1 /* 2 * raw.c - Raw sockets for protocol family CAN 3 * 4 * Copyright (c) 2002-2007 Volkswagen Group Electronic Research 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of Volkswagen nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * Alternatively, provided that this notice is retained in full, this 20 * software may be distributed under the terms of the GNU General 21 * Public License ("GPL") version 2, in which case the provisions of the 22 * GPL apply INSTEAD OF those given above. 23 * 24 * The provided data structures and external interfaces from this code 25 * are not restricted to be used by modules with a GPL compatible license. 26 * 27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 30 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 31 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 32 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 33 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 34 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 35 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 36 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 37 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH 38 * DAMAGE. 39 * 40 */ 41 42 #include <linux/module.h> 43 #include <linux/init.h> 44 #include <linux/uio.h> 45 #include <linux/net.h> 46 #include <linux/slab.h> 47 #include <linux/netdevice.h> 48 #include <linux/socket.h> 49 #include <linux/if_arp.h> 50 #include <linux/skbuff.h> 51 #include <linux/can.h> 52 #include <linux/can/core.h> 53 #include <linux/can/skb.h> 54 #include <linux/can/raw.h> 55 #include <net/sock.h> 56 #include <net/net_namespace.h> 57 58 #define CAN_RAW_VERSION CAN_VERSION 59 60 MODULE_DESCRIPTION("PF_CAN raw protocol"); 61 MODULE_LICENSE("Dual BSD/GPL"); 62 MODULE_AUTHOR("Urs Thuermann <urs.thuermann@volkswagen.de>"); 63 MODULE_ALIAS("can-proto-1"); 64 65 #define MASK_ALL 0 66 67 /* 68 * A raw socket has a list of can_filters attached to it, each receiving 69 * the CAN frames matching that filter. If the filter list is empty, 70 * no CAN frames will be received by the socket. The default after 71 * opening the socket, is to have one filter which receives all frames. 72 * The filter list is allocated dynamically with the exception of the 73 * list containing only one item. This common case is optimized by 74 * storing the single filter in dfilter, to avoid using dynamic memory. 75 */ 76 77 struct uniqframe { 78 int skbcnt; 79 const struct sk_buff *skb; 80 unsigned int join_rx_count; 81 }; 82 83 struct raw_sock { 84 struct sock sk; 85 int bound; 86 int ifindex; 87 struct notifier_block notifier; 88 int loopback; 89 int recv_own_msgs; 90 int fd_frames; 91 int join_filters; 92 int count; /* number of active filters */ 93 struct can_filter dfilter; /* default/single filter */ 94 struct can_filter *filter; /* pointer to filter(s) */ 95 can_err_mask_t err_mask; 96 struct uniqframe __percpu *uniq; 97 }; 98 99 /* 100 * Return pointer to store the extra msg flags for raw_recvmsg(). 101 * We use the space of one unsigned int beyond the 'struct sockaddr_can' 102 * in skb->cb. 103 */ 104 static inline unsigned int *raw_flags(struct sk_buff *skb) 105 { 106 sock_skb_cb_check_size(sizeof(struct sockaddr_can) + 107 sizeof(unsigned int)); 108 109 /* return pointer after struct sockaddr_can */ 110 return (unsigned int *)(&((struct sockaddr_can *)skb->cb)[1]); 111 } 112 113 static inline struct raw_sock *raw_sk(const struct sock *sk) 114 { 115 return (struct raw_sock *)sk; 116 } 117 118 static void raw_rcv(struct sk_buff *oskb, void *data) 119 { 120 struct sock *sk = (struct sock *)data; 121 struct raw_sock *ro = raw_sk(sk); 122 struct sockaddr_can *addr; 123 struct sk_buff *skb; 124 unsigned int *pflags; 125 126 /* check the received tx sock reference */ 127 if (!ro->recv_own_msgs && oskb->sk == sk) 128 return; 129 130 /* do not pass non-CAN2.0 frames to a legacy socket */ 131 if (!ro->fd_frames && oskb->len != CAN_MTU) 132 return; 133 134 /* eliminate multiple filter matches for the same skb */ 135 if (this_cpu_ptr(ro->uniq)->skb == oskb && 136 this_cpu_ptr(ro->uniq)->skbcnt == can_skb_prv(oskb)->skbcnt) { 137 if (ro->join_filters) { 138 this_cpu_inc(ro->uniq->join_rx_count); 139 /* drop frame until all enabled filters matched */ 140 if (this_cpu_ptr(ro->uniq)->join_rx_count < ro->count) 141 return; 142 } else { 143 return; 144 } 145 } else { 146 this_cpu_ptr(ro->uniq)->skb = oskb; 147 this_cpu_ptr(ro->uniq)->skbcnt = can_skb_prv(oskb)->skbcnt; 148 this_cpu_ptr(ro->uniq)->join_rx_count = 1; 149 /* drop first frame to check all enabled filters? */ 150 if (ro->join_filters && ro->count > 1) 151 return; 152 } 153 154 /* clone the given skb to be able to enqueue it into the rcv queue */ 155 skb = skb_clone(oskb, GFP_ATOMIC); 156 if (!skb) 157 return; 158 159 /* 160 * Put the datagram to the queue so that raw_recvmsg() can 161 * get it from there. We need to pass the interface index to 162 * raw_recvmsg(). We pass a whole struct sockaddr_can in skb->cb 163 * containing the interface index. 164 */ 165 166 sock_skb_cb_check_size(sizeof(struct sockaddr_can)); 167 addr = (struct sockaddr_can *)skb->cb; 168 memset(addr, 0, sizeof(*addr)); 169 addr->can_family = AF_CAN; 170 addr->can_ifindex = skb->dev->ifindex; 171 172 /* add CAN specific message flags for raw_recvmsg() */ 173 pflags = raw_flags(skb); 174 *pflags = 0; 175 if (oskb->sk) 176 *pflags |= MSG_DONTROUTE; 177 if (oskb->sk == sk) 178 *pflags |= MSG_CONFIRM; 179 180 if (sock_queue_rcv_skb(sk, skb) < 0) 181 kfree_skb(skb); 182 } 183 184 static int raw_enable_filters(struct net *net, struct net_device *dev, 185 struct sock *sk, struct can_filter *filter, 186 int count) 187 { 188 int err = 0; 189 int i; 190 191 for (i = 0; i < count; i++) { 192 err = can_rx_register(net, dev, filter[i].can_id, 193 filter[i].can_mask, 194 raw_rcv, sk, "raw", sk); 195 if (err) { 196 /* clean up successfully registered filters */ 197 while (--i >= 0) 198 can_rx_unregister(net, dev, filter[i].can_id, 199 filter[i].can_mask, 200 raw_rcv, sk); 201 break; 202 } 203 } 204 205 return err; 206 } 207 208 static int raw_enable_errfilter(struct net *net, struct net_device *dev, 209 struct sock *sk, can_err_mask_t err_mask) 210 { 211 int err = 0; 212 213 if (err_mask) 214 err = can_rx_register(net, dev, 0, err_mask | CAN_ERR_FLAG, 215 raw_rcv, sk, "raw", sk); 216 217 return err; 218 } 219 220 static void raw_disable_filters(struct net *net, struct net_device *dev, 221 struct sock *sk, struct can_filter *filter, 222 int count) 223 { 224 int i; 225 226 for (i = 0; i < count; i++) 227 can_rx_unregister(net, dev, filter[i].can_id, 228 filter[i].can_mask, raw_rcv, sk); 229 } 230 231 static inline void raw_disable_errfilter(struct net *net, 232 struct net_device *dev, 233 struct sock *sk, 234 can_err_mask_t err_mask) 235 236 { 237 if (err_mask) 238 can_rx_unregister(net, dev, 0, err_mask | CAN_ERR_FLAG, 239 raw_rcv, sk); 240 } 241 242 static inline void raw_disable_allfilters(struct net *net, 243 struct net_device *dev, 244 struct sock *sk) 245 { 246 struct raw_sock *ro = raw_sk(sk); 247 248 raw_disable_filters(net, dev, sk, ro->filter, ro->count); 249 raw_disable_errfilter(net, dev, sk, ro->err_mask); 250 } 251 252 static int raw_enable_allfilters(struct net *net, struct net_device *dev, 253 struct sock *sk) 254 { 255 struct raw_sock *ro = raw_sk(sk); 256 int err; 257 258 err = raw_enable_filters(net, dev, sk, ro->filter, ro->count); 259 if (!err) { 260 err = raw_enable_errfilter(net, dev, sk, ro->err_mask); 261 if (err) 262 raw_disable_filters(net, dev, sk, ro->filter, 263 ro->count); 264 } 265 266 return err; 267 } 268 269 static int raw_notifier(struct notifier_block *nb, 270 unsigned long msg, void *ptr) 271 { 272 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 273 struct raw_sock *ro = container_of(nb, struct raw_sock, notifier); 274 struct sock *sk = &ro->sk; 275 276 if (!net_eq(dev_net(dev), sock_net(sk))) 277 return NOTIFY_DONE; 278 279 if (dev->type != ARPHRD_CAN) 280 return NOTIFY_DONE; 281 282 if (ro->ifindex != dev->ifindex) 283 return NOTIFY_DONE; 284 285 switch (msg) { 286 287 case NETDEV_UNREGISTER: 288 lock_sock(sk); 289 /* remove current filters & unregister */ 290 if (ro->bound) 291 raw_disable_allfilters(dev_net(dev), dev, sk); 292 293 if (ro->count > 1) 294 kfree(ro->filter); 295 296 ro->ifindex = 0; 297 ro->bound = 0; 298 ro->count = 0; 299 release_sock(sk); 300 301 sk->sk_err = ENODEV; 302 if (!sock_flag(sk, SOCK_DEAD)) 303 sk->sk_error_report(sk); 304 break; 305 306 case NETDEV_DOWN: 307 sk->sk_err = ENETDOWN; 308 if (!sock_flag(sk, SOCK_DEAD)) 309 sk->sk_error_report(sk); 310 break; 311 } 312 313 return NOTIFY_DONE; 314 } 315 316 static int raw_init(struct sock *sk) 317 { 318 struct raw_sock *ro = raw_sk(sk); 319 320 ro->bound = 0; 321 ro->ifindex = 0; 322 323 /* set default filter to single entry dfilter */ 324 ro->dfilter.can_id = 0; 325 ro->dfilter.can_mask = MASK_ALL; 326 ro->filter = &ro->dfilter; 327 ro->count = 1; 328 329 /* set default loopback behaviour */ 330 ro->loopback = 1; 331 ro->recv_own_msgs = 0; 332 ro->fd_frames = 0; 333 ro->join_filters = 0; 334 335 /* alloc_percpu provides zero'ed memory */ 336 ro->uniq = alloc_percpu(struct uniqframe); 337 if (unlikely(!ro->uniq)) 338 return -ENOMEM; 339 340 /* set notifier */ 341 ro->notifier.notifier_call = raw_notifier; 342 343 register_netdevice_notifier(&ro->notifier); 344 345 return 0; 346 } 347 348 static int raw_release(struct socket *sock) 349 { 350 struct sock *sk = sock->sk; 351 struct raw_sock *ro; 352 353 if (!sk) 354 return 0; 355 356 ro = raw_sk(sk); 357 358 unregister_netdevice_notifier(&ro->notifier); 359 360 lock_sock(sk); 361 362 /* remove current filters & unregister */ 363 if (ro->bound) { 364 if (ro->ifindex) { 365 struct net_device *dev; 366 367 dev = dev_get_by_index(sock_net(sk), ro->ifindex); 368 if (dev) { 369 raw_disable_allfilters(dev_net(dev), dev, sk); 370 dev_put(dev); 371 } 372 } else 373 raw_disable_allfilters(sock_net(sk), NULL, sk); 374 } 375 376 if (ro->count > 1) 377 kfree(ro->filter); 378 379 ro->ifindex = 0; 380 ro->bound = 0; 381 ro->count = 0; 382 free_percpu(ro->uniq); 383 384 sock_orphan(sk); 385 sock->sk = NULL; 386 387 release_sock(sk); 388 sock_put(sk); 389 390 return 0; 391 } 392 393 static int raw_bind(struct socket *sock, struct sockaddr *uaddr, int len) 394 { 395 struct sockaddr_can *addr = (struct sockaddr_can *)uaddr; 396 struct sock *sk = sock->sk; 397 struct raw_sock *ro = raw_sk(sk); 398 int ifindex; 399 int err = 0; 400 int notify_enetdown = 0; 401 402 if (len < sizeof(*addr)) 403 return -EINVAL; 404 if (addr->can_family != AF_CAN) 405 return -EINVAL; 406 407 lock_sock(sk); 408 409 if (ro->bound && addr->can_ifindex == ro->ifindex) 410 goto out; 411 412 if (addr->can_ifindex) { 413 struct net_device *dev; 414 415 dev = dev_get_by_index(sock_net(sk), addr->can_ifindex); 416 if (!dev) { 417 err = -ENODEV; 418 goto out; 419 } 420 if (dev->type != ARPHRD_CAN) { 421 dev_put(dev); 422 err = -ENODEV; 423 goto out; 424 } 425 if (!(dev->flags & IFF_UP)) 426 notify_enetdown = 1; 427 428 ifindex = dev->ifindex; 429 430 /* filters set by default/setsockopt */ 431 err = raw_enable_allfilters(sock_net(sk), dev, sk); 432 dev_put(dev); 433 } else { 434 ifindex = 0; 435 436 /* filters set by default/setsockopt */ 437 err = raw_enable_allfilters(sock_net(sk), NULL, sk); 438 } 439 440 if (!err) { 441 if (ro->bound) { 442 /* unregister old filters */ 443 if (ro->ifindex) { 444 struct net_device *dev; 445 446 dev = dev_get_by_index(sock_net(sk), 447 ro->ifindex); 448 if (dev) { 449 raw_disable_allfilters(dev_net(dev), 450 dev, sk); 451 dev_put(dev); 452 } 453 } else 454 raw_disable_allfilters(sock_net(sk), NULL, sk); 455 } 456 ro->ifindex = ifindex; 457 ro->bound = 1; 458 } 459 460 out: 461 release_sock(sk); 462 463 if (notify_enetdown) { 464 sk->sk_err = ENETDOWN; 465 if (!sock_flag(sk, SOCK_DEAD)) 466 sk->sk_error_report(sk); 467 } 468 469 return err; 470 } 471 472 static int raw_getname(struct socket *sock, struct sockaddr *uaddr, 473 int *len, int peer) 474 { 475 struct sockaddr_can *addr = (struct sockaddr_can *)uaddr; 476 struct sock *sk = sock->sk; 477 struct raw_sock *ro = raw_sk(sk); 478 479 if (peer) 480 return -EOPNOTSUPP; 481 482 memset(addr, 0, sizeof(*addr)); 483 addr->can_family = AF_CAN; 484 addr->can_ifindex = ro->ifindex; 485 486 *len = sizeof(*addr); 487 488 return 0; 489 } 490 491 static int raw_setsockopt(struct socket *sock, int level, int optname, 492 char __user *optval, unsigned int optlen) 493 { 494 struct sock *sk = sock->sk; 495 struct raw_sock *ro = raw_sk(sk); 496 struct can_filter *filter = NULL; /* dyn. alloc'ed filters */ 497 struct can_filter sfilter; /* single filter */ 498 struct net_device *dev = NULL; 499 can_err_mask_t err_mask = 0; 500 int count = 0; 501 int err = 0; 502 503 if (level != SOL_CAN_RAW) 504 return -EINVAL; 505 506 switch (optname) { 507 508 case CAN_RAW_FILTER: 509 if (optlen % sizeof(struct can_filter) != 0) 510 return -EINVAL; 511 512 if (optlen > CAN_RAW_FILTER_MAX * sizeof(struct can_filter)) 513 return -EINVAL; 514 515 count = optlen / sizeof(struct can_filter); 516 517 if (count > 1) { 518 /* filter does not fit into dfilter => alloc space */ 519 filter = memdup_user(optval, optlen); 520 if (IS_ERR(filter)) 521 return PTR_ERR(filter); 522 } else if (count == 1) { 523 if (copy_from_user(&sfilter, optval, sizeof(sfilter))) 524 return -EFAULT; 525 } 526 527 lock_sock(sk); 528 529 if (ro->bound && ro->ifindex) 530 dev = dev_get_by_index(sock_net(sk), ro->ifindex); 531 532 if (ro->bound) { 533 /* (try to) register the new filters */ 534 if (count == 1) 535 err = raw_enable_filters(sock_net(sk), dev, sk, 536 &sfilter, 1); 537 else 538 err = raw_enable_filters(sock_net(sk), dev, sk, 539 filter, count); 540 if (err) { 541 if (count > 1) 542 kfree(filter); 543 goto out_fil; 544 } 545 546 /* remove old filter registrations */ 547 raw_disable_filters(sock_net(sk), dev, sk, ro->filter, 548 ro->count); 549 } 550 551 /* remove old filter space */ 552 if (ro->count > 1) 553 kfree(ro->filter); 554 555 /* link new filters to the socket */ 556 if (count == 1) { 557 /* copy filter data for single filter */ 558 ro->dfilter = sfilter; 559 filter = &ro->dfilter; 560 } 561 ro->filter = filter; 562 ro->count = count; 563 564 out_fil: 565 if (dev) 566 dev_put(dev); 567 568 release_sock(sk); 569 570 break; 571 572 case CAN_RAW_ERR_FILTER: 573 if (optlen != sizeof(err_mask)) 574 return -EINVAL; 575 576 if (copy_from_user(&err_mask, optval, optlen)) 577 return -EFAULT; 578 579 err_mask &= CAN_ERR_MASK; 580 581 lock_sock(sk); 582 583 if (ro->bound && ro->ifindex) 584 dev = dev_get_by_index(sock_net(sk), ro->ifindex); 585 586 /* remove current error mask */ 587 if (ro->bound) { 588 /* (try to) register the new err_mask */ 589 err = raw_enable_errfilter(sock_net(sk), dev, sk, 590 err_mask); 591 592 if (err) 593 goto out_err; 594 595 /* remove old err_mask registration */ 596 raw_disable_errfilter(sock_net(sk), dev, sk, 597 ro->err_mask); 598 } 599 600 /* link new err_mask to the socket */ 601 ro->err_mask = err_mask; 602 603 out_err: 604 if (dev) 605 dev_put(dev); 606 607 release_sock(sk); 608 609 break; 610 611 case CAN_RAW_LOOPBACK: 612 if (optlen != sizeof(ro->loopback)) 613 return -EINVAL; 614 615 if (copy_from_user(&ro->loopback, optval, optlen)) 616 return -EFAULT; 617 618 break; 619 620 case CAN_RAW_RECV_OWN_MSGS: 621 if (optlen != sizeof(ro->recv_own_msgs)) 622 return -EINVAL; 623 624 if (copy_from_user(&ro->recv_own_msgs, optval, optlen)) 625 return -EFAULT; 626 627 break; 628 629 case CAN_RAW_FD_FRAMES: 630 if (optlen != sizeof(ro->fd_frames)) 631 return -EINVAL; 632 633 if (copy_from_user(&ro->fd_frames, optval, optlen)) 634 return -EFAULT; 635 636 break; 637 638 case CAN_RAW_JOIN_FILTERS: 639 if (optlen != sizeof(ro->join_filters)) 640 return -EINVAL; 641 642 if (copy_from_user(&ro->join_filters, optval, optlen)) 643 return -EFAULT; 644 645 break; 646 647 default: 648 return -ENOPROTOOPT; 649 } 650 return err; 651 } 652 653 static int raw_getsockopt(struct socket *sock, int level, int optname, 654 char __user *optval, int __user *optlen) 655 { 656 struct sock *sk = sock->sk; 657 struct raw_sock *ro = raw_sk(sk); 658 int len; 659 void *val; 660 int err = 0; 661 662 if (level != SOL_CAN_RAW) 663 return -EINVAL; 664 if (get_user(len, optlen)) 665 return -EFAULT; 666 if (len < 0) 667 return -EINVAL; 668 669 switch (optname) { 670 671 case CAN_RAW_FILTER: 672 lock_sock(sk); 673 if (ro->count > 0) { 674 int fsize = ro->count * sizeof(struct can_filter); 675 if (len > fsize) 676 len = fsize; 677 if (copy_to_user(optval, ro->filter, len)) 678 err = -EFAULT; 679 } else 680 len = 0; 681 release_sock(sk); 682 683 if (!err) 684 err = put_user(len, optlen); 685 return err; 686 687 case CAN_RAW_ERR_FILTER: 688 if (len > sizeof(can_err_mask_t)) 689 len = sizeof(can_err_mask_t); 690 val = &ro->err_mask; 691 break; 692 693 case CAN_RAW_LOOPBACK: 694 if (len > sizeof(int)) 695 len = sizeof(int); 696 val = &ro->loopback; 697 break; 698 699 case CAN_RAW_RECV_OWN_MSGS: 700 if (len > sizeof(int)) 701 len = sizeof(int); 702 val = &ro->recv_own_msgs; 703 break; 704 705 case CAN_RAW_FD_FRAMES: 706 if (len > sizeof(int)) 707 len = sizeof(int); 708 val = &ro->fd_frames; 709 break; 710 711 case CAN_RAW_JOIN_FILTERS: 712 if (len > sizeof(int)) 713 len = sizeof(int); 714 val = &ro->join_filters; 715 break; 716 717 default: 718 return -ENOPROTOOPT; 719 } 720 721 if (put_user(len, optlen)) 722 return -EFAULT; 723 if (copy_to_user(optval, val, len)) 724 return -EFAULT; 725 return 0; 726 } 727 728 static int raw_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 729 { 730 struct sock *sk = sock->sk; 731 struct raw_sock *ro = raw_sk(sk); 732 struct sk_buff *skb; 733 struct net_device *dev; 734 int ifindex; 735 int err; 736 737 if (msg->msg_name) { 738 DECLARE_SOCKADDR(struct sockaddr_can *, addr, msg->msg_name); 739 740 if (msg->msg_namelen < sizeof(*addr)) 741 return -EINVAL; 742 743 if (addr->can_family != AF_CAN) 744 return -EINVAL; 745 746 ifindex = addr->can_ifindex; 747 } else 748 ifindex = ro->ifindex; 749 750 if (ro->fd_frames) { 751 if (unlikely(size != CANFD_MTU && size != CAN_MTU)) 752 return -EINVAL; 753 } else { 754 if (unlikely(size != CAN_MTU)) 755 return -EINVAL; 756 } 757 758 dev = dev_get_by_index(sock_net(sk), ifindex); 759 if (!dev) 760 return -ENXIO; 761 762 skb = sock_alloc_send_skb(sk, size + sizeof(struct can_skb_priv), 763 msg->msg_flags & MSG_DONTWAIT, &err); 764 if (!skb) 765 goto put_dev; 766 767 can_skb_reserve(skb); 768 can_skb_prv(skb)->ifindex = dev->ifindex; 769 can_skb_prv(skb)->skbcnt = 0; 770 771 err = memcpy_from_msg(skb_put(skb, size), msg, size); 772 if (err < 0) 773 goto free_skb; 774 775 sock_tx_timestamp(sk, sk->sk_tsflags, &skb_shinfo(skb)->tx_flags); 776 777 skb->dev = dev; 778 skb->sk = sk; 779 skb->priority = sk->sk_priority; 780 781 err = can_send(skb, ro->loopback); 782 783 dev_put(dev); 784 785 if (err) 786 goto send_failed; 787 788 return size; 789 790 free_skb: 791 kfree_skb(skb); 792 put_dev: 793 dev_put(dev); 794 send_failed: 795 return err; 796 } 797 798 static int raw_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 799 int flags) 800 { 801 struct sock *sk = sock->sk; 802 struct sk_buff *skb; 803 int err = 0; 804 int noblock; 805 806 noblock = flags & MSG_DONTWAIT; 807 flags &= ~MSG_DONTWAIT; 808 809 skb = skb_recv_datagram(sk, flags, noblock, &err); 810 if (!skb) 811 return err; 812 813 if (size < skb->len) 814 msg->msg_flags |= MSG_TRUNC; 815 else 816 size = skb->len; 817 818 err = memcpy_to_msg(msg, skb->data, size); 819 if (err < 0) { 820 skb_free_datagram(sk, skb); 821 return err; 822 } 823 824 sock_recv_ts_and_drops(msg, sk, skb); 825 826 if (msg->msg_name) { 827 __sockaddr_check_size(sizeof(struct sockaddr_can)); 828 msg->msg_namelen = sizeof(struct sockaddr_can); 829 memcpy(msg->msg_name, skb->cb, msg->msg_namelen); 830 } 831 832 /* assign the flags that have been recorded in raw_rcv() */ 833 msg->msg_flags |= *(raw_flags(skb)); 834 835 skb_free_datagram(sk, skb); 836 837 return size; 838 } 839 840 static const struct proto_ops raw_ops = { 841 .family = PF_CAN, 842 .release = raw_release, 843 .bind = raw_bind, 844 .connect = sock_no_connect, 845 .socketpair = sock_no_socketpair, 846 .accept = sock_no_accept, 847 .getname = raw_getname, 848 .poll = datagram_poll, 849 .ioctl = can_ioctl, /* use can_ioctl() from af_can.c */ 850 .listen = sock_no_listen, 851 .shutdown = sock_no_shutdown, 852 .setsockopt = raw_setsockopt, 853 .getsockopt = raw_getsockopt, 854 .sendmsg = raw_sendmsg, 855 .recvmsg = raw_recvmsg, 856 .mmap = sock_no_mmap, 857 .sendpage = sock_no_sendpage, 858 }; 859 860 static struct proto raw_proto __read_mostly = { 861 .name = "CAN_RAW", 862 .owner = THIS_MODULE, 863 .obj_size = sizeof(struct raw_sock), 864 .init = raw_init, 865 }; 866 867 static const struct can_proto raw_can_proto = { 868 .type = SOCK_RAW, 869 .protocol = CAN_RAW, 870 .ops = &raw_ops, 871 .prot = &raw_proto, 872 }; 873 874 static __init int raw_module_init(void) 875 { 876 int err; 877 878 pr_info("can: raw protocol (rev " CAN_RAW_VERSION ")\n"); 879 880 err = can_proto_register(&raw_can_proto); 881 if (err < 0) 882 printk(KERN_ERR "can: registration of raw protocol failed\n"); 883 884 return err; 885 } 886 887 static __exit void raw_module_exit(void) 888 { 889 can_proto_unregister(&raw_can_proto); 890 } 891 892 module_init(raw_module_init); 893 module_exit(raw_module_exit); 894