041 1042 static struct kobj_type rx_queue_ktype __ro_after_init = { 1043 .sysfs_ops = &rx_queue_sysfs_ops, 1044 .release = rx_queue_release, 1045 .default_groups = rx_queue_default_groups, 1046 .namespace = rx_queue_namespace, 1047 .get_ownership = rx_queue_get_ownership, 1048 }; 1049 1050 static int rx_queue_add_kobject(struct net_device *dev, int index) 1051 { 1052 struct netdev_rx_queue *queue = dev->_rx + index; 1053 struct kobject *kobj = &queue->kobj; 1054 int error = 0; 1055 1056 /* Kobject_put later will trigger rx_queue_release call which 1057 * decreases dev refcount: Take that reference here 1058 */ 1059 netdev_hold(queue->dev, &queue->dev_tracker, GFP_KERNEL); 1060 1061 kobj->kset = dev->queues_kset; 1062 error = kobject_init_and_add(kobj, &rx_queue_ktype, NULL, 1063 "rx-%u", index); 1064 if (error) 1065 goto err; 1066 1067 if (dev->sysfs_rx_queue_group) { 1068 error = sysfs_create_group(kobj, dev->sysfs_rx_queue_group); 1069 if (error) 1070 goto err; 1071 } 1072 1073 kobject_uevent(kobj, KOBJ_ADD); 1074 1075 return error; 1076 1077 err: 1078 kobject_put(kobj); 1079 return error; 1080 } 1081 1082 static int rx_queue_change_owner(struct net_device *dev, int index, kuid_t kuid, 1083 kgid_t kgid) 1084 { 1085 struct netdev_rx_queue *queue = dev->_rx + index; 1086 struct kobject *kobj = &queue->kobj; 1087 int error; 1088 1089 error = sysfs_change_owner(kobj, kuid, kgid); 1090 if (error) 1091 return error; 1092 1093 if (dev->sysfs_rx_queue_group) 1094 error = sysfs_group_change_owner( 1095 kobj, dev->sysfs_rx_queue_group, kuid, kgid); 1096 1097 return error; 1098 } 1099 #endif /* CONFIG_SYSFS */ 1100 1101 int 1102 net_rx_queue_update_kobjects(struct net_device *dev, int old_num, int new_num) 1103 { 1104 #ifdef CONFIG_SYSFS 1105 int i; 1106 int error = 0; 1107 1108 #ifndef CONFIG_RPS 1109 if (!dev->sysfs_rx_queue_group) 1110 return 0; 1111 #endif 1112 for (i = old_num; i < new_num; i++) { 1113 error = rx_queue_add_kobject(dev, i); 1114 if (error) { 1115 new_num = old_num; 1116 break; 1117 } 1118 } 1119 1120 while (--i >= new_num) { 1121 struct kobject *kobj = &dev->_rx[i].kobj; 1122 1123 if (!refcount_read(&dev_net(dev)->ns.count)) 1124 kobj->uevent_suppress = 1; 1125 if (dev->sysfs_rx_queue_group) 1126 sysfs_remove_group(kobj, dev->sysfs_rx_queue_group); 1127 kobject_put(kobj); 1128 } 1129 1130 return error; 1131 #else 1132 return 0; 1133 #endif 1134 } 1135 1136 static int net_rx_queue_change_owner(struct net_device *dev, int num, 1137 kuid_t kuid, kgid_t kgid) 1138 { 1139 #ifdef CONFIG_SYSFS 1140 int error = 0; 1141 int i; 1142 1143 #ifndef CONFIG_RPS 1144 if (!dev->sysfs_rx_queue_group) 1145 return 0; 1146 #endif 1147 for (i = 0; i < num; i++) { 1148 error = rx_queue_change_owner(dev, i, kuid, kgid); 1149 if (error) 1150 break; 1151 } 1152 1153 return error; 1154 #else 1155 return 0; 1156 #endif 1157 } 1158 1159 #ifdef CONFIG_SYSFS 1160 /* 1161 * netdev_queue sysfs structures and functions. 1162 */ 1163 struct netdev_queue_attribute { 1164 struct attribute attr; 1165 ssize_t (*show)(struct netdev_queue *queue, char *buf); 1166 ssize_t (*store)(struct netdev_queue *queue, 1167 const char *buf, size_t len); 1168 }; 1169 #define to_netdev_queue_attr(_attr) \ 1170 container_of(_attr, struct netdev_queue_attribute, attr) 1171 1172 #define to_netdev_queue(obj) container_of(obj, struct netdev_queue, kobj) 1173 1174 static ssize_t netdev_queue_attr_show(struct kobject *kobj, 1175 struct attribute *attr, char *buf) 1176 { 1177 const struct netdev_queue_attribute *attribute 1178 = to_netdev_queue_attr(attr); 1179 struct netdev_queue *queue = to_netdev_queue(kobj); 1180 1181 if (!attribute->show) 1182 return -EIO; 1183 1184 return attribute->show(queue, buf); 1185 } 1186 1187 static ssize_t netdev_queue_attr_store(struct kobject *kobj, 1188 struct attribute *attr, 1189 const char *buf, size_t count) 1190 { 1191 const struct netdev_queue_attribute *attribute 1192 = to_netdev_queue_attr(attr); 1193 struct netdev_queue *queue = to_netdev_queue(kobj); 1194 1195 if (!attribute->store) 1196 return -EIO; 1197 1198 return attribute->store(queue, buf, count); 1199 } 1200 1201 static const struct sysfs_ops netdev_queue_sysfs_ops = { 1202 .show = netdev_queue_attr_show, 1203 .store = netdev_queue_attr_store, 1204 }; 1205 1206 static ssize_t tx_timeout_show(struct netdev_queue *queue, char *buf) 1207 { 1208 unsigned long trans_timeout = atomic_long_read(&queue->trans_timeout); 1209 1210 return sprintf(buf, fmt_ulong, trans_timeout); 1211 } 1212 1213 static unsigned int get_netdev_queue_index(struct netdev_queue *queue) 1214 { 1215 struct net_device *dev = queue->dev; 1216 unsigned int i; 1217 1218 i = queue - dev->_tx; 1219 BUG_ON(i >= dev->num_tx_queues); 1220 1221 return i; 1222 } 1223 1224 static ssize_t traffic_class_show(struct netdev_queue *queue, 1225 char *buf) 1226 { 1227 struct net_device *dev = queue->dev; 1228 int num_tc, tc; 1229 int index; 1230 1231 if (!netif_is_multiqueue(dev)) 1232 return -ENOENT; 1233 1234 if (!rtnl_trylock()) 1235 return restart_syscall(); 1236 1237 index = get_netdev_queue_index(queue); 1238 1239 /* If queue belongs to subordinate dev use its TC mapping */ 1240 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 1241 1242 num_tc = dev->num_tc; 1243 tc = netdev_txq_to_tc(dev, index); 1244 1245 rtnl_unlock(); 1246 1247 if (tc < 0) 1248 return -EINVAL; 1249 1250 /* We can report the traffic class one of two ways: 1251 * Subordinate device traffic classes are reported with the traffic 1252 * class first, and then the subordinate class so for example TC0 on 1253 * subordinate device 2 will be reported as "0-2". If the queue 1254 * belongs to the root device it will be reported with just the 1255 * traffic class, so just "0" for TC 0 for example. 1256 */ 1257 return num_tc < 0 ? sprintf(buf, "%d%d\n", tc, num_tc) : 1258 sprintf(buf, "%d\n", tc); 1259 } 1260 1261 #ifdef CONFIG_XPS 1262 static ssize_t tx_maxrate_show(struct netdev_queue *queue, 1263 char *buf) 1264 { 1265 return sprintf(buf, "%lu\n", queue->tx_maxrate); 1266 } 1267 1268 static ssize_t tx_maxrate_store(struct netdev_queue *queue, 1269 const char *buf, size_t len) 1270 { 1271 struct net_device *dev = queue->dev; 1272 int err, index = get_netdev_queue_index(queue); 1273 u32 rate = 0; 1274 1275 if (!capable(CAP_NET_ADMIN)) 1276 return -EPERM; 1277 1278 /* The check is also done later; this helps returning early without 1279 * hitting the trylock/restart below. 1280 */ 1281 if (!dev->netdev_ops->ndo_set_tx_maxrate) 1282 return -EOPNOTSUPP; 1283 1284 err = kstrtou32(buf, 10, &rate); 1285 if (err < 0) 1286 return err; 1287 1288 if (!rtnl_trylock()) 1289 return restart_syscall(); 1290 1291 err = -EOPNOTSUPP; 1292 if (dev->netdev_ops->ndo_set_tx_maxrate) 1293 err = dev->netdev_ops->ndo_set_tx_maxrate(dev, index, rate); 1294 1295 rtnl_unlock(); 1296 if (!err) { 1297 queue->tx_maxrate = rate; 1298 return len; 1299 } 1300 return err; 1301 } 1302 1303 static struct netdev_queue_attribute queue_tx_maxrate __ro_after_init 1304 = __ATTR_RW(tx_maxrate); 1305 #endif 1306 1307 static struct netdev_queue_attribute queue_trans_timeout __ro_after_init 1308 = __ATTR_RO(tx_timeout); 1309 1310 static struct netdev_queue_attribute queue_traffic_class __ro_after_init 1311 = __ATTR_RO(traffic_class); 1312 1313 #ifdef CONFIG_BQL 1314 /* 1315 * Byte queue limits sysfs structures and functions. 1316 */ 1317 static ssize_t bql_show(char *buf, unsigned int value) 1318 { 1319 return sprintf(buf, "%u\n", value); 1320 } 1321 1322 static ssize_t bql_set(const char *buf, const size_t count, 1323 unsigned int *pvalue) 1324 { 1325 unsigned int value; 1326 int err; 1327 1328 if (!strcmp(buf, "max") || !strcmp(buf, "max\n")) { 1329 value = DQL_MAX_LIMIT; 1330 } else { 1331 err = kstrtouint(buf, 10, &value); 1332 if (err < 0) 1333 return err; 1334 if (value > DQL_MAX_LIMIT) 1335 return -EINVAL; 1336 } 1337 1338 *pvalue = value; 1339 1340 return count; 1341 } 1342 1343 static ssize_t bql_show_hold_time(struct netdev_queue *queue, 1344 char *buf) 1345 { 1346 struct dql *dql = &queue->dql; 1347 1348 return sprintf(buf, "%u\n", jiffies_to_msecs(dql->slack_hold_time)); 1349 } 1350 1351 static ssize_t bql_set_hold_time(struct netdev_queue *queue, 1352 const char *buf, size_t len) 1353 { 1354 struct dql *dql = &queue->dql; 1355 unsigned int value; 1356 int err; 1357 1358 err = kstrtouint(buf, 10, &value); 1359 if (err < 0) 1360 return err; 1361 1362 dql->slack_hold_time = msecs_to_jiffies(value); 1363 1364 return len; 1365 } 1366 1367 static struct netdev_queue_attribute bql_hold_time_attribute __ro_after_init 1368 = __ATTR(hold_time, 0644, 1369 bql_show_hold_time, bql_set_hold_time); 1370 1371 static ssize_t bql_show_inflight(struct netdev_queue *queue, 1372 char *buf) 1373 { 1374 struct dql *dql = &queue->dql; 1375 1376 return sprintf(buf, "%u\n", dql->num_queued - dql->num_completed); 1377 } 1378 1379 static struct netdev_queue_attribute bql_inflight_attribute __ro_after_init = 1380 __ATTR(inflight, 0444, bql_show_inflight, NULL); 1381 1382 #define BQL_ATTR(NAME, FIELD) \ 1383 static ssize_t bql_show_ ## NAME(struct netdev_queue *queue, \ 1384 char *buf) \ 1385 { \ 1386 return bql_show(buf, queue->dql.FIELD); \ 1387 } \ 1388 \ 1389 static ssize_t bql_set_ ## NAME(struct netdev_queue *queue, \ 1390 const char *buf, size_t len) \ 1391 { \ 1392 return bql_set(buf, len, &queue->dql.FIELD); \ 1393 } \ 1394 \ 1395 static struct netdev_queue_attribute bql_ ## NAME ## _attribute __ro_after_init \ 1396 = __ATTR(NAME, 0644, \ 1397 bql_show_ ## NAME, bql_set_ ## NAME) 1398 1399 BQL_ATTR(limit, limit); 1400 BQL_ATTR(limit_max, max_limit); 1401 BQL_ATTR(limit_min, min_limit); 1402 1403 static struct attribute *dql_attrs[] __ro_after_init = { 1404 &bql_limit_attribute.attr, 1405 &bql_limit_max_attribute.attr, 1406 &bql_limit_min_attribute.attr, 1407 &bql_hold_time_attribute.attr, 1408 &bql_inflight_attribute.attr, 1409 NULL 1410 }; 1411 1412 static const struct attribute_group dql_group = { 1413 .name = "byte_queue_limits", 1414 .attrs = dql_attrs, 1415 }; 1416 #endif /* CONFIG_BQL */ 1417 1418 #ifdef CONFIG_XPS 1419 static ssize_t xps_queue_show(struct net_device *dev, unsigned int index, 1420 int tc, char *buf, enum xps_map_type type) 1421 { 1422 struct xps_dev_maps *dev_maps; 1423 unsigned long *mask; 1424 unsigned int nr_ids; 1425 int j, len; 1426 1427 rcu_read_lock(); 1428 dev_maps = rcu_dereference(dev->xps_maps[type]); 1429 1430 /* Default to nr_cpu_ids/dev->num_rx_queues and do not just return 0 1431 * when dev_maps hasn't been allocated yet, to be backward compatible. 1432 */ 1433 nr_ids = dev_maps ? dev_maps->nr_ids : 1434 (type == XPS_CPUS ? nr_cpu_ids : dev->num_rx_queues); 1435 1436 mask = bitmap_zalloc(nr_ids, GFP_NOWAIT); 1437 if (!mask) { 1438 rcu_read_unlock(); 1439 return -ENOMEM; 1440 } 1441 1442 if (!dev_maps || tc >= dev_maps->num_tc) 1443 goto out_no_maps; 1444 1445 for (j = 0; j < nr_ids; j++) { 1446 int i, tci = j * dev_maps->num_tc + tc; 1447 struct xps_map *map; 1448 1449 map = rcu_dereference(dev_maps->attr_map[tci]); 1450 if (!map) 1451 continue; 1452 1453 for (i = map->len; i--;) { 1454 if (map->queues[i] == index) { 1455 __set_bit(j, mask); 1456 break; 1457 } 1458 } 1459 } 1460 out_no_maps: 1461 rcu_read_unlock(); 1462 1463 len = bitmap_print_to_pagebuf(false, buf, mask, nr_ids); 1464 bitmap_free(mask); 1465 1466 return len < PAGE_SIZE ? len : -EINVAL; 1467 } 1468 1469 static ssize_t xps_cpus_show(struct netdev_queue *queue, char *buf) 1470 { 1471 struct net_device *dev = queue->dev; 1472 unsigned int index; 1473 int len, tc; 1474 1475 if (!netif_is_multiqueue(dev)) 1476 return -ENOENT; 1477 1478 index = get_netdev_queue_index(queue); 1479 1480 if (!rtnl_trylock()) 1481 return restart_syscall(); 1482 1483 /* If queue belongs to subordinate dev use its map */ 1484 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 1485 1486 tc = netdev_txq_to_tc(dev, index); 1487 if (tc < 0) { 1488 rtnl_unlock(); 1489 return -EINVAL; 1490 } 1491 1492 /* Make sure the subordinate device can't be freed */ 1493 get_device(&dev->dev); 1494 rtnl_unlock(); 1495 1496 len = xps_queue_show(dev, index, tc, buf, XPS_CPUS); 1497 1498 put_device(&dev->dev); 1499 return len; 1500 } 1501 1502 static ssize_t xps_cpus_store(struct netdev_queue *queue, 1503 const char *buf, size_t len) 1504 { 1505 struct net_device *dev = queue->dev; 1506 unsigned int index; 1507 cpumask_var_t mask; 1508 int err; 1509 1510 if (!netif_is_multiqueue(dev)) 1511 return -ENOENT; 1512 1513 if (!capable(CAP_NET_ADMIN)) 1514 return -EPERM; 1515 1516 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 1517 return -ENOMEM; 1518 1519 index = get_netdev_queue_index(queue); 1520 1521 err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits); 1522 if (err) { 1523 free_cpumask_var(mask); 1524 return err; 1525 } 1526 1527 if (!rtnl_trylock()) { 1528 free_cpumask_var(mask); 1529 return restart_syscall(); 1530 } 1531 1532 err = netif_set_xps_queue(dev, mask, index); 1533 rtnl_unlock(); 1534 1535 free_cpumask_var(mask); 1536 1537 return err ? : len; 1538 } 1539 1540 static struct netdev_queue_attribute xps_cpus_attribute __ro_after_init 1541 = __ATTR_RW(xps_cpus); 1542 1543 static ssize_t xps_rxqs_show(struct netdev_queue *queue, char *buf) 1544 { 1545 struct net_device *dev = queue->dev; 1546 unsigned int index; 1547 int tc; 1548 1549 index = get_netdev_queue_index(queue); 1550 1551 if (!rtnl_trylock()) 1552 return restart_syscall(); 1553 1554 tc = netdev_txq_to_tc(dev, index); 1555 rtnl_unlock(); 1556 if (tc < 0) 1557 return -EINVAL; 1558 1559 return xps_queue_show(dev, index, tc, buf, XPS_RXQS); 1560 } 1561 1562 static ssize_t xps_rxqs_store(struct netdev_queue *queue, const char *buf, 1563 size_t len) 1564 { 1565 struct net_device *dev = queue->dev; 1566 struct net *net = dev_net(dev); 1567 unsigned long *mask; 1568 unsigned int index; 1569 int err; 1570 1571 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1572 return -EPERM; 1573 1574 mask = bitmap_zalloc(dev->num_rx_queues, GFP_KERNEL); 1575 if (!mask) 1576 return -ENOMEM; 1577 1578 index = get_netdev_queue_index(queue); 1579 1580 err = bitmap_parse(buf, len, mask, dev->num_rx_queues); 1581 if (err) { 1582 bitmap_free(mask); 1583 return err; 1584 } 1585 1586 if (!rtnl_trylock()) { 1587 bitmap_free(mask); 1588 return restart_syscall(); 1589 } 1590 1591 cpus_read_lock(); 1592 err = __netif_set_xps_queue(dev, mask, index, XPS_RXQS); 1593 cpus_read_unlock(); 1594 1595 rtnl_unlock(); 1596 1597 bitmap_free(mask); 1598 return err ? : len; 1599 } 1600 1601 static struct netdev_queue_attribute xps_rxqs_attribute __ro_after_init 1602 = __ATTR_RW(xps_rxqs); 1603 #endif /* CONFIG_XPS */ 1604 1605 static struct attribute *netdev_queue_default_attrs[] __ro_after_init = { 1606 &queue_trans_timeout.attr, 1607 &queue_traffic_class.attr, 1608 #ifdef CONFIG_XPS 1609 &xps_cpus_attribute.attr, 1610 &xps_rxqs_attribute.attr, 1611 &queue_tx_maxrate.attr, 1612 #endif 1613 NULL 1614 }; 1615 ATTRIBUTE_GROUPS(netdev_queue_default); 1616 1617 static void netdev_queue_release(struct kobject *kobj) 1618 { 1619 struct netdev_queue *queue = to_netdev_queue(kobj); 1620 1621 memset(kobj, 0, sizeof(*kobj)); 1622 netdev_put(queue->dev, &queue->dev_tracker); 1623 } 1624 1625 static const void *netdev_queue_namespace(struct kobject *kobj) 1626 { 1627 struct netdev_queue *queue = to_netdev_queue(kobj); 1628 struct device *dev = &queue->dev->dev; 1629 const void *ns = NULL; 1630 1631 if (dev->class && dev->class->ns_type) 1632 ns = dev->class->namespace(dev); 1633 1634 return ns; 1635 } 1636 1637 static void netdev_queue_get_ownership(struct kobject *kobj, 1638 kuid_t *uid, kgid_t *gid) 1639 { 1640 const struct net *net = netdev_queue_namespace(kobj); 1641 1642 net_ns_get_ownership(net, uid, gid); 1643 } 1644 1645 static struct kobj_type netdev_queue_ktype __ro_after_init = { 1646 .sysfs_ops = &netdev_queue_sysfs_ops, 1647 .release = netdev_queue_release, 1648 .default_groups = netdev_queue_default_groups, 1649 .namespace = netdev_queue_namespace, 1650 .get_ownership = netdev_queue_get_ownership, 1651 }; 1652 1653 static int netdev_queue_add_kobject(struct net_device *dev, int index) 1654 { 1655 struct netdev_queue *queue = dev->_tx + index; 1656 struct kobject *kobj = &queue->kobj; 1657 int error = 0; 1658 1659 /* Kobject_put later will trigger netdev_queue_release call 1660 * which decreases dev refcount: Take that reference here 1661 */ 1662 netdev_hold(queue->dev, &queue->dev_tracker, GFP_KERNEL); 1663 1664 kobj->kset = dev->queues_kset; 1665 error = kobject_init_and_add(kobj, &netdev_queue_ktype, NULL, 1666 "tx-%u", index); 1667 if (error) 1668 goto err; 1669 1670 #ifdef CONFIG_BQL 1671 error = sysfs_create_group(kobj, &dql_group); 1672 if (error) 1673 goto err; 1674 #endif 1675 1676 kobject_uevent(kobj, KOBJ_ADD); 1677 return 0; 1678 1679 err: 1680 kobject_put(kobj); 1681 return error; 1682 } 1683 1684 static int tx_queue_change_owner(struct net_device *ndev, int index, 1685 kuid_t kuid, kgid_t kgid) 1686 { 1687 struct netdev_queue *queue = ndev->_tx + index; 1688 struct kobject *kobj = &queue->kobj; 1689 int error; 1690 1691 error = sysfs_change_owner(kobj, kuid, kgid); 1692 if (error) 1693 return error; 1694 1695 #ifdef CONFIG_BQL 1696 error = sysfs_group_change_owner(kobj, &dql_group, kuid, kgid); 1697 #endif 1698 return error; 1699 } 1700 #endif /* CONFIG_SYSFS */ 1701 1702 int 1703 netdev_queue_update_kobjects(struct net_device *dev, int old_num, int new_num) 1704 { 1705 #ifdef CONFIG_SYSFS 1706 int i; 1707 int error = 0; 1708 1709 /* Tx queue kobjects are allowed to be updated when a device is being 1710 * unregistered, but solely to remove queues from qdiscs. Any path 1711 * adding queues should be fixed. 1712 */ 1713 WARN(dev->reg_state == NETREG_UNREGISTERING && new_num > old_num, 1714 "New queues can't be registered after device unregistration."); 1715 1716 for (i = old_num; i < new_num; i++) { 1717 error = netdev_queue_add_kobject(dev, i); 1718 if (error) { 1719 new_num = old_num; 1720 break; 1721 } 1722 } 1723 1724 while (--i >= new_num) { 1725 struct netdev_queue *queue = dev->_tx + i; 1726 1727 if (!refcount_read(&dev_net(dev)->ns.count)) 1728 queue->kobj.uevent_suppress = 1; 1729 #ifdef CONFIG_BQL 1730 sysfs_remove_group(&queue->kobj, &dql_group); 1731 #endif 1732 kobject_put(&queue->kobj); 1733 } 1734 1735 return error; 1736 #else 1737 return 0; 1738 #endif /* CONFIG_SYSFS */ 1739 } 1740 1741 static int net_tx_queue_change_owner(struct net_device *dev, int num, 1742 kuid_t kuid, kgid_t kgid) 1743 { 1744 #ifdef CONFIG_SYSFS 1745 int error = 0; 1746 int i; 1747 1748 for (i = 0; i < num; i++) { 1749 error = tx_queue_change_owner(dev, i, kuid, kgid); 1750 if (error) 1751 break; 1752 } 1753 1754 return error; 1755 #else 1756 return 0; 1757 #endif /* CONFIG_SYSFS */ 1758 } 1759 1760 static int register_queue_kobjects(struct net_device *dev) 1761 { 1762 int error = 0, txq = 0, rxq = 0, real_rx = 0, real_tx = 0; 1763 1764 #ifdef CONFIG_SYSFS 1765 dev->queues_kset = kset_create_and_add("queues", 1766 NULL, &dev->dev.kobj); 1767 if (!dev->queues_kset) 1768 return -ENOMEM; 1769 real_rx = dev->real_num_rx_queues; 1770 #endif 1771 real_tx = dev->real_num_tx_queues; 1772 1773 error = net_rx_queue_update_kobjects(dev, 0, real_rx); 1774 if (error) 1775 goto error; 1776 rxq = real_rx; 1777 1778 error = netdev_queue_update_kobjects(dev, 0, real_tx); 1779 if (error) 1780 goto error; 1781 txq = real_tx; 1782 1783 return 0; 1784 1785 error: 1786 netdev_queue_update_kobjects(dev, txq, 0); 1787 net_rx_queue_update_kobjects(dev, rxq, 0); 1788 #ifdef CONFIG_SYSFS 1789 kset_unregister(dev->queues_kset); 1790 #endif 1791 return error; 1792 } 1793 1794 static int queue_change_owner(struct net_device *ndev, kuid_t kuid, kgid_t kgid) 1795 { 1796 int error = 0, real_rx = 0, real_tx = 0; 1797 1798 #ifdef CONFIG_SYSFS 1799 if (ndev->queues_kset) { 1800 error = sysfs_change_owner(&ndev->queues_kset->kobj, kuid, kgid); 1801 if (error) 1802 return error; 1803 } 1804 real_rx = ndev->real_num_rx_queues; 1805 #endif 1806 real_tx = ndev->real_num_tx_queues; 1807 1808 error = net_rx_queue_change_owner(ndev, real_rx, kuid, kgid); 1809 if (error) 1810 return error; 1811 1812 error = net_tx_queue_change_owner(ndev, real_tx, kuid, kgid); 1813 if (error) 1814 return error; 1815 1816 return 0; 1817 } 1818 1819 static void remove_queue_kobjects(struct net_device *dev) 1820 { 1821 int real_rx = 0, real_tx = 0; 1822 1823 #ifdef CONFIG_SYSFS 1824 real_rx = dev->real_num_rx_queues; 1825 #endif 1826 real_tx = dev->real_num_tx_queues; 1827 1828 net_rx_queue_update_kobjects(dev, real_rx, 0); 1829 netdev_queue_update_kobjects(dev, real_tx, 0); 1830 1831 dev->real_num_rx_queues = 0; 1832 dev->real_num_tx_queues = 0; 1833 #ifdef CONFIG_SYSFS 1834 kset_unregister(dev->queues_kset); 1835 #endif 1836 } 1837 1838 static bool net_current_may_mount(void) 1839 { 1840 struct net *net = current->nsproxy->net_ns; 1841 1842 return ns_capable(net->user_ns, CAP_SYS_ADMIN); 1843 } 1844 1845 static void *net_grab_current_ns(void) 1846 { 1847 struct net *ns = current->nsproxy->net_ns; 1848 #ifdef CONFIG_NET_NS 1849 if (ns) 1850 refcount_inc(&ns->passive); 1851 #endif 1852 return ns; 1853 } 1854 1855 static const void *net_initial_ns(void) 1856 { 1857 return &init_net; 1858 } 1859 1860 static const void *net_netlink_ns(struct sock *sk) 1861 { 1862 return sock_net(sk); 1863 } 1864 1865 const struct kobj_ns_type_operations net_ns_type_operations = { 1866 .type = KOBJ_NS_TYPE_NET, 1867 .current_may_mount = net_current_may_mount, 1868 .grab_current_ns = net_grab_current_ns, 1869 .netlink_ns = net_netlink_ns, 1870 .initial_ns = net_initial_ns, 1871 .drop_ns = net_drop_ns, 1872 }; 1873 EXPORT_SYMBOL_GPL(net_ns_type_operations); 1874 1875 static int netdev_uevent(struct device *d, struct kobj_uevent_env *env) 1876 { 1877 struct net_device *dev = to_net_dev(d); 1878 int retval; 1879 1880 /* pass interface to uevent. */ 1881 retval = add_uevent_var(env, "INTERFACE=%s", dev->name); 1882 if (retval) 1883 goto exit; 1884 1885 /* pass ifindex to uevent. 1886 * ifindex is useful as it won't change (interface name may change) 1887 * and is what RtNetlink uses natively. 1888 */ 1889 retval = add_uevent_var(env, "IFINDEX=%d", dev->ifindex); 1890 1891 exit: 1892 return retval; 1893 } 1894 1895 /* 1896 * netdev_release -- destroy and free a dead device. 1897 * Called when last reference to device kobject is gone. 1898 */ 1899 static void netdev_release(struct device *d) 1900 { 1901 struct net_device *dev = to_net_dev(d); 1902 1903 BUG_ON(dev->reg_state != NETREG_RELEASED); 1904 1905 /* no need to wait for rcu grace period: 1906 * device is dead and about to be freed. 1907 */ 1908 kfree(rcu_access_pointer(dev->ifalias)); 1909 netdev_freemem(dev); 1910 } 1911 1912 static const void *net_namespace(struct device *d) 1913 { 1914 struct net_device *dev = to_net_dev(d); 1915 1916 return dev_net(dev); 1917 } 1918 1919 static void net_get_ownership(struct device *d, kuid_t *uid, kgid_t *gid) 1920 { 1921 struct net_device *dev = to_net_dev(d); 1922 const struct net *net = dev_net(dev); 1923 1924 net_ns_get_ownership(net, uid, gid); 1925 } 1926 1927 static struct class net_class __ro_after_init = { 1928 .name = "net", 1929 .dev_release = netdev_release, 1930 .dev_groups = net_class_groups, 1931 .dev_uevent = netdev_uevent, 1932 .ns_type = &net_ns_type_operations, 1933 .namespace = net_namespace, 1934 .get_ownership = net_get_ownership, 1935 }; 1936 1937 #ifdef CONFIG_OF 1938 static int of_dev_node_match(struct device *dev, const void *data) 1939 { 1940 for (; dev; dev = dev->parent) { 1941 if (dev->of_node == data) 1942 return 1; 1943 } 1944 1945 return 0; 1946 } 1947 1948 /* 1949 * of_find_net_device_by_node - lookup the net device for the device node 1950 * @np: OF device node 1951 * 1952 * Looks up the net_device structure corresponding with the device node. 1953 * If successful, returns a pointer to the net_device with the embedded 1954 * struct device refcount incremented by one, or NULL on failure. The 1955 * refcount must be dropped when done with the net_device. 1956 */ 1957 struct net_device *of_find_net_device_by_node(struct device_node *np) 1958 { 1959 struct device *dev; 1960 1961 dev = class_find_device(&net_class, NULL, np, of_dev_node_match); 1962 if (!dev) 1963 return NULL; 1964 1965 return to_net_dev(dev); 1966 } 1967 EXPORT_SYMBOL(of_find_net_device_by_node); 1968 #endif 1969 1970 /* Delete sysfs entries but hold kobject reference until after all 1971 * netdev references are gone. 1972 */ 1973 void netdev_unregister_kobject(struct net_device *ndev) 1974 { 1975 struct device *dev = &ndev->dev; 1976 1977 if (!refcount_read(&dev_net(ndev)->ns.count)) 1978 dev_set_uevent_suppress(dev, 1); 1979 1980 kobject_get(&dev->kobj); 1981 1982 remove_queue_kobjects(ndev); 1983 1984 pm_runtime_set_memalloc_noio(dev, false); 1985 1986 device_del(dev); 1987 } 1988 1989 /* Create sysfs entries for network device. */ 1990 int netdev_register_kobject(struct net_device *ndev) 1991 { 1992 struct device *dev = &ndev->dev; 1993 const struct attribute_group **groups = ndev->sysfs_groups; 1994 int error = 0; 1995 1996 device_initialize(dev); 1997 dev->class = &net_class; 1998 dev->platform_data = ndev; 1999 dev->groups = groups; 2000 2001 dev_set_name(dev, "%s", ndev->name); 2002 2003 #ifdef CONFIG_SYSFS 2004 /* Allow for a device specific group */ 2005 if (*groups) 2006 groups++; 2007 2008 *groups++ = &netstat_group; 2009 2010 if (wireless_group_needed(ndev)) 2011 *groups++ = &wireless_group; 2012 #endif /* CONFIG_SYSFS */ 2013 2014 error = device_add(dev); 2015 if (error) 2016 return error; 2017 2018 error = register_queue_kobjects(ndev); 2019 if (error) { 2020 device_del(dev); 2021 return error; 2022 } 2023 2024 pm_runtime_set_memalloc_noio(dev, true); 2025 2026 return error; 2027 } 2028 2029 /* Change owner for sysfs entries when moving network devices across network 2030 * namespaces owned by different user namespaces. 2031 */ 2032 int netdev_change_owner(struct net_device *ndev, const struct net *net_old, 2033 const struct net *net_new) 2034 { 2035 kuid_t old_uid = GLOBAL_ROOT_UID, new_uid = GLOBAL_ROOT_UID; 2036 kgid_t old_gid = GLOBAL_ROOT_GID, new_gid = GLOBAL_ROOT_GID; 2037 struct device *dev = &ndev->dev; 2038 int error; 2039 2040 net_ns_get_ownership(net_old, &old_uid, &old_gid); 2041 net_ns_get_ownership(net_new, &new_uid, &new_gid); 2042 2043 /* The network namespace was changed but the owning user namespace is 2044 * identical so there's no need to change the owner of sysfs entries. 2045 */ 2046 if (uid_eq(old_uid, new_uid) && gid_eq(old_gid, new_gid)) 2047 return 0; 2048 2049 error = device_change_owner(dev, new_uid, new_gid); 2050 if (error) 2051 return error; 2052 2053 error = queue_change_owner(ndev, new_uid, new_gid); 2054 if (error) 2055 return error; 2056 2057 return 0; 2058 } 2059 2060 int netdev_class_create_file_ns(const struct class_attribute *class_attr, 2061 const void *ns) 2062 { 2063 return class_create_file_ns(&net_class, class_attr, ns); 2064 } 2065 EXPORT_SYMBOL(netdev_class_create_file_ns); 2066 2067 void netdev_class_remove_file_ns(const struct class_attribute *class_attr, 2068 const void *ns) 2069 { 2070 class_remove_file_ns(&net_class, class_attr, ns); 2071 } 2072 EXPORT_SYMBOL(netdev_class_remove_file_ns); 2073 2074 int __init netdev_kobject_init(void) 2075 { 2076 kobj_ns_type_register(&net_ns_type_operations); 2077 return class_register(&net_class); 2078 } 2079