1 /* 2 * raw.c - Raw sockets for protocol family CAN 3 * 4 * Copyright (c) 2002-2007 Volkswagen Group Electronic Research 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of Volkswagen nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * Alternatively, provided that this notice is retained in full, this 20 * software may be distributed under the terms of the GNU General 21 * Public License ("GPL") version 2, in which case the provisions of the 22 * GPL apply INSTEAD OF those given above. 23 * 24 * The provided data structures and external interfaces from this code 25 * are not restricted to be used by modules with a GPL compatible license. 26 * 27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 30 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 31 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 32 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 33 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 34 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 35 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 36 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 37 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH 38 * DAMAGE. 39 * 40 */ 41 42 #include <linux/module.h> 43 #include <linux/init.h> 44 #include <linux/uio.h> 45 #include <linux/net.h> 46 #include <linux/slab.h> 47 #include <linux/netdevice.h> 48 #include <linux/socket.h> 49 #include <linux/if_arp.h> 50 #include <linux/skbuff.h> 51 #include <linux/can.h> 52 #include <linux/can/core.h> 53 #include <linux/can/skb.h> 54 #include <linux/can/raw.h> 55 #include <net/sock.h> 56 #include <net/net_namespace.h> 57 58 #define CAN_RAW_VERSION CAN_VERSION 59 static __initconst const char banner[] = 60 KERN_INFO "can: raw protocol (rev " CAN_RAW_VERSION ")\n"; 61 62 MODULE_DESCRIPTION("PF_CAN raw protocol"); 63 MODULE_LICENSE("Dual BSD/GPL"); 64 MODULE_AUTHOR("Urs Thuermann <urs.thuermann@volkswagen.de>"); 65 MODULE_ALIAS("can-proto-1"); 66 67 #define MASK_ALL 0 68 69 /* 70 * A raw socket has a list of can_filters attached to it, each receiving 71 * the CAN frames matching that filter. If the filter list is empty, 72 * no CAN frames will be received by the socket. The default after 73 * opening the socket, is to have one filter which receives all frames. 74 * The filter list is allocated dynamically with the exception of the 75 * list containing only one item. This common case is optimized by 76 * storing the single filter in dfilter, to avoid using dynamic memory. 77 */ 78 79 struct raw_sock { 80 struct sock sk; 81 int bound; 82 int ifindex; 83 struct notifier_block notifier; 84 int loopback; 85 int recv_own_msgs; 86 int fd_frames; 87 int count; /* number of active filters */ 88 struct can_filter dfilter; /* default/single filter */ 89 struct can_filter *filter; /* pointer to filter(s) */ 90 can_err_mask_t err_mask; 91 }; 92 93 /* 94 * Return pointer to store the extra msg flags for raw_recvmsg(). 95 * We use the space of one unsigned int beyond the 'struct sockaddr_can' 96 * in skb->cb. 97 */ 98 static inline unsigned int *raw_flags(struct sk_buff *skb) 99 { 100 BUILD_BUG_ON(sizeof(skb->cb) <= (sizeof(struct sockaddr_can) + 101 sizeof(unsigned int))); 102 103 /* return pointer after struct sockaddr_can */ 104 return (unsigned int *)(&((struct sockaddr_can *)skb->cb)[1]); 105 } 106 107 static inline struct raw_sock *raw_sk(const struct sock *sk) 108 { 109 return (struct raw_sock *)sk; 110 } 111 112 static void raw_rcv(struct sk_buff *oskb, void *data) 113 { 114 struct sock *sk = (struct sock *)data; 115 struct raw_sock *ro = raw_sk(sk); 116 struct sockaddr_can *addr; 117 struct sk_buff *skb; 118 unsigned int *pflags; 119 120 /* check the received tx sock reference */ 121 if (!ro->recv_own_msgs && oskb->sk == sk) 122 return; 123 124 /* do not pass frames with DLC > 8 to a legacy socket */ 125 if (!ro->fd_frames) { 126 struct canfd_frame *cfd = (struct canfd_frame *)oskb->data; 127 128 if (unlikely(cfd->len > CAN_MAX_DLEN)) 129 return; 130 } 131 132 /* clone the given skb to be able to enqueue it into the rcv queue */ 133 skb = skb_clone(oskb, GFP_ATOMIC); 134 if (!skb) 135 return; 136 137 /* 138 * Put the datagram to the queue so that raw_recvmsg() can 139 * get it from there. We need to pass the interface index to 140 * raw_recvmsg(). We pass a whole struct sockaddr_can in skb->cb 141 * containing the interface index. 142 */ 143 144 BUILD_BUG_ON(sizeof(skb->cb) < sizeof(struct sockaddr_can)); 145 addr = (struct sockaddr_can *)skb->cb; 146 memset(addr, 0, sizeof(*addr)); 147 addr->can_family = AF_CAN; 148 addr->can_ifindex = skb->dev->ifindex; 149 150 /* add CAN specific message flags for raw_recvmsg() */ 151 pflags = raw_flags(skb); 152 *pflags = 0; 153 if (oskb->sk) 154 *pflags |= MSG_DONTROUTE; 155 if (oskb->sk == sk) 156 *pflags |= MSG_CONFIRM; 157 158 if (sock_queue_rcv_skb(sk, skb) < 0) 159 kfree_skb(skb); 160 } 161 162 static int raw_enable_filters(struct net_device *dev, struct sock *sk, 163 struct can_filter *filter, int count) 164 { 165 int err = 0; 166 int i; 167 168 for (i = 0; i < count; i++) { 169 err = can_rx_register(dev, filter[i].can_id, 170 filter[i].can_mask, 171 raw_rcv, sk, "raw"); 172 if (err) { 173 /* clean up successfully registered filters */ 174 while (--i >= 0) 175 can_rx_unregister(dev, filter[i].can_id, 176 filter[i].can_mask, 177 raw_rcv, sk); 178 break; 179 } 180 } 181 182 return err; 183 } 184 185 static int raw_enable_errfilter(struct net_device *dev, struct sock *sk, 186 can_err_mask_t err_mask) 187 { 188 int err = 0; 189 190 if (err_mask) 191 err = can_rx_register(dev, 0, err_mask | CAN_ERR_FLAG, 192 raw_rcv, sk, "raw"); 193 194 return err; 195 } 196 197 static void raw_disable_filters(struct net_device *dev, struct sock *sk, 198 struct can_filter *filter, int count) 199 { 200 int i; 201 202 for (i = 0; i < count; i++) 203 can_rx_unregister(dev, filter[i].can_id, filter[i].can_mask, 204 raw_rcv, sk); 205 } 206 207 static inline void raw_disable_errfilter(struct net_device *dev, 208 struct sock *sk, 209 can_err_mask_t err_mask) 210 211 { 212 if (err_mask) 213 can_rx_unregister(dev, 0, err_mask | CAN_ERR_FLAG, 214 raw_rcv, sk); 215 } 216 217 static inline void raw_disable_allfilters(struct net_device *dev, 218 struct sock *sk) 219 { 220 struct raw_sock *ro = raw_sk(sk); 221 222 raw_disable_filters(dev, sk, ro->filter, ro->count); 223 raw_disable_errfilter(dev, sk, ro->err_mask); 224 } 225 226 static int raw_enable_allfilters(struct net_device *dev, struct sock *sk) 227 { 228 struct raw_sock *ro = raw_sk(sk); 229 int err; 230 231 err = raw_enable_filters(dev, sk, ro->filter, ro->count); 232 if (!err) { 233 err = raw_enable_errfilter(dev, sk, ro->err_mask); 234 if (err) 235 raw_disable_filters(dev, sk, ro->filter, ro->count); 236 } 237 238 return err; 239 } 240 241 static int raw_notifier(struct notifier_block *nb, 242 unsigned long msg, void *ptr) 243 { 244 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 245 struct raw_sock *ro = container_of(nb, struct raw_sock, notifier); 246 struct sock *sk = &ro->sk; 247 248 if (!net_eq(dev_net(dev), &init_net)) 249 return NOTIFY_DONE; 250 251 if (dev->type != ARPHRD_CAN) 252 return NOTIFY_DONE; 253 254 if (ro->ifindex != dev->ifindex) 255 return NOTIFY_DONE; 256 257 switch (msg) { 258 259 case NETDEV_UNREGISTER: 260 lock_sock(sk); 261 /* remove current filters & unregister */ 262 if (ro->bound) 263 raw_disable_allfilters(dev, sk); 264 265 if (ro->count > 1) 266 kfree(ro->filter); 267 268 ro->ifindex = 0; 269 ro->bound = 0; 270 ro->count = 0; 271 release_sock(sk); 272 273 sk->sk_err = ENODEV; 274 if (!sock_flag(sk, SOCK_DEAD)) 275 sk->sk_error_report(sk); 276 break; 277 278 case NETDEV_DOWN: 279 sk->sk_err = ENETDOWN; 280 if (!sock_flag(sk, SOCK_DEAD)) 281 sk->sk_error_report(sk); 282 break; 283 } 284 285 return NOTIFY_DONE; 286 } 287 288 static int raw_init(struct sock *sk) 289 { 290 struct raw_sock *ro = raw_sk(sk); 291 292 ro->bound = 0; 293 ro->ifindex = 0; 294 295 /* set default filter to single entry dfilter */ 296 ro->dfilter.can_id = 0; 297 ro->dfilter.can_mask = MASK_ALL; 298 ro->filter = &ro->dfilter; 299 ro->count = 1; 300 301 /* set default loopback behaviour */ 302 ro->loopback = 1; 303 ro->recv_own_msgs = 0; 304 ro->fd_frames = 0; 305 306 /* set notifier */ 307 ro->notifier.notifier_call = raw_notifier; 308 309 register_netdevice_notifier(&ro->notifier); 310 311 return 0; 312 } 313 314 static int raw_release(struct socket *sock) 315 { 316 struct sock *sk = sock->sk; 317 struct raw_sock *ro; 318 319 if (!sk) 320 return 0; 321 322 ro = raw_sk(sk); 323 324 unregister_netdevice_notifier(&ro->notifier); 325 326 lock_sock(sk); 327 328 /* remove current filters & unregister */ 329 if (ro->bound) { 330 if (ro->ifindex) { 331 struct net_device *dev; 332 333 dev = dev_get_by_index(&init_net, ro->ifindex); 334 if (dev) { 335 raw_disable_allfilters(dev, sk); 336 dev_put(dev); 337 } 338 } else 339 raw_disable_allfilters(NULL, sk); 340 } 341 342 if (ro->count > 1) 343 kfree(ro->filter); 344 345 ro->ifindex = 0; 346 ro->bound = 0; 347 ro->count = 0; 348 349 sock_orphan(sk); 350 sock->sk = NULL; 351 352 release_sock(sk); 353 sock_put(sk); 354 355 return 0; 356 } 357 358 static int raw_bind(struct socket *sock, struct sockaddr *uaddr, int len) 359 { 360 struct sockaddr_can *addr = (struct sockaddr_can *)uaddr; 361 struct sock *sk = sock->sk; 362 struct raw_sock *ro = raw_sk(sk); 363 int ifindex; 364 int err = 0; 365 int notify_enetdown = 0; 366 367 if (len < sizeof(*addr)) 368 return -EINVAL; 369 370 lock_sock(sk); 371 372 if (ro->bound && addr->can_ifindex == ro->ifindex) 373 goto out; 374 375 if (addr->can_ifindex) { 376 struct net_device *dev; 377 378 dev = dev_get_by_index(&init_net, addr->can_ifindex); 379 if (!dev) { 380 err = -ENODEV; 381 goto out; 382 } 383 if (dev->type != ARPHRD_CAN) { 384 dev_put(dev); 385 err = -ENODEV; 386 goto out; 387 } 388 if (!(dev->flags & IFF_UP)) 389 notify_enetdown = 1; 390 391 ifindex = dev->ifindex; 392 393 /* filters set by default/setsockopt */ 394 err = raw_enable_allfilters(dev, sk); 395 dev_put(dev); 396 } else { 397 ifindex = 0; 398 399 /* filters set by default/setsockopt */ 400 err = raw_enable_allfilters(NULL, sk); 401 } 402 403 if (!err) { 404 if (ro->bound) { 405 /* unregister old filters */ 406 if (ro->ifindex) { 407 struct net_device *dev; 408 409 dev = dev_get_by_index(&init_net, ro->ifindex); 410 if (dev) { 411 raw_disable_allfilters(dev, sk); 412 dev_put(dev); 413 } 414 } else 415 raw_disable_allfilters(NULL, sk); 416 } 417 ro->ifindex = ifindex; 418 ro->bound = 1; 419 } 420 421 out: 422 release_sock(sk); 423 424 if (notify_enetdown) { 425 sk->sk_err = ENETDOWN; 426 if (!sock_flag(sk, SOCK_DEAD)) 427 sk->sk_error_report(sk); 428 } 429 430 return err; 431 } 432 433 static int raw_getname(struct socket *sock, struct sockaddr *uaddr, 434 int *len, int peer) 435 { 436 struct sockaddr_can *addr = (struct sockaddr_can *)uaddr; 437 struct sock *sk = sock->sk; 438 struct raw_sock *ro = raw_sk(sk); 439 440 if (peer) 441 return -EOPNOTSUPP; 442 443 memset(addr, 0, sizeof(*addr)); 444 addr->can_family = AF_CAN; 445 addr->can_ifindex = ro->ifindex; 446 447 *len = sizeof(*addr); 448 449 return 0; 450 } 451 452 static int raw_setsockopt(struct socket *sock, int level, int optname, 453 char __user *optval, unsigned int optlen) 454 { 455 struct sock *sk = sock->sk; 456 struct raw_sock *ro = raw_sk(sk); 457 struct can_filter *filter = NULL; /* dyn. alloc'ed filters */ 458 struct can_filter sfilter; /* single filter */ 459 struct net_device *dev = NULL; 460 can_err_mask_t err_mask = 0; 461 int count = 0; 462 int err = 0; 463 464 if (level != SOL_CAN_RAW) 465 return -EINVAL; 466 467 switch (optname) { 468 469 case CAN_RAW_FILTER: 470 if (optlen % sizeof(struct can_filter) != 0) 471 return -EINVAL; 472 473 count = optlen / sizeof(struct can_filter); 474 475 if (count > 1) { 476 /* filter does not fit into dfilter => alloc space */ 477 filter = memdup_user(optval, optlen); 478 if (IS_ERR(filter)) 479 return PTR_ERR(filter); 480 } else if (count == 1) { 481 if (copy_from_user(&sfilter, optval, sizeof(sfilter))) 482 return -EFAULT; 483 } 484 485 lock_sock(sk); 486 487 if (ro->bound && ro->ifindex) 488 dev = dev_get_by_index(&init_net, ro->ifindex); 489 490 if (ro->bound) { 491 /* (try to) register the new filters */ 492 if (count == 1) 493 err = raw_enable_filters(dev, sk, &sfilter, 1); 494 else 495 err = raw_enable_filters(dev, sk, filter, 496 count); 497 if (err) { 498 if (count > 1) 499 kfree(filter); 500 goto out_fil; 501 } 502 503 /* remove old filter registrations */ 504 raw_disable_filters(dev, sk, ro->filter, ro->count); 505 } 506 507 /* remove old filter space */ 508 if (ro->count > 1) 509 kfree(ro->filter); 510 511 /* link new filters to the socket */ 512 if (count == 1) { 513 /* copy filter data for single filter */ 514 ro->dfilter = sfilter; 515 filter = &ro->dfilter; 516 } 517 ro->filter = filter; 518 ro->count = count; 519 520 out_fil: 521 if (dev) 522 dev_put(dev); 523 524 release_sock(sk); 525 526 break; 527 528 case CAN_RAW_ERR_FILTER: 529 if (optlen != sizeof(err_mask)) 530 return -EINVAL; 531 532 if (copy_from_user(&err_mask, optval, optlen)) 533 return -EFAULT; 534 535 err_mask &= CAN_ERR_MASK; 536 537 lock_sock(sk); 538 539 if (ro->bound && ro->ifindex) 540 dev = dev_get_by_index(&init_net, ro->ifindex); 541 542 /* remove current error mask */ 543 if (ro->bound) { 544 /* (try to) register the new err_mask */ 545 err = raw_enable_errfilter(dev, sk, err_mask); 546 547 if (err) 548 goto out_err; 549 550 /* remove old err_mask registration */ 551 raw_disable_errfilter(dev, sk, ro->err_mask); 552 } 553 554 /* link new err_mask to the socket */ 555 ro->err_mask = err_mask; 556 557 out_err: 558 if (dev) 559 dev_put(dev); 560 561 release_sock(sk); 562 563 break; 564 565 case CAN_RAW_LOOPBACK: 566 if (optlen != sizeof(ro->loopback)) 567 return -EINVAL; 568 569 if (copy_from_user(&ro->loopback, optval, optlen)) 570 return -EFAULT; 571 572 break; 573 574 case CAN_RAW_RECV_OWN_MSGS: 575 if (optlen != sizeof(ro->recv_own_msgs)) 576 return -EINVAL; 577 578 if (copy_from_user(&ro->recv_own_msgs, optval, optlen)) 579 return -EFAULT; 580 581 break; 582 583 case CAN_RAW_FD_FRAMES: 584 if (optlen != sizeof(ro->fd_frames)) 585 return -EINVAL; 586 587 if (copy_from_user(&ro->fd_frames, optval, optlen)) 588 return -EFAULT; 589 590 break; 591 592 default: 593 return -ENOPROTOOPT; 594 } 595 return err; 596 } 597 598 static int raw_getsockopt(struct socket *sock, int level, int optname, 599 char __user *optval, int __user *optlen) 600 { 601 struct sock *sk = sock->sk; 602 struct raw_sock *ro = raw_sk(sk); 603 int len; 604 void *val; 605 int err = 0; 606 607 if (level != SOL_CAN_RAW) 608 return -EINVAL; 609 if (get_user(len, optlen)) 610 return -EFAULT; 611 if (len < 0) 612 return -EINVAL; 613 614 switch (optname) { 615 616 case CAN_RAW_FILTER: 617 lock_sock(sk); 618 if (ro->count > 0) { 619 int fsize = ro->count * sizeof(struct can_filter); 620 if (len > fsize) 621 len = fsize; 622 if (copy_to_user(optval, ro->filter, len)) 623 err = -EFAULT; 624 } else 625 len = 0; 626 release_sock(sk); 627 628 if (!err) 629 err = put_user(len, optlen); 630 return err; 631 632 case CAN_RAW_ERR_FILTER: 633 if (len > sizeof(can_err_mask_t)) 634 len = sizeof(can_err_mask_t); 635 val = &ro->err_mask; 636 break; 637 638 case CAN_RAW_LOOPBACK: 639 if (len > sizeof(int)) 640 len = sizeof(int); 641 val = &ro->loopback; 642 break; 643 644 case CAN_RAW_RECV_OWN_MSGS: 645 if (len > sizeof(int)) 646 len = sizeof(int); 647 val = &ro->recv_own_msgs; 648 break; 649 650 case CAN_RAW_FD_FRAMES: 651 if (len > sizeof(int)) 652 len = sizeof(int); 653 val = &ro->fd_frames; 654 break; 655 656 default: 657 return -ENOPROTOOPT; 658 } 659 660 if (put_user(len, optlen)) 661 return -EFAULT; 662 if (copy_to_user(optval, val, len)) 663 return -EFAULT; 664 return 0; 665 } 666 667 static int raw_sendmsg(struct kiocb *iocb, struct socket *sock, 668 struct msghdr *msg, size_t size) 669 { 670 struct sock *sk = sock->sk; 671 struct raw_sock *ro = raw_sk(sk); 672 struct sk_buff *skb; 673 struct net_device *dev; 674 int ifindex; 675 int err; 676 677 if (msg->msg_name) { 678 DECLARE_SOCKADDR(struct sockaddr_can *, addr, msg->msg_name); 679 680 if (msg->msg_namelen < sizeof(*addr)) 681 return -EINVAL; 682 683 if (addr->can_family != AF_CAN) 684 return -EINVAL; 685 686 ifindex = addr->can_ifindex; 687 } else 688 ifindex = ro->ifindex; 689 690 if (ro->fd_frames) { 691 if (unlikely(size != CANFD_MTU && size != CAN_MTU)) 692 return -EINVAL; 693 } else { 694 if (unlikely(size != CAN_MTU)) 695 return -EINVAL; 696 } 697 698 dev = dev_get_by_index(&init_net, ifindex); 699 if (!dev) 700 return -ENXIO; 701 702 skb = sock_alloc_send_skb(sk, size + sizeof(struct can_skb_priv), 703 msg->msg_flags & MSG_DONTWAIT, &err); 704 if (!skb) 705 goto put_dev; 706 707 can_skb_reserve(skb); 708 can_skb_prv(skb)->ifindex = dev->ifindex; 709 710 err = memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size); 711 if (err < 0) 712 goto free_skb; 713 714 sock_tx_timestamp(sk, &skb_shinfo(skb)->tx_flags); 715 716 skb->dev = dev; 717 skb->sk = sk; 718 skb->priority = sk->sk_priority; 719 720 err = can_send(skb, ro->loopback); 721 722 dev_put(dev); 723 724 if (err) 725 goto send_failed; 726 727 return size; 728 729 free_skb: 730 kfree_skb(skb); 731 put_dev: 732 dev_put(dev); 733 send_failed: 734 return err; 735 } 736 737 static int raw_recvmsg(struct kiocb *iocb, struct socket *sock, 738 struct msghdr *msg, size_t size, int flags) 739 { 740 struct sock *sk = sock->sk; 741 struct raw_sock *ro = raw_sk(sk); 742 struct sk_buff *skb; 743 int rxmtu; 744 int err = 0; 745 int noblock; 746 747 noblock = flags & MSG_DONTWAIT; 748 flags &= ~MSG_DONTWAIT; 749 750 skb = skb_recv_datagram(sk, flags, noblock, &err); 751 if (!skb) 752 return err; 753 754 /* 755 * when serving a legacy socket the DLC <= 8 is already checked inside 756 * raw_rcv(). Now check if we need to pass a canfd_frame to a legacy 757 * socket and cut the possible CANFD_MTU/CAN_MTU length to CAN_MTU 758 */ 759 if (!ro->fd_frames) 760 rxmtu = CAN_MTU; 761 else 762 rxmtu = skb->len; 763 764 if (size < rxmtu) 765 msg->msg_flags |= MSG_TRUNC; 766 else 767 size = rxmtu; 768 769 err = memcpy_toiovec(msg->msg_iov, skb->data, size); 770 if (err < 0) { 771 skb_free_datagram(sk, skb); 772 return err; 773 } 774 775 sock_recv_ts_and_drops(msg, sk, skb); 776 777 if (msg->msg_name) { 778 __sockaddr_check_size(sizeof(struct sockaddr_can)); 779 msg->msg_namelen = sizeof(struct sockaddr_can); 780 memcpy(msg->msg_name, skb->cb, msg->msg_namelen); 781 } 782 783 /* assign the flags that have been recorded in raw_rcv() */ 784 msg->msg_flags |= *(raw_flags(skb)); 785 786 skb_free_datagram(sk, skb); 787 788 return size; 789 } 790 791 static const struct proto_ops raw_ops = { 792 .family = PF_CAN, 793 .release = raw_release, 794 .bind = raw_bind, 795 .connect = sock_no_connect, 796 .socketpair = sock_no_socketpair, 797 .accept = sock_no_accept, 798 .getname = raw_getname, 799 .poll = datagram_poll, 800 .ioctl = can_ioctl, /* use can_ioctl() from af_can.c */ 801 .listen = sock_no_listen, 802 .shutdown = sock_no_shutdown, 803 .setsockopt = raw_setsockopt, 804 .getsockopt = raw_getsockopt, 805 .sendmsg = raw_sendmsg, 806 .recvmsg = raw_recvmsg, 807 .mmap = sock_no_mmap, 808 .sendpage = sock_no_sendpage, 809 }; 810 811 static struct proto raw_proto __read_mostly = { 812 .name = "CAN_RAW", 813 .owner = THIS_MODULE, 814 .obj_size = sizeof(struct raw_sock), 815 .init = raw_init, 816 }; 817 818 static const struct can_proto raw_can_proto = { 819 .type = SOCK_RAW, 820 .protocol = CAN_RAW, 821 .ops = &raw_ops, 822 .prot = &raw_proto, 823 }; 824 825 static __init int raw_module_init(void) 826 { 827 int err; 828 829 printk(banner); 830 831 err = can_proto_register(&raw_can_proto); 832 if (err < 0) 833 printk(KERN_ERR "can: registration of raw protocol failed\n"); 834 835 return err; 836 } 837 838 static __exit void raw_module_exit(void) 839 { 840 can_proto_unregister(&raw_can_proto); 841 } 842 843 module_init(raw_module_init); 844 module_exit(raw_module_exit); 845