xref: /openbmc/linux/mm/madvise.c (revision f8523d0e83613ab8d082cd504dc53a09fbba4889)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *	linux/mm/madvise.c
4  *
5  * Copyright (C) 1999  Linus Torvalds
6  * Copyright (C) 2002  Christoph Hellwig
7  */
8 
9 #include <linux/mman.h>
10 #include <linux/pagemap.h>
11 #include <linux/syscalls.h>
12 #include <linux/mempolicy.h>
13 #include <linux/page-isolation.h>
14 #include <linux/page_idle.h>
15 #include <linux/userfaultfd_k.h>
16 #include <linux/hugetlb.h>
17 #include <linux/falloc.h>
18 #include <linux/fadvise.h>
19 #include <linux/sched.h>
20 #include <linux/ksm.h>
21 #include <linux/fs.h>
22 #include <linux/file.h>
23 #include <linux/blkdev.h>
24 #include <linux/backing-dev.h>
25 #include <linux/pagewalk.h>
26 #include <linux/swap.h>
27 #include <linux/swapops.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/sched/mm.h>
31 
32 #include <asm/tlb.h>
33 
34 #include "internal.h"
35 
36 struct madvise_walk_private {
37 	struct mmu_gather *tlb;
38 	bool pageout;
39 };
40 
41 /*
42  * Any behaviour which results in changes to the vma->vm_flags needs to
43  * take mmap_lock for writing. Others, which simply traverse vmas, need
44  * to only take it for reading.
45  */
46 static int madvise_need_mmap_write(int behavior)
47 {
48 	switch (behavior) {
49 	case MADV_REMOVE:
50 	case MADV_WILLNEED:
51 	case MADV_DONTNEED:
52 	case MADV_COLD:
53 	case MADV_PAGEOUT:
54 	case MADV_FREE:
55 		return 0;
56 	default:
57 		/* be safe, default to 1. list exceptions explicitly */
58 		return 1;
59 	}
60 }
61 
62 /*
63  * We can potentially split a vm area into separate
64  * areas, each area with its own behavior.
65  */
66 static long madvise_behavior(struct vm_area_struct *vma,
67 		     struct vm_area_struct **prev,
68 		     unsigned long start, unsigned long end, int behavior)
69 {
70 	struct mm_struct *mm = vma->vm_mm;
71 	int error = 0;
72 	pgoff_t pgoff;
73 	unsigned long new_flags = vma->vm_flags;
74 
75 	switch (behavior) {
76 	case MADV_NORMAL:
77 		new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ;
78 		break;
79 	case MADV_SEQUENTIAL:
80 		new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ;
81 		break;
82 	case MADV_RANDOM:
83 		new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ;
84 		break;
85 	case MADV_DONTFORK:
86 		new_flags |= VM_DONTCOPY;
87 		break;
88 	case MADV_DOFORK:
89 		if (vma->vm_flags & VM_IO) {
90 			error = -EINVAL;
91 			goto out;
92 		}
93 		new_flags &= ~VM_DONTCOPY;
94 		break;
95 	case MADV_WIPEONFORK:
96 		/* MADV_WIPEONFORK is only supported on anonymous memory. */
97 		if (vma->vm_file || vma->vm_flags & VM_SHARED) {
98 			error = -EINVAL;
99 			goto out;
100 		}
101 		new_flags |= VM_WIPEONFORK;
102 		break;
103 	case MADV_KEEPONFORK:
104 		new_flags &= ~VM_WIPEONFORK;
105 		break;
106 	case MADV_DONTDUMP:
107 		new_flags |= VM_DONTDUMP;
108 		break;
109 	case MADV_DODUMP:
110 		if (!is_vm_hugetlb_page(vma) && new_flags & VM_SPECIAL) {
111 			error = -EINVAL;
112 			goto out;
113 		}
114 		new_flags &= ~VM_DONTDUMP;
115 		break;
116 	case MADV_MERGEABLE:
117 	case MADV_UNMERGEABLE:
118 		error = ksm_madvise(vma, start, end, behavior, &new_flags);
119 		if (error)
120 			goto out_convert_errno;
121 		break;
122 	case MADV_HUGEPAGE:
123 	case MADV_NOHUGEPAGE:
124 		error = hugepage_madvise(vma, &new_flags, behavior);
125 		if (error)
126 			goto out_convert_errno;
127 		break;
128 	}
129 
130 	if (new_flags == vma->vm_flags) {
131 		*prev = vma;
132 		goto out;
133 	}
134 
135 	pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
136 	*prev = vma_merge(mm, *prev, start, end, new_flags, vma->anon_vma,
137 			  vma->vm_file, pgoff, vma_policy(vma),
138 			  vma->vm_userfaultfd_ctx);
139 	if (*prev) {
140 		vma = *prev;
141 		goto success;
142 	}
143 
144 	*prev = vma;
145 
146 	if (start != vma->vm_start) {
147 		if (unlikely(mm->map_count >= sysctl_max_map_count)) {
148 			error = -ENOMEM;
149 			goto out;
150 		}
151 		error = __split_vma(mm, vma, start, 1);
152 		if (error)
153 			goto out_convert_errno;
154 	}
155 
156 	if (end != vma->vm_end) {
157 		if (unlikely(mm->map_count >= sysctl_max_map_count)) {
158 			error = -ENOMEM;
159 			goto out;
160 		}
161 		error = __split_vma(mm, vma, end, 0);
162 		if (error)
163 			goto out_convert_errno;
164 	}
165 
166 success:
167 	/*
168 	 * vm_flags is protected by the mmap_lock held in write mode.
169 	 */
170 	vma->vm_flags = new_flags;
171 
172 out_convert_errno:
173 	/*
174 	 * madvise() returns EAGAIN if kernel resources, such as
175 	 * slab, are temporarily unavailable.
176 	 */
177 	if (error == -ENOMEM)
178 		error = -EAGAIN;
179 out:
180 	return error;
181 }
182 
183 #ifdef CONFIG_SWAP
184 static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start,
185 	unsigned long end, struct mm_walk *walk)
186 {
187 	pte_t *orig_pte;
188 	struct vm_area_struct *vma = walk->private;
189 	unsigned long index;
190 
191 	if (pmd_none_or_trans_huge_or_clear_bad(pmd))
192 		return 0;
193 
194 	for (index = start; index != end; index += PAGE_SIZE) {
195 		pte_t pte;
196 		swp_entry_t entry;
197 		struct page *page;
198 		spinlock_t *ptl;
199 
200 		orig_pte = pte_offset_map_lock(vma->vm_mm, pmd, start, &ptl);
201 		pte = *(orig_pte + ((index - start) / PAGE_SIZE));
202 		pte_unmap_unlock(orig_pte, ptl);
203 
204 		if (pte_present(pte) || pte_none(pte))
205 			continue;
206 		entry = pte_to_swp_entry(pte);
207 		if (unlikely(non_swap_entry(entry)))
208 			continue;
209 
210 		page = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE,
211 							vma, index, false);
212 		if (page)
213 			put_page(page);
214 	}
215 
216 	return 0;
217 }
218 
219 static const struct mm_walk_ops swapin_walk_ops = {
220 	.pmd_entry		= swapin_walk_pmd_entry,
221 };
222 
223 static void force_shm_swapin_readahead(struct vm_area_struct *vma,
224 		unsigned long start, unsigned long end,
225 		struct address_space *mapping)
226 {
227 	pgoff_t index;
228 	struct page *page;
229 	swp_entry_t swap;
230 
231 	for (; start < end; start += PAGE_SIZE) {
232 		index = ((start - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
233 
234 		page = find_get_entry(mapping, index);
235 		if (!xa_is_value(page)) {
236 			if (page)
237 				put_page(page);
238 			continue;
239 		}
240 		swap = radix_to_swp_entry(page);
241 		page = read_swap_cache_async(swap, GFP_HIGHUSER_MOVABLE,
242 							NULL, 0, false);
243 		if (page)
244 			put_page(page);
245 	}
246 
247 	lru_add_drain();	/* Push any new pages onto the LRU now */
248 }
249 #endif		/* CONFIG_SWAP */
250 
251 /*
252  * Schedule all required I/O operations.  Do not wait for completion.
253  */
254 static long madvise_willneed(struct vm_area_struct *vma,
255 			     struct vm_area_struct **prev,
256 			     unsigned long start, unsigned long end)
257 {
258 	struct file *file = vma->vm_file;
259 	loff_t offset;
260 
261 	*prev = vma;
262 #ifdef CONFIG_SWAP
263 	if (!file) {
264 		walk_page_range(vma->vm_mm, start, end, &swapin_walk_ops, vma);
265 		lru_add_drain(); /* Push any new pages onto the LRU now */
266 		return 0;
267 	}
268 
269 	if (shmem_mapping(file->f_mapping)) {
270 		force_shm_swapin_readahead(vma, start, end,
271 					file->f_mapping);
272 		return 0;
273 	}
274 #else
275 	if (!file)
276 		return -EBADF;
277 #endif
278 
279 	if (IS_DAX(file_inode(file))) {
280 		/* no bad return value, but ignore advice */
281 		return 0;
282 	}
283 
284 	/*
285 	 * Filesystem's fadvise may need to take various locks.  We need to
286 	 * explicitly grab a reference because the vma (and hence the
287 	 * vma's reference to the file) can go away as soon as we drop
288 	 * mmap_lock.
289 	 */
290 	*prev = NULL;	/* tell sys_madvise we drop mmap_lock */
291 	get_file(file);
292 	mmap_read_unlock(current->mm);
293 	offset = (loff_t)(start - vma->vm_start)
294 			+ ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
295 	vfs_fadvise(file, offset, end - start, POSIX_FADV_WILLNEED);
296 	fput(file);
297 	mmap_read_lock(current->mm);
298 	return 0;
299 }
300 
301 static int madvise_cold_or_pageout_pte_range(pmd_t *pmd,
302 				unsigned long addr, unsigned long end,
303 				struct mm_walk *walk)
304 {
305 	struct madvise_walk_private *private = walk->private;
306 	struct mmu_gather *tlb = private->tlb;
307 	bool pageout = private->pageout;
308 	struct mm_struct *mm = tlb->mm;
309 	struct vm_area_struct *vma = walk->vma;
310 	pte_t *orig_pte, *pte, ptent;
311 	spinlock_t *ptl;
312 	struct page *page = NULL;
313 	LIST_HEAD(page_list);
314 
315 	if (fatal_signal_pending(current))
316 		return -EINTR;
317 
318 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
319 	if (pmd_trans_huge(*pmd)) {
320 		pmd_t orig_pmd;
321 		unsigned long next = pmd_addr_end(addr, end);
322 
323 		tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
324 		ptl = pmd_trans_huge_lock(pmd, vma);
325 		if (!ptl)
326 			return 0;
327 
328 		orig_pmd = *pmd;
329 		if (is_huge_zero_pmd(orig_pmd))
330 			goto huge_unlock;
331 
332 		if (unlikely(!pmd_present(orig_pmd))) {
333 			VM_BUG_ON(thp_migration_supported() &&
334 					!is_pmd_migration_entry(orig_pmd));
335 			goto huge_unlock;
336 		}
337 
338 		page = pmd_page(orig_pmd);
339 
340 		/* Do not interfere with other mappings of this page */
341 		if (page_mapcount(page) != 1)
342 			goto huge_unlock;
343 
344 		if (next - addr != HPAGE_PMD_SIZE) {
345 			int err;
346 
347 			get_page(page);
348 			spin_unlock(ptl);
349 			lock_page(page);
350 			err = split_huge_page(page);
351 			unlock_page(page);
352 			put_page(page);
353 			if (!err)
354 				goto regular_page;
355 			return 0;
356 		}
357 
358 		if (pmd_young(orig_pmd)) {
359 			pmdp_invalidate(vma, addr, pmd);
360 			orig_pmd = pmd_mkold(orig_pmd);
361 
362 			set_pmd_at(mm, addr, pmd, orig_pmd);
363 			tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
364 		}
365 
366 		ClearPageReferenced(page);
367 		test_and_clear_page_young(page);
368 		if (pageout) {
369 			if (!isolate_lru_page(page)) {
370 				if (PageUnevictable(page))
371 					putback_lru_page(page);
372 				else
373 					list_add(&page->lru, &page_list);
374 			}
375 		} else
376 			deactivate_page(page);
377 huge_unlock:
378 		spin_unlock(ptl);
379 		if (pageout)
380 			reclaim_pages(&page_list);
381 		return 0;
382 	}
383 
384 	if (pmd_trans_unstable(pmd))
385 		return 0;
386 regular_page:
387 #endif
388 	tlb_change_page_size(tlb, PAGE_SIZE);
389 	orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
390 	flush_tlb_batched_pending(mm);
391 	arch_enter_lazy_mmu_mode();
392 	for (; addr < end; pte++, addr += PAGE_SIZE) {
393 		ptent = *pte;
394 
395 		if (pte_none(ptent))
396 			continue;
397 
398 		if (!pte_present(ptent))
399 			continue;
400 
401 		page = vm_normal_page(vma, addr, ptent);
402 		if (!page)
403 			continue;
404 
405 		/*
406 		 * Creating a THP page is expensive so split it only if we
407 		 * are sure it's worth. Split it if we are only owner.
408 		 */
409 		if (PageTransCompound(page)) {
410 			if (page_mapcount(page) != 1)
411 				break;
412 			get_page(page);
413 			if (!trylock_page(page)) {
414 				put_page(page);
415 				break;
416 			}
417 			pte_unmap_unlock(orig_pte, ptl);
418 			if (split_huge_page(page)) {
419 				unlock_page(page);
420 				put_page(page);
421 				pte_offset_map_lock(mm, pmd, addr, &ptl);
422 				break;
423 			}
424 			unlock_page(page);
425 			put_page(page);
426 			pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
427 			pte--;
428 			addr -= PAGE_SIZE;
429 			continue;
430 		}
431 
432 		/* Do not interfere with other mappings of this page */
433 		if (page_mapcount(page) != 1)
434 			continue;
435 
436 		VM_BUG_ON_PAGE(PageTransCompound(page), page);
437 
438 		if (pte_young(ptent)) {
439 			ptent = ptep_get_and_clear_full(mm, addr, pte,
440 							tlb->fullmm);
441 			ptent = pte_mkold(ptent);
442 			set_pte_at(mm, addr, pte, ptent);
443 			tlb_remove_tlb_entry(tlb, pte, addr);
444 		}
445 
446 		/*
447 		 * We are deactivating a page for accelerating reclaiming.
448 		 * VM couldn't reclaim the page unless we clear PG_young.
449 		 * As a side effect, it makes confuse idle-page tracking
450 		 * because they will miss recent referenced history.
451 		 */
452 		ClearPageReferenced(page);
453 		test_and_clear_page_young(page);
454 		if (pageout) {
455 			if (!isolate_lru_page(page)) {
456 				if (PageUnevictable(page))
457 					putback_lru_page(page);
458 				else
459 					list_add(&page->lru, &page_list);
460 			}
461 		} else
462 			deactivate_page(page);
463 	}
464 
465 	arch_leave_lazy_mmu_mode();
466 	pte_unmap_unlock(orig_pte, ptl);
467 	if (pageout)
468 		reclaim_pages(&page_list);
469 	cond_resched();
470 
471 	return 0;
472 }
473 
474 static const struct mm_walk_ops cold_walk_ops = {
475 	.pmd_entry = madvise_cold_or_pageout_pte_range,
476 };
477 
478 static void madvise_cold_page_range(struct mmu_gather *tlb,
479 			     struct vm_area_struct *vma,
480 			     unsigned long addr, unsigned long end)
481 {
482 	struct madvise_walk_private walk_private = {
483 		.pageout = false,
484 		.tlb = tlb,
485 	};
486 
487 	tlb_start_vma(tlb, vma);
488 	walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
489 	tlb_end_vma(tlb, vma);
490 }
491 
492 static long madvise_cold(struct vm_area_struct *vma,
493 			struct vm_area_struct **prev,
494 			unsigned long start_addr, unsigned long end_addr)
495 {
496 	struct mm_struct *mm = vma->vm_mm;
497 	struct mmu_gather tlb;
498 
499 	*prev = vma;
500 	if (!can_madv_lru_vma(vma))
501 		return -EINVAL;
502 
503 	lru_add_drain();
504 	tlb_gather_mmu(&tlb, mm, start_addr, end_addr);
505 	madvise_cold_page_range(&tlb, vma, start_addr, end_addr);
506 	tlb_finish_mmu(&tlb, start_addr, end_addr);
507 
508 	return 0;
509 }
510 
511 static void madvise_pageout_page_range(struct mmu_gather *tlb,
512 			     struct vm_area_struct *vma,
513 			     unsigned long addr, unsigned long end)
514 {
515 	struct madvise_walk_private walk_private = {
516 		.pageout = true,
517 		.tlb = tlb,
518 	};
519 
520 	tlb_start_vma(tlb, vma);
521 	walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
522 	tlb_end_vma(tlb, vma);
523 }
524 
525 static inline bool can_do_pageout(struct vm_area_struct *vma)
526 {
527 	if (vma_is_anonymous(vma))
528 		return true;
529 	if (!vma->vm_file)
530 		return false;
531 	/*
532 	 * paging out pagecache only for non-anonymous mappings that correspond
533 	 * to the files the calling process could (if tried) open for writing;
534 	 * otherwise we'd be including shared non-exclusive mappings, which
535 	 * opens a side channel.
536 	 */
537 	return inode_owner_or_capable(file_inode(vma->vm_file)) ||
538 		inode_permission(file_inode(vma->vm_file), MAY_WRITE) == 0;
539 }
540 
541 static long madvise_pageout(struct vm_area_struct *vma,
542 			struct vm_area_struct **prev,
543 			unsigned long start_addr, unsigned long end_addr)
544 {
545 	struct mm_struct *mm = vma->vm_mm;
546 	struct mmu_gather tlb;
547 
548 	*prev = vma;
549 	if (!can_madv_lru_vma(vma))
550 		return -EINVAL;
551 
552 	if (!can_do_pageout(vma))
553 		return 0;
554 
555 	lru_add_drain();
556 	tlb_gather_mmu(&tlb, mm, start_addr, end_addr);
557 	madvise_pageout_page_range(&tlb, vma, start_addr, end_addr);
558 	tlb_finish_mmu(&tlb, start_addr, end_addr);
559 
560 	return 0;
561 }
562 
563 static int madvise_free_pte_range(pmd_t *pmd, unsigned long addr,
564 				unsigned long end, struct mm_walk *walk)
565 
566 {
567 	struct mmu_gather *tlb = walk->private;
568 	struct mm_struct *mm = tlb->mm;
569 	struct vm_area_struct *vma = walk->vma;
570 	spinlock_t *ptl;
571 	pte_t *orig_pte, *pte, ptent;
572 	struct page *page;
573 	int nr_swap = 0;
574 	unsigned long next;
575 
576 	next = pmd_addr_end(addr, end);
577 	if (pmd_trans_huge(*pmd))
578 		if (madvise_free_huge_pmd(tlb, vma, pmd, addr, next))
579 			goto next;
580 
581 	if (pmd_trans_unstable(pmd))
582 		return 0;
583 
584 	tlb_change_page_size(tlb, PAGE_SIZE);
585 	orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
586 	flush_tlb_batched_pending(mm);
587 	arch_enter_lazy_mmu_mode();
588 	for (; addr != end; pte++, addr += PAGE_SIZE) {
589 		ptent = *pte;
590 
591 		if (pte_none(ptent))
592 			continue;
593 		/*
594 		 * If the pte has swp_entry, just clear page table to
595 		 * prevent swap-in which is more expensive rather than
596 		 * (page allocation + zeroing).
597 		 */
598 		if (!pte_present(ptent)) {
599 			swp_entry_t entry;
600 
601 			entry = pte_to_swp_entry(ptent);
602 			if (non_swap_entry(entry))
603 				continue;
604 			nr_swap--;
605 			free_swap_and_cache(entry);
606 			pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
607 			continue;
608 		}
609 
610 		page = vm_normal_page(vma, addr, ptent);
611 		if (!page)
612 			continue;
613 
614 		/*
615 		 * If pmd isn't transhuge but the page is THP and
616 		 * is owned by only this process, split it and
617 		 * deactivate all pages.
618 		 */
619 		if (PageTransCompound(page)) {
620 			if (page_mapcount(page) != 1)
621 				goto out;
622 			get_page(page);
623 			if (!trylock_page(page)) {
624 				put_page(page);
625 				goto out;
626 			}
627 			pte_unmap_unlock(orig_pte, ptl);
628 			if (split_huge_page(page)) {
629 				unlock_page(page);
630 				put_page(page);
631 				pte_offset_map_lock(mm, pmd, addr, &ptl);
632 				goto out;
633 			}
634 			unlock_page(page);
635 			put_page(page);
636 			pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
637 			pte--;
638 			addr -= PAGE_SIZE;
639 			continue;
640 		}
641 
642 		VM_BUG_ON_PAGE(PageTransCompound(page), page);
643 
644 		if (PageSwapCache(page) || PageDirty(page)) {
645 			if (!trylock_page(page))
646 				continue;
647 			/*
648 			 * If page is shared with others, we couldn't clear
649 			 * PG_dirty of the page.
650 			 */
651 			if (page_mapcount(page) != 1) {
652 				unlock_page(page);
653 				continue;
654 			}
655 
656 			if (PageSwapCache(page) && !try_to_free_swap(page)) {
657 				unlock_page(page);
658 				continue;
659 			}
660 
661 			ClearPageDirty(page);
662 			unlock_page(page);
663 		}
664 
665 		if (pte_young(ptent) || pte_dirty(ptent)) {
666 			/*
667 			 * Some of architecture(ex, PPC) don't update TLB
668 			 * with set_pte_at and tlb_remove_tlb_entry so for
669 			 * the portability, remap the pte with old|clean
670 			 * after pte clearing.
671 			 */
672 			ptent = ptep_get_and_clear_full(mm, addr, pte,
673 							tlb->fullmm);
674 
675 			ptent = pte_mkold(ptent);
676 			ptent = pte_mkclean(ptent);
677 			set_pte_at(mm, addr, pte, ptent);
678 			tlb_remove_tlb_entry(tlb, pte, addr);
679 		}
680 		mark_page_lazyfree(page);
681 	}
682 out:
683 	if (nr_swap) {
684 		if (current->mm == mm)
685 			sync_mm_rss(mm);
686 
687 		add_mm_counter(mm, MM_SWAPENTS, nr_swap);
688 	}
689 	arch_leave_lazy_mmu_mode();
690 	pte_unmap_unlock(orig_pte, ptl);
691 	cond_resched();
692 next:
693 	return 0;
694 }
695 
696 static const struct mm_walk_ops madvise_free_walk_ops = {
697 	.pmd_entry		= madvise_free_pte_range,
698 };
699 
700 static int madvise_free_single_vma(struct vm_area_struct *vma,
701 			unsigned long start_addr, unsigned long end_addr)
702 {
703 	struct mm_struct *mm = vma->vm_mm;
704 	struct mmu_notifier_range range;
705 	struct mmu_gather tlb;
706 
707 	/* MADV_FREE works for only anon vma at the moment */
708 	if (!vma_is_anonymous(vma))
709 		return -EINVAL;
710 
711 	range.start = max(vma->vm_start, start_addr);
712 	if (range.start >= vma->vm_end)
713 		return -EINVAL;
714 	range.end = min(vma->vm_end, end_addr);
715 	if (range.end <= vma->vm_start)
716 		return -EINVAL;
717 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
718 				range.start, range.end);
719 
720 	lru_add_drain();
721 	tlb_gather_mmu(&tlb, mm, range.start, range.end);
722 	update_hiwater_rss(mm);
723 
724 	mmu_notifier_invalidate_range_start(&range);
725 	tlb_start_vma(&tlb, vma);
726 	walk_page_range(vma->vm_mm, range.start, range.end,
727 			&madvise_free_walk_ops, &tlb);
728 	tlb_end_vma(&tlb, vma);
729 	mmu_notifier_invalidate_range_end(&range);
730 	tlb_finish_mmu(&tlb, range.start, range.end);
731 
732 	return 0;
733 }
734 
735 /*
736  * Application no longer needs these pages.  If the pages are dirty,
737  * it's OK to just throw them away.  The app will be more careful about
738  * data it wants to keep.  Be sure to free swap resources too.  The
739  * zap_page_range call sets things up for shrink_active_list to actually free
740  * these pages later if no one else has touched them in the meantime,
741  * although we could add these pages to a global reuse list for
742  * shrink_active_list to pick up before reclaiming other pages.
743  *
744  * NB: This interface discards data rather than pushes it out to swap,
745  * as some implementations do.  This has performance implications for
746  * applications like large transactional databases which want to discard
747  * pages in anonymous maps after committing to backing store the data
748  * that was kept in them.  There is no reason to write this data out to
749  * the swap area if the application is discarding it.
750  *
751  * An interface that causes the system to free clean pages and flush
752  * dirty pages is already available as msync(MS_INVALIDATE).
753  */
754 static long madvise_dontneed_single_vma(struct vm_area_struct *vma,
755 					unsigned long start, unsigned long end)
756 {
757 	zap_page_range(vma, start, end - start);
758 	return 0;
759 }
760 
761 static long madvise_dontneed_free(struct vm_area_struct *vma,
762 				  struct vm_area_struct **prev,
763 				  unsigned long start, unsigned long end,
764 				  int behavior)
765 {
766 	*prev = vma;
767 	if (!can_madv_lru_vma(vma))
768 		return -EINVAL;
769 
770 	if (!userfaultfd_remove(vma, start, end)) {
771 		*prev = NULL; /* mmap_lock has been dropped, prev is stale */
772 
773 		mmap_read_lock(current->mm);
774 		vma = find_vma(current->mm, start);
775 		if (!vma)
776 			return -ENOMEM;
777 		if (start < vma->vm_start) {
778 			/*
779 			 * This "vma" under revalidation is the one
780 			 * with the lowest vma->vm_start where start
781 			 * is also < vma->vm_end. If start <
782 			 * vma->vm_start it means an hole materialized
783 			 * in the user address space within the
784 			 * virtual range passed to MADV_DONTNEED
785 			 * or MADV_FREE.
786 			 */
787 			return -ENOMEM;
788 		}
789 		if (!can_madv_lru_vma(vma))
790 			return -EINVAL;
791 		if (end > vma->vm_end) {
792 			/*
793 			 * Don't fail if end > vma->vm_end. If the old
794 			 * vma was splitted while the mmap_lock was
795 			 * released the effect of the concurrent
796 			 * operation may not cause madvise() to
797 			 * have an undefined result. There may be an
798 			 * adjacent next vma that we'll walk
799 			 * next. userfaultfd_remove() will generate an
800 			 * UFFD_EVENT_REMOVE repetition on the
801 			 * end-vma->vm_end range, but the manager can
802 			 * handle a repetition fine.
803 			 */
804 			end = vma->vm_end;
805 		}
806 		VM_WARN_ON(start >= end);
807 	}
808 
809 	if (behavior == MADV_DONTNEED)
810 		return madvise_dontneed_single_vma(vma, start, end);
811 	else if (behavior == MADV_FREE)
812 		return madvise_free_single_vma(vma, start, end);
813 	else
814 		return -EINVAL;
815 }
816 
817 /*
818  * Application wants to free up the pages and associated backing store.
819  * This is effectively punching a hole into the middle of a file.
820  */
821 static long madvise_remove(struct vm_area_struct *vma,
822 				struct vm_area_struct **prev,
823 				unsigned long start, unsigned long end)
824 {
825 	loff_t offset;
826 	int error;
827 	struct file *f;
828 
829 	*prev = NULL;	/* tell sys_madvise we drop mmap_lock */
830 
831 	if (vma->vm_flags & VM_LOCKED)
832 		return -EINVAL;
833 
834 	f = vma->vm_file;
835 
836 	if (!f || !f->f_mapping || !f->f_mapping->host) {
837 			return -EINVAL;
838 	}
839 
840 	if ((vma->vm_flags & (VM_SHARED|VM_WRITE)) != (VM_SHARED|VM_WRITE))
841 		return -EACCES;
842 
843 	offset = (loff_t)(start - vma->vm_start)
844 			+ ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
845 
846 	/*
847 	 * Filesystem's fallocate may need to take i_mutex.  We need to
848 	 * explicitly grab a reference because the vma (and hence the
849 	 * vma's reference to the file) can go away as soon as we drop
850 	 * mmap_lock.
851 	 */
852 	get_file(f);
853 	if (userfaultfd_remove(vma, start, end)) {
854 		/* mmap_lock was not released by userfaultfd_remove() */
855 		mmap_read_unlock(current->mm);
856 	}
857 	error = vfs_fallocate(f,
858 				FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
859 				offset, end - start);
860 	fput(f);
861 	mmap_read_lock(current->mm);
862 	return error;
863 }
864 
865 #ifdef CONFIG_MEMORY_FAILURE
866 /*
867  * Error injection support for memory error handling.
868  */
869 static int madvise_inject_error(int behavior,
870 		unsigned long start, unsigned long end)
871 {
872 	struct page *page;
873 	struct zone *zone;
874 	unsigned long size;
875 
876 	if (!capable(CAP_SYS_ADMIN))
877 		return -EPERM;
878 
879 
880 	for (; start < end; start += size) {
881 		unsigned long pfn;
882 		int ret;
883 
884 		ret = get_user_pages_fast(start, 1, 0, &page);
885 		if (ret != 1)
886 			return ret;
887 		pfn = page_to_pfn(page);
888 
889 		/*
890 		 * When soft offlining hugepages, after migrating the page
891 		 * we dissolve it, therefore in the second loop "page" will
892 		 * no longer be a compound page.
893 		 */
894 		size = page_size(compound_head(page));
895 
896 		if (PageHWPoison(page)) {
897 			put_page(page);
898 			continue;
899 		}
900 
901 		if (behavior == MADV_SOFT_OFFLINE) {
902 			pr_info("Soft offlining pfn %#lx at process virtual address %#lx\n",
903 					pfn, start);
904 
905 			ret = soft_offline_page(pfn, MF_COUNT_INCREASED);
906 			if (ret)
907 				return ret;
908 			continue;
909 		}
910 
911 		pr_info("Injecting memory failure for pfn %#lx at process virtual address %#lx\n",
912 				pfn, start);
913 
914 		/*
915 		 * Drop the page reference taken by get_user_pages_fast(). In
916 		 * the absence of MF_COUNT_INCREASED the memory_failure()
917 		 * routine is responsible for pinning the page to prevent it
918 		 * from being released back to the page allocator.
919 		 */
920 		put_page(page);
921 		ret = memory_failure(pfn, 0);
922 		if (ret)
923 			return ret;
924 	}
925 
926 	/* Ensure that all poisoned pages are removed from per-cpu lists */
927 	for_each_populated_zone(zone)
928 		drain_all_pages(zone);
929 
930 	return 0;
931 }
932 #endif
933 
934 static long
935 madvise_vma(struct vm_area_struct *vma, struct vm_area_struct **prev,
936 		unsigned long start, unsigned long end, int behavior)
937 {
938 	switch (behavior) {
939 	case MADV_REMOVE:
940 		return madvise_remove(vma, prev, start, end);
941 	case MADV_WILLNEED:
942 		return madvise_willneed(vma, prev, start, end);
943 	case MADV_COLD:
944 		return madvise_cold(vma, prev, start, end);
945 	case MADV_PAGEOUT:
946 		return madvise_pageout(vma, prev, start, end);
947 	case MADV_FREE:
948 	case MADV_DONTNEED:
949 		return madvise_dontneed_free(vma, prev, start, end, behavior);
950 	default:
951 		return madvise_behavior(vma, prev, start, end, behavior);
952 	}
953 }
954 
955 static bool
956 madvise_behavior_valid(int behavior)
957 {
958 	switch (behavior) {
959 	case MADV_DOFORK:
960 	case MADV_DONTFORK:
961 	case MADV_NORMAL:
962 	case MADV_SEQUENTIAL:
963 	case MADV_RANDOM:
964 	case MADV_REMOVE:
965 	case MADV_WILLNEED:
966 	case MADV_DONTNEED:
967 	case MADV_FREE:
968 	case MADV_COLD:
969 	case MADV_PAGEOUT:
970 #ifdef CONFIG_KSM
971 	case MADV_MERGEABLE:
972 	case MADV_UNMERGEABLE:
973 #endif
974 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
975 	case MADV_HUGEPAGE:
976 	case MADV_NOHUGEPAGE:
977 #endif
978 	case MADV_DONTDUMP:
979 	case MADV_DODUMP:
980 	case MADV_WIPEONFORK:
981 	case MADV_KEEPONFORK:
982 #ifdef CONFIG_MEMORY_FAILURE
983 	case MADV_SOFT_OFFLINE:
984 	case MADV_HWPOISON:
985 #endif
986 		return true;
987 
988 	default:
989 		return false;
990 	}
991 }
992 
993 /*
994  * The madvise(2) system call.
995  *
996  * Applications can use madvise() to advise the kernel how it should
997  * handle paging I/O in this VM area.  The idea is to help the kernel
998  * use appropriate read-ahead and caching techniques.  The information
999  * provided is advisory only, and can be safely disregarded by the
1000  * kernel without affecting the correct operation of the application.
1001  *
1002  * behavior values:
1003  *  MADV_NORMAL - the default behavior is to read clusters.  This
1004  *		results in some read-ahead and read-behind.
1005  *  MADV_RANDOM - the system should read the minimum amount of data
1006  *		on any access, since it is unlikely that the appli-
1007  *		cation will need more than what it asks for.
1008  *  MADV_SEQUENTIAL - pages in the given range will probably be accessed
1009  *		once, so they can be aggressively read ahead, and
1010  *		can be freed soon after they are accessed.
1011  *  MADV_WILLNEED - the application is notifying the system to read
1012  *		some pages ahead.
1013  *  MADV_DONTNEED - the application is finished with the given range,
1014  *		so the kernel can free resources associated with it.
1015  *  MADV_FREE - the application marks pages in the given range as lazy free,
1016  *		where actual purges are postponed until memory pressure happens.
1017  *  MADV_REMOVE - the application wants to free up the given range of
1018  *		pages and associated backing store.
1019  *  MADV_DONTFORK - omit this area from child's address space when forking:
1020  *		typically, to avoid COWing pages pinned by get_user_pages().
1021  *  MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking.
1022  *  MADV_WIPEONFORK - present the child process with zero-filled memory in this
1023  *              range after a fork.
1024  *  MADV_KEEPONFORK - undo the effect of MADV_WIPEONFORK
1025  *  MADV_HWPOISON - trigger memory error handler as if the given memory range
1026  *		were corrupted by unrecoverable hardware memory failure.
1027  *  MADV_SOFT_OFFLINE - try to soft-offline the given range of memory.
1028  *  MADV_MERGEABLE - the application recommends that KSM try to merge pages in
1029  *		this area with pages of identical content from other such areas.
1030  *  MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others.
1031  *  MADV_HUGEPAGE - the application wants to back the given range by transparent
1032  *		huge pages in the future. Existing pages might be coalesced and
1033  *		new pages might be allocated as THP.
1034  *  MADV_NOHUGEPAGE - mark the given range as not worth being backed by
1035  *		transparent huge pages so the existing pages will not be
1036  *		coalesced into THP and new pages will not be allocated as THP.
1037  *  MADV_DONTDUMP - the application wants to prevent pages in the given range
1038  *		from being included in its core dump.
1039  *  MADV_DODUMP - cancel MADV_DONTDUMP: no longer exclude from core dump.
1040  *
1041  * return values:
1042  *  zero    - success
1043  *  -EINVAL - start + len < 0, start is not page-aligned,
1044  *		"behavior" is not a valid value, or application
1045  *		is attempting to release locked or shared pages,
1046  *		or the specified address range includes file, Huge TLB,
1047  *		MAP_SHARED or VMPFNMAP range.
1048  *  -ENOMEM - addresses in the specified range are not currently
1049  *		mapped, or are outside the AS of the process.
1050  *  -EIO    - an I/O error occurred while paging in data.
1051  *  -EBADF  - map exists, but area maps something that isn't a file.
1052  *  -EAGAIN - a kernel resource was temporarily unavailable.
1053  */
1054 int do_madvise(unsigned long start, size_t len_in, int behavior)
1055 {
1056 	unsigned long end, tmp;
1057 	struct vm_area_struct *vma, *prev;
1058 	int unmapped_error = 0;
1059 	int error = -EINVAL;
1060 	int write;
1061 	size_t len;
1062 	struct blk_plug plug;
1063 
1064 	start = untagged_addr(start);
1065 
1066 	if (!madvise_behavior_valid(behavior))
1067 		return error;
1068 
1069 	if (!PAGE_ALIGNED(start))
1070 		return error;
1071 	len = PAGE_ALIGN(len_in);
1072 
1073 	/* Check to see whether len was rounded up from small -ve to zero */
1074 	if (len_in && !len)
1075 		return error;
1076 
1077 	end = start + len;
1078 	if (end < start)
1079 		return error;
1080 
1081 	error = 0;
1082 	if (end == start)
1083 		return error;
1084 
1085 #ifdef CONFIG_MEMORY_FAILURE
1086 	if (behavior == MADV_HWPOISON || behavior == MADV_SOFT_OFFLINE)
1087 		return madvise_inject_error(behavior, start, start + len_in);
1088 #endif
1089 
1090 	write = madvise_need_mmap_write(behavior);
1091 	if (write) {
1092 		if (mmap_write_lock_killable(current->mm))
1093 			return -EINTR;
1094 
1095 		/*
1096 		 * We may have stolen the mm from another process
1097 		 * that is undergoing core dumping.
1098 		 *
1099 		 * Right now that's io_ring, in the future it may
1100 		 * be remote process management and not "current"
1101 		 * at all.
1102 		 *
1103 		 * We need to fix core dumping to not do this,
1104 		 * but for now we have the mmget_still_valid()
1105 		 * model.
1106 		 */
1107 		if (!mmget_still_valid(current->mm)) {
1108 			mmap_write_unlock(current->mm);
1109 			return -EINTR;
1110 		}
1111 	} else {
1112 		mmap_read_lock(current->mm);
1113 	}
1114 
1115 	/*
1116 	 * If the interval [start,end) covers some unmapped address
1117 	 * ranges, just ignore them, but return -ENOMEM at the end.
1118 	 * - different from the way of handling in mlock etc.
1119 	 */
1120 	vma = find_vma_prev(current->mm, start, &prev);
1121 	if (vma && start > vma->vm_start)
1122 		prev = vma;
1123 
1124 	blk_start_plug(&plug);
1125 	for (;;) {
1126 		/* Still start < end. */
1127 		error = -ENOMEM;
1128 		if (!vma)
1129 			goto out;
1130 
1131 		/* Here start < (end|vma->vm_end). */
1132 		if (start < vma->vm_start) {
1133 			unmapped_error = -ENOMEM;
1134 			start = vma->vm_start;
1135 			if (start >= end)
1136 				goto out;
1137 		}
1138 
1139 		/* Here vma->vm_start <= start < (end|vma->vm_end) */
1140 		tmp = vma->vm_end;
1141 		if (end < tmp)
1142 			tmp = end;
1143 
1144 		/* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */
1145 		error = madvise_vma(vma, &prev, start, tmp, behavior);
1146 		if (error)
1147 			goto out;
1148 		start = tmp;
1149 		if (prev && start < prev->vm_end)
1150 			start = prev->vm_end;
1151 		error = unmapped_error;
1152 		if (start >= end)
1153 			goto out;
1154 		if (prev)
1155 			vma = prev->vm_next;
1156 		else	/* madvise_remove dropped mmap_lock */
1157 			vma = find_vma(current->mm, start);
1158 	}
1159 out:
1160 	blk_finish_plug(&plug);
1161 	if (write)
1162 		mmap_write_unlock(current->mm);
1163 	else
1164 		mmap_read_unlock(current->mm);
1165 
1166 	return error;
1167 }
1168 
1169 SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior)
1170 {
1171 	return do_madvise(start, len_in, behavior);
1172 }
1173