// SPDX-License-Identifier: GPL-2.0-or-later /* * net-sysfs.c - network device class and attributes * * Copyright (c) 2003 Stephen Hemminger */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "dev.h" #include "net-sysfs.h" #ifdef CONFIG_SYSFS static const char fmt_hex[] = "%#x\n"; static const char fmt_dec[] = "%d\n"; static const char fmt_ulong[] = "%lu\n"; static const char fmt_u64[] = "%llu\n"; static inline int dev_isalive(const struct net_device *dev) { return dev->reg_state <= NETREG_REGISTERED; } /* use same locking rules as GIF* ioctl's */ static ssize_t netdev_show(const struct device *dev, struct device_attribute *attr, char *buf, ssize_t (*format)(const struct net_device *, char *)) { struct net_device *ndev = to_net_dev(dev); ssize_t ret = -EINVAL; read_lock(&dev_base_lock); if (dev_isalive(ndev)) ret = (*format)(ndev, buf); read_unlock(&dev_base_lock); return ret; } /* generate a show function for simple field */ #define NETDEVICE_SHOW(field, format_string) \ static ssize_t format_##field(const struct net_device *dev, char *buf) \ { \ return sprintf(buf, format_string, dev->field); \ } \ static ssize_t field##_show(struct device *dev, \ struct device_attribute *attr, char *buf) \ { \ return netdev_show(dev, attr, buf, format_##field); \ } \ #define NETDEVICE_SHOW_RO(field, format_string) \ NETDEVICE_SHOW(field, format_string); \ static DEVICE_ATTR_RO(field) #define NETDEVICE_SHOW_RW(field, format_string) \ NETDEVICE_SHOW(field, format_string); \ static DEVICE_ATTR_RW(field) /* use same locking and permission rules as SIF* ioctl's */ static ssize_t netdev_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t len, int (*set)(struct net_device *, unsigned long)) { struct net_device *netdev = to_net_dev(dev); struct net *net = dev_net(netdev); unsigned long new; int ret; if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) return -EPERM; ret = kstrtoul(buf, 0, &new); if (ret) goto err; if (!rtnl_trylock()) return restart_syscall(); if (dev_isalive(netdev)) { ret = (*set)(netdev, new); if (ret == 0) ret = len; } rtnl_unlock(); err: return ret; } NETDEVICE_SHOW_RO(dev_id, fmt_hex); NETDEVICE_SHOW_RO(dev_port, fmt_dec); NETDEVICE_SHOW_RO(addr_assign_type, fmt_dec); NETDEVICE_SHOW_RO(addr_len, fmt_dec); NETDEVICE_SHOW_RO(ifindex, fmt_dec); NETDEVICE_SHOW_RO(type, fmt_dec); NETDEVICE_SHOW_RO(link_mode, fmt_dec); static ssize_t iflink_show(struct device *dev, struct device_attribute *attr, char *buf) { struct net_device *ndev = to_net_dev(dev); return sprintf(buf, fmt_dec, dev_get_iflink(ndev)); } static DEVICE_ATTR_RO(iflink); static ssize_t format_name_assign_type(const struct net_device *dev, char *buf) { return sprintf(buf, fmt_dec, dev->name_assign_type); } static ssize_t name_assign_type_show(struct device *dev, struct device_attribute *attr, char *buf) { struct net_device *ndev = to_net_dev(dev); ssize_t ret = -EINVAL; if (ndev->name_assign_type != NET_NAME_UNKNOWN) ret = netdev_show(dev, attr, buf, format_name_assign_type); return ret; } static DEVICE_ATTR_RO(name_assign_type); /* use same locking rules as GIFHWADDR ioctl's */ static ssize_t address_show(struct device *dev, struct device_attribute *attr, char *buf) { struct net_device *ndev = to_net_dev(dev); ssize_t ret = -EINVAL; read_lock(&dev_base_lock); if (dev_isalive(ndev)) ret = sysfs_format_mac(buf, ndev->dev_addr, ndev->addr_len); read_unlock(&dev_base_lock); return ret; } static DEVICE_ATTR_RO(address); static ssize_t broadcast_show(struct device *dev, struct device_attribute *attr, char *buf) { struct net_device *ndev = to_net_dev(dev); if (dev_isalive(ndev)) return sysfs_format_mac(buf, ndev->broadcast, ndev->addr_len); return -EINVAL; } static DEVICE_ATTR_RO(broadcast); static int change_carrier(struct net_device *dev, unsigned long new_carrier) { if (!netif_running(dev)) return -EINVAL; return dev_change_carrier(dev, (bool)new_carrier); } static ssize_t carrier_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct net_device *netdev = to_net_dev(dev); /* The check is also done in change_carrier; this helps returning early * without hitting the trylock/restart in netdev_store. */ if (!netdev->netdev_ops->ndo_change_carrier) return -EOPNOTSUPP; return netdev_store(dev, attr, buf, len, change_carrier); } static ssize_t carrier_show(struct device *dev, struct device_attribute *attr, char *buf) { struct net_device *netdev = to_net_dev(dev); if (netif_running(netdev)) return sprintf(buf, fmt_dec, !!netif_carrier_ok(netdev)); return -EINVAL; } static DEVICE_ATTR_RW(carrier); static ssize_t speed_show(struct device *dev, struct device_attribute *attr, char *buf) { struct net_device *netdev = to_net_dev(dev); int ret = -EINVAL; /* The check is also done in __ethtool_get_link_ksettings; this helps * returning early without hitting the trylock/restart below. */ if (!netdev->ethtool_ops->get_link_ksettings) return ret; if (!rtnl_trylock()) return restart_syscall(); if (netif_running(netdev) && netif_device_present(netdev)) { struct ethtool_link_ksettings cmd; if (!__ethtool_get_link_ksettings(netdev, &cmd)) ret = sprintf(buf, fmt_dec, cmd.base.speed); } rtnl_unlock(); return ret; } static DEVICE_ATTR_RO(speed); static ssize_t duplex_show(struct device *dev, struct device_attribute *attr, char *buf) { struct net_device *netdev = to_net_dev(dev); int ret = -EINVAL; /* The check is also done in __ethtool_get_link_ksettings; this helps * returning early without hitting the trylock/restart below. */ if (!netdev->ethtool_ops->get_link_ksettings) return ret; if (!rtnl_trylock()) return restart_syscall(); if (netif_running(netdev)) { struct ethtool_link_ksettings cmd; if (!__ethtool_get_link_ksettings(netdev, &cmd)) { const char *duplex; switch (cmd.base.duplex) { case DUPLEX_HALF: duplex = "half"; break; case DUPLEX_FULL: duplex = "full"; break; default: duplex = "unknown"; break; } ret = sprintf(buf, "%s\n", duplex); } } rtnl_unlock(); return ret; } static DEVICE_ATTR_RO(duplex); static ssize_t testing_show(struct device *dev, struct device_attribute *attr, char *buf) { struct net_device *netdev = to_net_dev(dev); if (netif_running(netdev)) return sprintf(buf, fmt_dec, !!netif_testing(netdev)); return -EINVAL; } static DEVICE_ATTR_RO(testing); static ssize_t dormant_show(struct device *dev, struct device_attribute *attr, char *buf) { struct net_device *netdev = to_net_dev(dev); if (netif_running(netdev)) return sprintf(buf, fmt_dec, !!netif_dormant(netdev)); return -EINVAL; } static DEVICE_ATTR_RO(dormant); static const char *const operstates[] = { "unknown", "notpresent", /* currently unused */ "down", "lowerlayerdown", "testing", "dormant", "up" }; static ssize_t operstate_show(struct device *dev, struct device_attribute *attr, char *buf) { const struct net_device *netdev = to_net_dev(dev); unsigned char operstate; read_lock(&dev_base_lock); operstate = netdev->operstate; if (!netif_running(netdev)) operstate = IF_OPER_DOWN; read_unlock(&dev_base_lock); if (operstate >= ARRAY_SIZE(operstates)) return -EINVAL; /* should not happen */ return sprintf(buf, "%s\n", operstates[operstate]); } static DEVICE_ATTR_RO(operstate); static ssize_t carrier_changes_show(struct device *dev, struct device_attribute *attr, char *buf) { struct net_device *netdev = to_net_dev(dev); return sprintf(buf, fmt_dec, atomic_read(&netdev->carrier_up_count) + atomic_read(&netdev->carrier_down_count)); } static DEVICE_ATTR_RO(carrier_changes); static ssize_t carrier_up_count_show(struct device *dev, struct device_attribute *attr, char *buf) { struct net_device *netdev = to_net_dev(dev); return sprintf(buf, fmt_dec, atomic_read(&netdev->carrier_up_count)); } static DEVICE_ATTR_RO(carrier_up_count); static ssize_t carrier_down_count_show(struct device *dev, struct device_attribute *attr, char *buf) { struct net_device *netdev = to_net_dev(dev); return sprintf(buf, fmt_dec, atomic_read(&netdev->carrier_down_count)); } static DEVICE_ATTR_RO(carrier_down_count); /* read-write attributes */ static int change_mtu(struct net_device *dev, unsigned long new_mtu) { return dev_set_mtu(dev, (int)new_mtu); } static ssize_t mtu_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { return netdev_store(dev, attr, buf, len, change_mtu); } NETDEVICE_SHOW_RW(mtu, fmt_dec); static int change_flags(struct net_device *dev, unsigned long new_flags) { return dev_change_flags(dev, (unsigned int)new_flags, NULL); } static ssize_t flags_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { return netdev_store(dev, attr, buf, len, change_flags); } NETDEVICE_SHOW_RW(flags, fmt_hex); static ssize_t tx_queue_len_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { if (!capable(CAP_NET_ADMIN)) return -EPERM; return netdev_store(dev, attr, buf, len, dev_change_tx_queue_len); } NETDEVICE_SHOW_RW(tx_queue_len, fmt_dec); static int change_gro_flush_timeout(struct net_device *dev, unsigned long val) { WRITE_ONCE(dev->gro_flush_timeout, val); return 0; } static ssize_t gro_flush_timeout_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { if (!capable(CAP_NET_ADMIN)) return -EPERM; return netdev_store(dev, attr, buf, len, change_gro_flush_timeout); } NETDEVICE_SHOW_RW(gro_flush_timeout, fmt_ulong); static int change_napi_defer_hard_irqs(struct net_device *dev, unsigned long val) { WRITE_ONCE(dev->napi_defer_hard_irqs, val); return 0; } static ssize_t napi_defer_hard_irqs_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { if (!capable(CAP_NET_ADMIN)) return -EPERM; return netdev_store(dev, attr, buf, len, change_napi_defer_hard_irqs); } NETDEVICE_SHOW_RW(napi_defer_hard_irqs, fmt_dec); static ssize_t ifalias_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct net_device *netdev = to_net_dev(dev); struct net *net = dev_net(netdev); size_t count = len; ssize_t ret = 0; if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) return -EPERM; /* ignore trailing newline */ if (len > 0 && buf[len - 1] == '\n') --count; if (!rtnl_trylock()) return restart_syscall(); if (dev_isalive(netdev)) { ret = dev_set_alias(netdev, buf, count); if (ret < 0) goto err; ret = len; netdev_state_change(netdev); } err: rtnl_unlock(); return ret; } static ssize_t ifalias_show(struct device *dev, struct device_attribute *attr, char *buf) { const struct net_device *netdev = to_net_dev(dev); char tmp[IFALIASZ]; ssize_t ret = 0; ret = dev_get_alias(netdev, tmp, sizeof(tmp)); if (ret > 0) ret = sprintf(buf, "%s\n", tmp); return ret; } static DEVICE_ATTR_RW(ifalias); static int change_group(struct net_device *dev, unsigned long new_group) { dev_set_group(dev, (int)new_group); return 0; } static ssize_t group_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { return netdev_store(dev, attr, buf, len, change_group); } NETDEVICE_SHOW(group, fmt_dec); static DEVICE_ATTR(netdev_group, 0644, group_show, group_store); static int change_proto_down(struct net_device *dev, unsigned long proto_down) { return dev_change_proto_down(dev, (bool)proto_down); } static ssize_t proto_down_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { return netdev_store(dev, attr, buf, len, change_proto_down); } NETDEVICE_SHOW_RW(proto_down, fmt_dec); static ssize_t phys_port_id_show(struct device *dev, struct device_attribute *attr, char *buf) { struct net_device *netdev = to_net_dev(dev); ssize_t ret = -EINVAL; /* The check is also done in dev_get_phys_port_id; this helps returning * early without hitting the trylock/restart below. */ if (!netdev->netdev_ops->ndo_get_phys_port_id) return -EOPNOTSUPP; if (!rtnl_trylock()) return restart_syscall(); if (dev_isalive(netdev)) { struct netdev_phys_item_id ppid; ret = dev_get_phys_port_id(netdev, &ppid); if (!ret) ret = sprintf(buf, "%*phN\n", ppid.id_len, ppid.id); } rtnl_unlock(); return ret; } static DEVICE_ATTR_RO(phys_port_id); static ssize_t phys_port_name_show(struct device *dev, struct device_attribute *attr, char *buf) { struct net_device *netdev = to_net_dev(dev); ssize_t ret = -EINVAL; /* The checks are also done in dev_get_phys_port_name; this helps * returning early without hitting the trylock/restart below. */ if (!netdev->netdev_ops->ndo_get_phys_port_name && !netdev->netdev_ops->ndo_get_devlink_port) return -EOPNOTSUPP; if (!rtnl_trylock()) return restart_syscall(); if (dev_isalive(netdev)) { char name[IFNAMSIZ]; ret = dev_get_phys_port_name(netdev, name, sizeof(name)); if (!ret) ret = sprintf(buf, "%s\n", name); } rtnl_unlock(); return ret; } static DEVICE_ATTR_RO(phys_port_name); static ssize_t phys_switch_id_show(struct device *dev, struct device_attribute *attr, char *buf) { struct net_device *netdev = to_net_dev(dev); ssize_t ret = -EINVAL; /* The checks are also done in dev_get_phys_port_name; this helps * returning early without hitting the trylock/restart below. This works * because recurse is false when calling dev_get_port_parent_id. */ if (!netdev->netdev_ops->ndo_get_port_parent_id && !netdev->netdev_ops->ndo_get_devlink_port) return -EOPNOTSUPP; if (!rtnl_trylock()) return restart_syscall(); if (dev_isalive(netdev)) { struct netdev_phys_item_id ppid = { }; ret = dev_get_port_parent_id(netdev, &ppid, false); if (!ret) ret = sprintf(buf, "%*phN\n", ppid.id_len, ppid.id); } rtnl_unlock(); return ret; } static DEVICE_ATTR_RO(phys_switch_id); static ssize_t threaded_show(struct device *dev, struct device_attribute *attr, char *buf) { struct net_device *netdev = to_net_dev(dev); ssize_t ret = -EINVAL; if (!rtnl_trylock()) return restart_syscall(); if (dev_isalive(netdev)) ret = sprintf(buf, fmt_dec, netdev->threaded); rtnl_unlock(); return ret; } static int modify_napi_threaded(struct net_device *dev, unsigned long val) { int ret; if (list_empty(&dev->napi_list)) return -EOPNOTSUPP; if (val != 0 && val != 1) return -EOPNOTSUPP; ret = dev_set_threaded(dev, val); return ret; } static ssize_t threaded_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { return netdev_store(dev, attr, buf, len, modify_napi_threaded); } static DEVICE_ATTR_RW(threaded); static struct attribute *net_class_attrs[] __ro_after_init = { &dev_attr_netdev_group.attr, &dev_attr_type.attr, &dev_attr_dev_id.attr, &dev_attr_dev_port.attr, &dev_attr_iflink.attr, &dev_attr_ifindex.attr, &dev_attr_name_assign_type.attr, &dev_attr_addr_assign_type.attr, &dev_attr_addr_len.attr, &dev_attr_link_mode.attr, &dev_attr_address.attr, &dev_attr_broadcast.attr, &dev_attr_speed.attr, &dev_attr_duplex.attr, &dev_attr_dormant.attr, &dev_attr_testing.attr, &dev_attr_operstate.attr, &dev_attr_carrier_changes.attr, &dev_attr_ifalias.attr, &dev_attr_carrier.attr, &dev_attr_mtu.attr, &dev_attr_flags.attr, &dev_attr_tx_queue_len.attr, &dev_attr_gro_flush_timeout.attr, &dev_attr_napi_defer_hard_irqs.attr, &dev_attr_phys_port_id.attr, &dev_attr_phys_port_name.attr, &dev_attr_phys_switch_id.attr, &dev_attr_proto_down.attr, &dev_attr_carrier_up_count.attr, &dev_attr_carrier_down_count.attr, &dev_attr_threaded.attr, NULL, }; ATTRIBUTE_GROUPS(net_class); /* Show a given an attribute in the statistics group */ static ssize_t netstat_show(const struct device *d, struct device_attribute *attr, char *buf, unsigned long offset) { struct net_device *dev = to_net_dev(d); ssize_t ret = -EINVAL; WARN_ON(offset > sizeof(struct rtnl_link_stats64) || offset % sizeof(u64) != 0); read_lock(&dev_base_lock); if (dev_isalive(dev)) { struct rtnl_link_stats64 temp; const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp); ret = sprintf(buf, fmt_u64, *(u64 *)(((u8 *)stats) + offset)); } read_unlock(&dev_base_lock); return ret; } /* generate a read-only statistics attribute */ #define NETSTAT_ENTRY(name) \ static ssize_t name##_show(struct device *d, \ struct device_attribute *attr, char *buf) \ { \ return netstat_show(d, attr, buf, \ offsetof(struct rtnl_link_stats64, name)); \ } \ static DEVICE_ATTR_RO(name) NETSTAT_ENTRY(rx_packets); NETSTAT_ENTRY(tx_packets); NETSTAT_ENTRY(rx_bytes); NETSTAT_ENTRY(tx_bytes); NETSTAT_ENTRY(rx_errors); NETSTAT_ENTRY(tx_errors); NETSTAT_ENTRY(rx_dropped); NETSTAT_ENTRY(tx_dropped); NETSTAT_ENTRY(multicast); NETSTAT_ENTRY(collisions); NETSTAT_ENTRY(rx_length_errors); NETSTAT_ENTRY(rx_over_errors); NETSTAT_ENTRY(rx_crc_errors); NETSTAT_ENTRY(rx_frame_errors); NETSTAT_ENTRY(rx_fifo_errors); NETSTAT_ENTRY(rx_missed_errors); NETSTAT_ENTRY(tx_aborted_errors); NETSTAT_ENTRY(tx_carrier_errors); NETSTAT_ENTRY(tx_fifo_errors); NETSTAT_ENTRY(tx_heartbeat_errors); NETSTAT_ENTRY(tx_window_errors); NETSTAT_ENTRY(rx_compressed); NETSTAT_ENTRY(tx_compressed); NETSTAT_ENTRY(rx_nohandler); static struct attribute *netstat_attrs[] __ro_after_init = { &dev_attr_rx_packets.attr, &dev_attr_tx_packets.attr, &dev_attr_rx_bytes.attr, &dev_attr_tx_bytes.attr, &dev_attr_rx_errors.attr, &dev_attr_tx_errors.attr, &dev_attr_rx_dropped.attr, &dev_attr_tx_dropped.attr, &dev_attr_multicast.attr, &dev_attr_collisions.attr, &dev_attr_rx_length_errors.attr, &dev_attr_rx_over_errors.attr, &dev_attr_rx_crc_errors.attr, &dev_attr_rx_frame_errors.attr, &dev_attr_rx_fifo_errors.attr, &dev_attr_rx_missed_errors.attr, &dev_attr_tx_aborted_errors.attr, &dev_attr_tx_carrier_errors.attr, &dev_attr_tx_fifo_errors.attr, &dev_attr_tx_heartbeat_errors.attr, &dev_attr_tx_window_errors.attr, &dev_attr_rx_compressed.attr, &dev_attr_tx_compressed.attr, &dev_attr_rx_nohandler.attr, NULL }; static const struct attribute_group netstat_group = { .name = "statistics", .attrs = netstat_attrs, }; static struct attribute *wireless_attrs[] = { NULL }; static const struct attribute_group wireless_group = { .name = "wireless", .attrs = wireless_attrs, }; static bool wireless_group_needed(struct net_device *ndev) { #if IS_ENABLED(CONFIG_CFG80211) if (ndev->ieee80211_ptr) return true; #endif #if IS_ENABLED(CONFIG_WIRELESS_EXT) if (ndev->wireless_handlers) return true; #endif return false; } #else /* CONFIG_SYSFS */ #define net_class_groups NULL #endif /* CONFIG_SYSFS */ #ifdef CONFIG_SYSFS #define to_rx_queue_attr(_attr) \ container_of(_attr, struct rx_queue_attribute, attr) #define to_rx_queue(obj) container_of(obj, struct netdev_rx_queue, kobj) static ssize_t rx_queue_attr_show(struct kobject *kobj, struct attribute *attr, char *buf) { const struct rx_queue_attribute *attribute = to_rx_queue_attr(attr); struct netdev_rx_queue *queue = to_rx_queue(kobj); if (!attribute->show) return -EIO; return attribute->show(queue, buf); } static ssize_t rx_queue_attr_store(struct kobject *kobj, struct attribute *attr, const char *buf, size_t count) { const struct rx_queue_attribute *attribute = to_rx_queue_attr(attr); struct netdev_rx_queue *queue = to_rx_queue(kobj); if (!attribute->store) return -EIO; return attribute->store(queue, buf, count); } static const struct sysfs_ops rx_queue_sysfs_ops = { .show = rx_queue_attr_show, .store = rx_queue_attr_store, }; #ifdef CONFIG_RPS static ssize_t show_rps_map(struct netdev_rx_queue *queue, char *buf) { struct rps_map *map; cpumask_var_t mask; int i, len; if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) return -ENOMEM; rcu_read_lock(); map = rcu_dereference(queue->rps_map); if (map) for (i = 0; i < map->len; i++) cpumask_set_cpu(map->cpus[i], mask); len = snprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask)); rcu_read_unlock(); free_cpumask_var(mask); return len < PAGE_SIZE ? len : -EINVAL; } static ssize_t store_rps_map(struct netdev_rx_queue *queue, const char *buf, size_t len) { struct rps_map *old_map, *map; cpumask_var_t mask; int err, cpu, i; static DEFINE_MUTEX(rps_map_mutex); if (!capable(CAP_NET_ADMIN)) return -EPERM; if (!alloc_cpumask_var(&mask, GFP_KERNEL)) return -ENOMEM; err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits); if (err) { free_cpumask_var(mask); return err; } if (!cpumask_empty(mask)) { cpumask_and(mask, mask, housekeeping_cpumask(HK_TYPE_DOMAIN)); cpumask_and(mask, mask, housekeeping_cpumask(HK_TYPE_WQ)); if (cpumask_empty(mask)) { free_cpumask_var(mask); return -EINVAL; } } map = kzalloc(max_t(unsigned int, RPS_MAP_SIZE(cpumask_weight(mask)), L1_CACHE_BYTES), GFP_KERNEL); if (!map) { free_cpumask_var(mask); return -ENOMEM; } i = 0; for_each_cpu_and(cpu, mask, cpu_online_mask) map->cpus[i++] = cpu; if (i) { map->len = i; } else { kfree(map); map = NULL; } mutex_lock(&rps_map_mutex); old_map = rcu_dereference_protected(queue->rps_map, mutex_is_locked(&rps_map_mutex)); rcu_assign_pointer(queue->rps_map, map); if (map) static_branch_inc(&rps_needed); if (old_map) static_branch_dec(&rps_needed); mutex_unlock(&rps_map_mutex); if (old_map) kfree_rcu(old_map, rcu); free_cpumask_var(mask); return len; } static ssize_t show_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue, char *buf) { struct rps_dev_flow_table *flow_table; unsigned long val = 0; rcu_read_lock(); flow_table = rcu_dereference(queue->rps_flow_table); if (flow_table) val = (unsigned long)flow_table->mask + 1; rcu_read_unlock(); return sprintf(buf, "%lu\n", val); } static void rps_dev_flow_table_release(struct rcu_head *rcu) { struct rps_dev_flow_table *table = container_of(rcu, struct rps_dev_flow_table, rcu); vfree(table); } static ssize_t store_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue, const char *buf, size_t len) { unsigned long mask, count; struct rps_dev_flow_table *table, *old_table; static DEFINE_SPINLOCK(rps_dev_flow_lock); int rc; if (!capable(CAP_NET_ADMIN)) return -EPERM; rc = kstrtoul(buf, 0, &count); if (rc < 0) return rc; if (count) { mask = count - 1; /* mask = roundup_pow_of_two(count) - 1; * without overflows... */ while ((mask | (mask >> 1)) != mask) mask |= (mask >> 1); /* On 64 bit arches, must check mask fits in table->mask (u32), * and on 32bit arches, must check * RPS_DEV_FLOW_TABLE_SIZE(mask + 1) doesn't overflow. */ #if BITS_PER_LONG > 32 if (mask > (unsigned long)(u32)mask) return -EINVAL; #else if (mask > (ULONG_MAX - RPS_DEV_FLOW_TABLE_SIZE(1)) / sizeof(struct rps_dev_flow)) { /* Enforce a limit to prevent overflow */ return -EINVAL; } #endif table = vmalloc(RPS_DEV_FLOW_TABLE_SIZE(mask + 1)); if (!table) return -ENOMEM; table->mask = mask; for (count = 0; count <= mask; count++) table->flows[count].cpu = RPS_NO_CPU; } else { table = NULL; } spin_lock(&rps_dev_flow_lock); old_table = rcu_dereference_protected(queue->rps_flow_table, lockdep_is_held(&rps_dev_flow_lock)); rcu_assign_pointer(queue->rps_flow_table, table); spin_unlock(&rps_dev_flow_lock); if (old_table) call_rcu(&old_table->rcu, rps_dev_flow_table_release); return len; } static struct rx_queue_attribute rps_cpus_attribute __ro_after_init = __ATTR(rps_cpus, 0644, show_rps_map, store_rps_map); static struct rx_queue_attribute rps_dev_flow_table_cnt_attribute __ro_after_init = __ATTR(rps_flow_cnt, 0644, show_rps_dev_flow_table_cnt, store_rps_dev_flow_table_cnt); #endif /* CONFIG_RPS */ static struct attribute *rx_queue_default_attrs[] __ro_after_init = { #ifdef CONFIG_RPS &rps_cpus_attribute.attr, &rps_dev_flow_table_cnt_attribute.attr, #endif NULL }; ATTRIBUTE_GROUPS(rx_queue_default); static void rx_queue_release(struct kobject *kobj) { struct netdev_rx_queue *queue = to_rx_queue(kobj); #ifdef CONFIG_RPS struct rps_map *map; struct rps_dev_flow_table *flow_table; map = rcu_dereference_protected(queue->rps_map, 1); if (map) { RCU_INIT_POINTER(queue->rps_map, NULL); kfree_rcu(map, rcu); } flow_table = rcu_dereference_protected(queue->rps_flow_table, 1); if (flow_table) { RCU_INIT_POINTER(queue->rps_flow_table, NULL); call_rcu(&flow_table->rcu, rps_dev_flow_table_release); } #endif memset(kobj, 0, sizeof(*kobj)); netdev_put(queue->dev, &queue->dev_tracker); } static const void *rx_queue_namespace(struct kobject *kobj) { struct netdev_rx_queue *queue = to_rx_queue(kobj); struct device *dev = &queue->dev->dev; const void *ns = NULL; if (dev->class && dev->class->ns_type) ns = dev->class->namespace(dev); return ns; } static void rx_queue_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid) { const struct net *net = rx_queue_namespace(kobj); net_ns_get_ownership(net, uid, gid); } static struct kobj_type rx_queue_ktype __ro_after_init = { .sysfs_ops = &rx_queue_sysfs_ops, .release = rx_queue_release, .default_groups = rx_queue_default_groups, .namespace = rx_queue_namespace, .get_ownership = rx_queue_get_ownership, }; static int rx_queue_add_kobject(struct net_device *dev, int index) { struct netdev_rx_queue *queue = dev->_rx + index; struct kobject *kobj = &queue->kobj; int error = 0; /* Kobject_put later will trigger rx_queue_release call which * decreases dev refcount: Take that reference here */ netdev_hold(queue->dev, &queue->dev_tracker, GFP_KERNEL); kobj->kset = dev->queues_kset; error = kobject_init_and_add(kobj, &rx_queue_ktype, NULL, "rx-%u", index); if (error) goto err; if (dev->sysfs_rx_queue_group) { error = sysfs_create_group(kobj, dev->sysfs_rx_queue_group); if (error) goto err; } kobject_uevent(kobj, KOBJ_ADD); return error; err: kobject_put(kobj); return error; } static int rx_queue_change_owner(struct net_device *dev, int index, kuid_t kuid, kgid_t kgid) { struct netdev_rx_queue *queue = dev->_rx + index; struct kobject *kobj = &queue->kobj; int error; error = sysfs_change_owner(kobj, kuid, kgid); if (error) return error; if (dev->sysfs_rx_queue_group) error = sysfs_group_change_owner( kobj, dev->sysfs_rx_queue_group, kuid, kgid); return error; } #endif /* CONFIG_SYSFS */ int net_rx_queue_update_kobjects(struct net_device *dev, int old_num, int new_num) { #ifdef CONFIG_SYSFS int i; int error = 0; #ifndef CONFIG_RPS if (!dev->sysfs_rx_queue_group) return 0; #endif for (i = old_num; i < new_num; i++) { error = rx_queue_add_kobject(dev, i); if (error) { new_num = old_num; break; } } while (--i >= new_num) { struct kobject *kobj = &dev->_rx[i].kobj; if (!refcount_read(&dev_net(dev)->ns.count)) kobj->uevent_suppress = 1; if (dev->sysfs_rx_queue_group) sysfs_remove_group(kobj, dev->sysfs_rx_queue_group); kobject_put(kobj); } return error; #else return 0; #endif } static int net_rx_queue_change_owner(struct net_device *dev, int num, kuid_t kuid, kgid_t kgid) { #ifdef CONFIG_SYSFS int error = 0; int i; #ifndef CONFIG_RPS if (!dev->sysfs_rx_queue_group) return 0; #endif for (i = 0; i < num; i++) { error = rx_queue_change_owner(dev, i, kuid, kgid); if (error) break; } return error; #else return 0; #endif } #ifdef CONFIG_SYSFS /* * netdev_queue sysfs structures and functions. */ struct netdev_queue_attribute { struct attribute attr; ssize_t (*show)(struct netdev_queue *queue, char *buf); ssize_t (*store)(struct netdev_queue *queue, const char *buf, size_t len); }; #define to_netdev_queue_attr(_attr) \ container_of(_attr, struct netdev_queue_attribute, attr) #define to_netdev_queue(obj) container_of(obj, struct netdev_queue, kobj) static ssize_t netdev_queue_attr_show(struct kobject *kobj, struct attribute *attr, char *buf) { const struct netdev_queue_attribute *attribute = to_netdev_queue_attr(attr); struct netdev_queue *queue = to_netdev_queue(kobj); if (!attribute->show) return -EIO; return attribute->show(queue, buf); } static ssize_t netdev_queue_attr_store(struct kobject *kobj, struct attribute *attr, const char *buf, size_t count) { const struct netdev_queue_attribute *attribute = to_netdev_queue_attr(attr); struct netdev_queue *queue = to_netdev_queue(kobj); if (!attribute->store) return -EIO; return attribute->store(queue, buf, count); } static const struct sysfs_ops netdev_queue_sysfs_ops = { .show = netdev_queue_attr_show, .store = netdev_queue_attr_store, }; static ssize_t tx_timeout_show(struct netdev_queue *queue, char *buf) { unsigned long trans_timeout = atomic_long_read(&queue->trans_timeout); return sprintf(buf, fmt_ulong, trans_timeout); } static unsigned int get_netdev_queue_index(struct netdev_queue *queue) { struct net_device *dev = queue->dev; unsigned int i; i = queue - dev->_tx; BUG_ON(i >= dev->num_tx_queues); return i; } static ssize_t traffic_class_show(struct netdev_queue *queue, char *buf) { struct net_device *dev = queue->dev; int num_tc, tc; int index; if (!netif_is_multiqueue(dev)) return -ENOENT; if (!rtnl_trylock()) return restart_syscall(); index = get_netdev_queue_index(queue); /* If queue belongs to subordinate dev use its TC mapping */ dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; num_tc = dev->num_tc; tc = netdev_txq_to_tc(dev, index); rtnl_unlock(); if (tc < 0) return -EINVAL; /* We can report the traffic class one of two ways: * Subordinate device traffic classes are reported with the traffic * class first, and then the subordinate class so for example TC0 on * subordinate device 2 will be reported as "0-2". If the queue * belongs to the root device it will be reported with just the * traffic class, so just "0" for TC 0 for example. */ return num_tc < 0 ? sprintf(buf, "%d%d\n", tc, num_tc) : sprintf(buf, "%d\n", tc); } #ifdef CONFIG_XPS static ssize_t tx_maxrate_show(struct netdev_queue *queue, char *buf) { return sprintf(buf, "%lu\n", queue->tx_maxrate); } static ssize_t tx_maxrate_store(struct netdev_queue *queue, const char *buf, size_t len) { struct net_device *dev = queue->dev; int err, index = get_netdev_queue_index(queue); u32 rate = 0; if (!capable(CAP_NET_ADMIN)) return -EPERM; /* The check is also done later; this helps returning early without * hitting the trylock/restart below. */ if (!dev->netdev_ops->ndo_set_tx_maxrate) return -EOPNOTSUPP; err = kstrtou32(buf, 10, &rate); if (err < 0) return err; if (!rtnl_trylock()) return restart_syscall(); err = -EOPNOTSUPP; if (dev->netdev_ops->ndo_set_tx_maxrate) err = dev->netdev_ops->ndo_set_tx_maxrate(dev, index, rate); rtnl_unlock(); if (!err) { queue->tx_maxrate = rate; return len; } return err; } static struct netdev_queue_attribute queue_tx_maxrate __ro_after_init = __ATTR_RW(tx_maxrate); #endif static struct netdev_queue_attribute queue_trans_timeout __ro_after_init = __ATTR_RO(tx_timeout); static struct netdev_queue_attribute queue_traffic_class __ro_after_init = __ATTR_RO(traffic_class); #ifdef CONFIG_BQL /* * Byte queue limits sysfs structures and functions. */ static ssize_t bql_show(char *buf, unsigned int value) { return sprintf(buf, "%u\n", value); } static ssize_t bql_set(const char *buf, const size_t count, unsigned int *pvalue) { unsigned int value; int err; if (!strcmp(buf, "max") || !strcmp(buf, "max\n")) { value = DQL_MAX_LIMIT; } else { err = kstrtouint(buf, 10, &value); if (err < 0) return err; if (value > DQL_MAX_LIMIT) return -EINVAL; } *pvalue = value; return count; } static ssize_t bql_show_hold_time(struct netdev_queue *queue, char *buf) { struct dql *dql = &queue->dql; return sprintf(buf, "%u\n", jiffies_to_msecs(dql->slack_hold_time)); } static ssize_t bql_set_hold_time(struct netdev_queue *queue, const char *buf, size_t len) { struct dql *dql = &queue->dql; unsigned int value; int err; err = kstrtouint(buf, 10, &value); if (err < 0) return err; dql->slack_hold_time = msecs_to_jiffies(value); return len; } static struct netdev_queue_attribute bql_hold_time_attribute __ro_after_init = __ATTR(hold_time, 0644, bql_show_hold_time, bql_set_hold_time); static ssize_t bql_show_inflight(struct netdev_queue *queue, char *buf) { struct dql *dql = &queue->dql; return sprintf(buf, "%u\n", dql->num_queued - dql->num_completed); } static struct netdev_queue_attribute bql_inflight_attribute __ro_after_init = __ATTR(inflight, 0444, bql_show_inflight, NULL); #define BQL_ATTR(NAME, FIELD) \ static ssize_t bql_show_ ## NAME(struct netdev_queue *queue, \ char *buf) \ { \ return bql_show(buf, queue->dql.FIELD); \ } \ \ static ssize_t bql_set_ ## NAME(struct netdev_queue *queue, \ const char *buf, size_t len) \ { \ return bql_set(buf, len, &queue->dql.FIELD); \ } \ \ static struct netdev_queue_attribute bql_ ## NAME ## _attribute __ro_after_init \ = __ATTR(NAME, 0644, \ bql_show_ ## NAME, bql_set_ ## NAME) BQL_ATTR(limit, limit); BQL_ATTR(limit_max, max_limit); BQL_ATTR(limit_min, min_limit); static struct attribute *dql_attrs[] __ro_after_init = { &bql_limit_attribute.attr, &bql_limit_max_attribute.attr, &bql_limit_min_attribute.attr, &bql_hold_time_attribute.attr, &bql_inflight_attribute.attr, NULL }; static const struct attribute_group dql_group = { .name = "byte_queue_limits", .attrs = dql_attrs, }; #endif /* CONFIG_BQL */ #ifdef CONFIG_XPS static ssize_t xps_queue_show(struct net_device *dev, unsigned int index, int tc, char *buf, enum xps_map_type type) { struct xps_dev_maps *dev_maps; unsigned long *mask; unsigned int nr_ids; int j, len; rcu_read_lock(); dev_maps = rcu_dereference(dev->xps_maps[type]); /* Default to nr_cpu_ids/dev->num_rx_queues and do not just return 0 * when dev_maps hasn't been allocated yet, to be backward compatible. */ nr_ids = dev_maps ? dev_maps->nr_ids : (type == XPS_CPUS ? nr_cpu_ids : dev->num_rx_queues); mask = bitmap_zalloc(nr_ids, GFP_NOWAIT); if (!mask) { rcu_read_unlock(); return -ENOMEM; } if (!dev_maps || tc >= dev_maps->num_tc) goto out_no_maps; for (j = 0; j < nr_ids; j++) { int i, tci = j * dev_maps->num_tc + tc; struct xps_map *map; map = rcu_dereference(dev_maps->attr_map[tci]); if (!map) continue; for (i = map->len; i--;) { if (map->queues[i] == index) { __set_bit(j, mask); break; } } } out_no_maps: rcu_read_unlock(); len = bitmap_print_to_pagebuf(false, buf, mask, nr_ids); bitmap_free(mask); return len < PAGE_SIZE ? len : -EINVAL; } static ssize_t xps_cpus_show(struct netdev_queue *queue, char *buf) { struct net_device *dev = queue->dev; unsigned int index; int len, tc; if (!netif_is_multiqueue(dev)) return -ENOENT; index = get_netdev_queue_index(queue); if (!rtnl_trylock()) return restart_syscall(); /* If queue belongs to subordinate dev use its map */ dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; tc = netdev_txq_to_tc(dev, index); if (tc < 0) { rtnl_unlock(); return -EINVAL; } /* Make sure the subordinate device can't be freed */ get_device(&dev->dev); rtnl_unlock(); len = xps_queue_show(dev, index, tc, buf, XPS_CPUS); put_device(&dev->dev); return len; } static ssize_t xps_cpus_store(struct netdev_queue *queue, const char *buf, size_t len) { struct net_device *dev = queue->dev; unsigned int index; cpumask_var_t mask; int err; if (!netif_is_multiqueue(dev)) return -ENOENT; if (!capable(CAP_NET_ADMIN)) return -EPERM; if (!alloc_cpumask_var(&mask, GFP_KERNEL)) return -ENOMEM; index = get_netdev_queue_index(queue); err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits); if (err) { free_cpumask_var(mask); return err; } if (!rtnl_trylock()) { free_cpumask_var(mask); return restart_syscall(); } err = netif_set_xps_queue(dev, mask, index); rtnl_unlock(); free_cpumask_var(mask); return err ? : len; } static struct netdev_queue_attribute xps_cpus_attribute __ro_after_init = __ATTR_RW(xps_cpus); static ssize_t xps_rxqs_show(struct netdev_queue *queue, char *buf) { struct net_device *dev = queue->dev; unsigned int index; int tc; index = get_netdev_queue_index(queue); if (!rtnl_trylock()) return restart_syscall(); tc = netdev_txq_to_tc(dev, index); rtnl_unlock(); if (tc < 0) return -EINVAL; return xps_queue_show(dev, index, tc, buf, XPS_RXQS); } static ssize_t xps_rxqs_store(struct netdev_queue *queue, const char *buf, size_t len) { struct net_device *dev = queue->dev; struct net *net = dev_net(dev); unsigned long *mask; unsigned int index; int err; if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) return -EPERM; mask = bitmap_zalloc(dev->num_rx_queues, GFP_KERNEL); if (!mask) return -ENOMEM; index = get_netdev_queue_index(queue); err = bitmap_parse(buf, len, mask, dev->num_rx_queues); if (err) { bitmap_free(mask); return err; } if (!rtnl_trylock()) { bitmap_free(mask); return restart_syscall(); } cpus_read_lock(); err = __netif_set_xps_queue(dev, mask, index, XPS_RXQS); cpus_read_unlock(); rtnl_unlock(); bitmap_free(mask); return err ? : len; } static struct netdev_queue_attribute xps_rxqs_attribute __ro_after_init = __ATTR_RW(xps_rxqs); #endif /* CONFIG_XPS */ static struct attribute *netdev_queue_default_attrs[] __ro_after_init = { &queue_trans_timeout.attr, &queue_traffic_class.attr, #ifdef CONFIG_XPS &xps_cpus_attribute.attr, &xps_rxqs_attribute.attr, &queue_tx_maxrate.attr, #endif NULL }; ATTRIBUTE_GROUPS(netdev_queue_default); static void netdev_queue_release(struct kobject *kobj) { struct netdev_queue *queue = to_netdev_queue(kobj); memset(kobj, 0, sizeof(*kobj)); netdev_put(queue->dev, &queue->dev_tracker); } static const void *netdev_queue_namespace(struct kobject *kobj) { struct netdev_queue *queue = to_netdev_queue(kobj); struct device *dev = &queue->dev->dev; const void *ns = NULL; if (dev->class && dev->class->ns_type) ns = dev->class->namespace(dev); return ns; } static void netdev_queue_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid) { const struct net *net = netdev_queue_namespace(kobj); net_ns_get_ownership(net, uid, gid); } static struct kobj_type netdev_queue_ktype __ro_after_init = { .sysfs_ops = &netdev_queue_sysfs_ops, .release = netdev_queue_release, .default_groups = netdev_queue_default_groups, .namespace = netdev_queue_namespace, .get_ownership = netdev_queue_get_ownership, }; static int netdev_queue_add_kobject(struct net_device *dev, int index) { struct netdev_queue *queue = dev->_tx + index; struct kobject *kobj = &queue->kobj; int error = 0; /* Kobject_put later will trigger netdev_queue_release call * which decreases dev refcount: Take that reference here */ netdev_hold(queue->dev, &queue->dev_tracker, GFP_KERNEL); kobj->kset = dev->queues_kset; error = kobject_init_and_add(kobj, &netdev_queue_ktype, NULL, "tx-%u", index); if (error) goto err; #ifdef CONFIG_BQL error = sysfs_create_group(kobj, &dql_group); if (error) goto err; #endif kobject_uevent(kobj, KOBJ_ADD); return 0; err: kobject_put(kobj); return error; } static int tx_queue_change_owner(struct net_device *ndev, int index, kuid_t kuid, kgid_t kgid) { struct netdev_queue *queue = ndev->_tx + index; struct kobject *kobj = &queue->kobj; int error; error = sysfs_change_owner(kobj, kuid, kgid); if (error) return error; #ifdef CONFIG_BQL error = sysfs_group_change_owner(kobj, &dql_group, kuid, kgid); #endif return error; } #endif /* CONFIG_SYSFS */ int netdev_queue_update_kobjects(struct net_device *dev, int old_num, int new_num) { #ifdef CONFIG_SYSFS int i; int error = 0; /* Tx queue kobjects are allowed to be updated when a device is being * unregistered, but solely to remove queues from qdiscs. Any path * adding queues should be fixed. */ WARN(dev->reg_state == NETREG_UNREGISTERING && new_num > old_num, "New queues can't be registered after device unregistration."); for (i = old_num; i < new_num; i++) { error = netdev_queue_add_kobject(dev, i); if (error) { new_num = old_num; break; } } while (--i >= new_num) { struct netdev_queue *queue = dev->_tx + i; if (!refcount_read(&dev_net(dev)->ns.count)) queue->kobj.uevent_suppress = 1; #ifdef CONFIG_BQL sysfs_remove_group(&queue->kobj, &dql_group); #endif kobject_put(&queue->kobj); } return error; #else return 0; #endif /* CONFIG_SYSFS */ } static int net_tx_queue_change_owner(struct net_device *dev, int num, kuid_t kuid, kgid_t kgid) { #ifdef CONFIG_SYSFS int error = 0; int i; for (i = 0; i < num; i++) { error = tx_queue_change_owner(dev, i, kuid, kgid); if (error) break; } return error; #else return 0; #endif /* CONFIG_SYSFS */ } static int register_queue_kobjects(struct net_device *dev) { int error = 0, txq = 0, rxq = 0, real_rx = 0, real_tx = 0; #ifdef CONFIG_SYSFS dev->queues_kset = kset_create_and_add("queues", NULL, &dev->dev.kobj); if (!dev->queues_kset) return -ENOMEM; real_rx = dev->real_num_rx_queues; #endif real_tx = dev->real_num_tx_queues; error = net_rx_queue_update_kobjects(dev, 0, real_rx); if (error) goto error; rxq = real_rx; error = netdev_queue_update_kobjects(dev, 0, real_tx); if (error) goto error; txq = real_tx; return 0; error: netdev_queue_update_kobjects(dev, txq, 0); net_rx_queue_update_kobjects(dev, rxq, 0); #ifdef CONFIG_SYSFS kset_unregister(dev->queues_kset); #endif return error; } static int queue_change_owner(struct net_device *ndev, kuid_t kuid, kgid_t kgid) { int error = 0, real_rx = 0, real_tx = 0; #ifdef CONFIG_SYSFS if (ndev->queues_kset) { error = sysfs_change_owner(&ndev->queues_kset->kobj, kuid, kgid); if (error) return error; } real_rx = ndev->real_num_rx_queues; #endif real_tx = ndev->real_num_tx_queues; error = net_rx_queue_change_owner(ndev, real_rx, kuid, kgid); if (error) return error; error = net_tx_queue_change_owner(ndev, real_tx, kuid, kgid); if (error) return error; return 0; } static void remove_queue_kobjects(struct net_device *dev) { int real_rx = 0, real_tx = 0; #ifdef CONFIG_SYSFS real_rx = dev->real_num_rx_queues; #endif real_tx = dev->real_num_tx_queues; net_rx_queue_update_kobjects(dev, real_rx, 0); netdev_queue_update_kobjects(dev, real_tx, 0); dev->real_num_rx_queues = 0; dev->real_num_tx_queues = 0; #ifdef CONFIG_SYSFS kset_unregister(dev->queues_kset); #endif } static bool net_current_may_mount(void) { struct net *net = current->nsproxy->net_ns; return ns_capable(net->user_ns, CAP_SYS_ADMIN); } static void *net_grab_current_ns(void) { struct net *ns = current->nsproxy->net_ns; #ifdef CONFIG_NET_NS if (ns) refcount_inc(&ns->passive); #endif return ns; } static const void *net_initial_ns(void) { return &init_net; } static const void *net_netlink_ns(struct sock *sk) { return sock_net(sk); } const struct kobj_ns_type_operations net_ns_type_operations = { .type = KOBJ_NS_TYPE_NET, .current_may_mount = net_current_may_mount, .grab_current_ns = net_grab_current_ns, .netlink_ns = net_netlink_ns, .initial_ns = net_initial_ns, .drop_ns = net_drop_ns, }; EXPORT_SYMBOL_GPL(net_ns_type_operations); static int netdev_uevent(struct device *d, struct kobj_uevent_env *env) { struct net_device *dev = to_net_dev(d); int retval; /* pass interface to uevent. */ retval = add_uevent_var(env, "INTERFACE=%s", dev->name); if (retval) goto exit; /* pass ifindex to uevent. * ifindex is useful as it won't change (interface name may change) * and is what RtNetlink uses natively. */ retval = add_uevent_var(env, "IFINDEX=%d", dev->ifindex); exit: return retval; } /* * netdev_release -- destroy and free a dead device. * Called when last reference to device kobject is gone. */ static void netdev_release(struct device *d) { struct net_device *dev = to_net_dev(d); BUG_ON(dev->reg_state != NETREG_RELEASED); /* no need to wait for rcu grace period: * device is dead and about to be freed. */ kfree(rcu_access_pointer(dev->ifalias)); netdev_freemem(dev); } static const void *net_namespace(struct device *d) { struct net_device *dev = to_net_dev(d); return dev_net(dev); } static void net_get_ownership(struct device *d, kuid_t *uid, kgid_t *gid) { struct net_device *dev = to_net_dev(d); const struct net *net = dev_net(dev); net_ns_get_ownership(net, uid, gid); } static struct class net_class __ro_after_init = { .name = "net", .dev_release = netdev_release, .dev_groups = net_class_groups, .dev_uevent = netdev_uevent, .ns_type = &net_ns_type_operations, .namespace = net_namespace, .get_ownership = net_get_ownership, }; #ifdef CONFIG_OF static int of_dev_node_match(struct device *dev, const void *data) { for (; dev; dev = dev->parent) { if (dev->of_node == data) return 1; } return 0; } /* * of_find_net_device_by_node - lookup the net device for the device node * @np: OF device node * * Looks up the net_device structure corresponding with the device node. * If successful, returns a pointer to the net_device with the embedded * struct device refcount incremented by one, or NULL on failure. The * refcount must be dropped when done with the net_device. */ struct net_device *of_find_net_device_by_node(struct device_node *np) { struct device *dev; dev = class_find_device(&net_class, NULL, np, of_dev_node_match); if (!dev) return NULL; return to_net_dev(dev); } EXPORT_SYMBOL(of_find_net_device_by_node); #endif /* Delete sysfs entries but hold kobject reference until after all * netdev references are gone. */ void netdev_unregister_kobject(struct net_device *ndev) { struct device *dev = &ndev->dev; if (!refcount_read(&dev_net(ndev)->ns.count)) dev_set_uevent_suppress(dev, 1); kobject_get(&dev->kobj); remove_queue_kobjects(ndev); pm_runtime_set_memalloc_noio(dev, false); device_del(dev); } /* Create sysfs entries for network device. */ int netdev_register_kobject(struct net_device *ndev) { struct device *dev = &ndev->dev; const struct attribute_group **groups = ndev->sysfs_groups; int error = 0; device_initialize(dev); dev->class = &net_class; dev->platform_data = ndev; dev->groups = groups; dev_set_name(dev, "%s", ndev->name); #ifdef CONFIG_SYSFS /* Allow for a device specific group */ if (*groups) groups++; *groups++ = &netstat_group; if (wireless_group_needed(ndev)) *groups++ = &wireless_group; #endif /* CONFIG_SYSFS */ error = device_add(dev); if (error) return error; error = register_queue_kobjects(ndev); if (error) { device_del(dev); return error; } pm_runtime_set_memalloc_noio(dev, true); return error; } /* Change owner for sysfs entries when moving network devices across network * namespaces owned by different user namespaces. */ int netdev_change_owner(struct net_device *ndev, const struct net *net_old, const struct net *net_new) { kuid_t old_uid = GLOBAL_ROOT_UID, new_uid = GLOBAL_ROOT_UID; kgid_t old_gid = GLOBAL_ROOT_GID, new_gid = GLOBAL_ROOT_GID; struct device *dev = &ndev->dev; int error; net_ns_get_ownership(net_old, &old_uid, &old_gid); net_ns_get_ownership(net_new, &new_uid, &new_gid); /* The network namespace was changed but the owning user namespace is * identical so there's no need to change the owner of sysfs entries. */ if (uid_eq(old_uid, new_uid) && gid_eq(old_gid, new_gid)) return 0; error = device_change_owner(dev, new_uid, new_gid); if (error) return error; error = queue_change_owner(ndev, new_uid, new_gid); if (error) return error; return 0; } int netdev_class_create_file_ns(const struct class_attribute *class_attr, const void *ns) { return class_create_file_ns(&net_class, class_attr, ns); } EXPORT_SYMBOL(netdev_class_create_file_ns); void netdev_class_remove_file_ns(const struct class_attribute *class_attr, const void *ns) { class_remove_file_ns(&net_class, class_attr, ns); } EXPORT_SYMBOL(netdev_class_remove_file_ns); int __init netdev_kobject_init(void) { kobj_ns_type_register(&net_ns_type_operations); return class_register(&net_class); }