xref: /openbmc/linux/mm/madvise.c (revision f4384b3e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *	linux/mm/madvise.c
4  *
5  * Copyright (C) 1999  Linus Torvalds
6  * Copyright (C) 2002  Christoph Hellwig
7  */
8 
9 #include <linux/mman.h>
10 #include <linux/pagemap.h>
11 #include <linux/syscalls.h>
12 #include <linux/mempolicy.h>
13 #include <linux/page-isolation.h>
14 #include <linux/page_idle.h>
15 #include <linux/userfaultfd_k.h>
16 #include <linux/hugetlb.h>
17 #include <linux/falloc.h>
18 #include <linux/fadvise.h>
19 #include <linux/sched.h>
20 #include <linux/sched/mm.h>
21 #include <linux/mm_inline.h>
22 #include <linux/string.h>
23 #include <linux/uio.h>
24 #include <linux/ksm.h>
25 #include <linux/fs.h>
26 #include <linux/file.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagewalk.h>
30 #include <linux/swap.h>
31 #include <linux/swapops.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/mmu_notifier.h>
34 
35 #include <asm/tlb.h>
36 
37 #include "internal.h"
38 #include "swap.h"
39 
40 struct madvise_walk_private {
41 	struct mmu_gather *tlb;
42 	bool pageout;
43 };
44 
45 /*
46  * Any behaviour which results in changes to the vma->vm_flags needs to
47  * take mmap_lock for writing. Others, which simply traverse vmas, need
48  * to only take it for reading.
49  */
50 static int madvise_need_mmap_write(int behavior)
51 {
52 	switch (behavior) {
53 	case MADV_REMOVE:
54 	case MADV_WILLNEED:
55 	case MADV_DONTNEED:
56 	case MADV_DONTNEED_LOCKED:
57 	case MADV_COLD:
58 	case MADV_PAGEOUT:
59 	case MADV_FREE:
60 	case MADV_POPULATE_READ:
61 	case MADV_POPULATE_WRITE:
62 	case MADV_COLLAPSE:
63 		return 0;
64 	default:
65 		/* be safe, default to 1. list exceptions explicitly */
66 		return 1;
67 	}
68 }
69 
70 #ifdef CONFIG_ANON_VMA_NAME
71 struct anon_vma_name *anon_vma_name_alloc(const char *name)
72 {
73 	struct anon_vma_name *anon_name;
74 	size_t count;
75 
76 	/* Add 1 for NUL terminator at the end of the anon_name->name */
77 	count = strlen(name) + 1;
78 	anon_name = kmalloc(struct_size(anon_name, name, count), GFP_KERNEL);
79 	if (anon_name) {
80 		kref_init(&anon_name->kref);
81 		memcpy(anon_name->name, name, count);
82 	}
83 
84 	return anon_name;
85 }
86 
87 void anon_vma_name_free(struct kref *kref)
88 {
89 	struct anon_vma_name *anon_name =
90 			container_of(kref, struct anon_vma_name, kref);
91 	kfree(anon_name);
92 }
93 
94 struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma)
95 {
96 	mmap_assert_locked(vma->vm_mm);
97 
98 	return vma->anon_name;
99 }
100 
101 /* mmap_lock should be write-locked */
102 static int replace_anon_vma_name(struct vm_area_struct *vma,
103 				 struct anon_vma_name *anon_name)
104 {
105 	struct anon_vma_name *orig_name = anon_vma_name(vma);
106 
107 	if (!anon_name) {
108 		vma->anon_name = NULL;
109 		anon_vma_name_put(orig_name);
110 		return 0;
111 	}
112 
113 	if (anon_vma_name_eq(orig_name, anon_name))
114 		return 0;
115 
116 	vma->anon_name = anon_vma_name_reuse(anon_name);
117 	anon_vma_name_put(orig_name);
118 
119 	return 0;
120 }
121 #else /* CONFIG_ANON_VMA_NAME */
122 static int replace_anon_vma_name(struct vm_area_struct *vma,
123 				 struct anon_vma_name *anon_name)
124 {
125 	if (anon_name)
126 		return -EINVAL;
127 
128 	return 0;
129 }
130 #endif /* CONFIG_ANON_VMA_NAME */
131 /*
132  * Update the vm_flags on region of a vma, splitting it or merging it as
133  * necessary.  Must be called with mmap_lock held for writing;
134  * Caller should ensure anon_name stability by raising its refcount even when
135  * anon_name belongs to a valid vma because this function might free that vma.
136  */
137 static int madvise_update_vma(struct vm_area_struct *vma,
138 			      struct vm_area_struct **prev, unsigned long start,
139 			      unsigned long end, unsigned long new_flags,
140 			      struct anon_vma_name *anon_name)
141 {
142 	struct mm_struct *mm = vma->vm_mm;
143 	int error;
144 	pgoff_t pgoff;
145 	VMA_ITERATOR(vmi, mm, start);
146 
147 	if (new_flags == vma->vm_flags && anon_vma_name_eq(anon_vma_name(vma), anon_name)) {
148 		*prev = vma;
149 		return 0;
150 	}
151 
152 	pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
153 	*prev = vma_merge(&vmi, mm, *prev, start, end, new_flags,
154 			  vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
155 			  vma->vm_userfaultfd_ctx, anon_name);
156 	if (*prev) {
157 		vma = *prev;
158 		goto success;
159 	}
160 
161 	*prev = vma;
162 
163 	if (start != vma->vm_start) {
164 		error = split_vma(&vmi, vma, start, 1);
165 		if (error)
166 			return error;
167 	}
168 
169 	if (end != vma->vm_end) {
170 		error = split_vma(&vmi, vma, end, 0);
171 		if (error)
172 			return error;
173 	}
174 
175 success:
176 	/*
177 	 * vm_flags is protected by the mmap_lock held in write mode.
178 	 */
179 	vm_flags_reset(vma, new_flags);
180 	if (!vma->vm_file || vma_is_anon_shmem(vma)) {
181 		error = replace_anon_vma_name(vma, anon_name);
182 		if (error)
183 			return error;
184 	}
185 
186 	return 0;
187 }
188 
189 #ifdef CONFIG_SWAP
190 static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start,
191 		unsigned long end, struct mm_walk *walk)
192 {
193 	struct vm_area_struct *vma = walk->private;
194 	struct swap_iocb *splug = NULL;
195 	pte_t *ptep = NULL;
196 	spinlock_t *ptl;
197 	unsigned long addr;
198 
199 	for (addr = start; addr < end; addr += PAGE_SIZE) {
200 		pte_t pte;
201 		swp_entry_t entry;
202 		struct page *page;
203 
204 		if (!ptep++) {
205 			ptep = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
206 			if (!ptep)
207 				break;
208 		}
209 
210 		pte = ptep_get(ptep);
211 		if (!is_swap_pte(pte))
212 			continue;
213 		entry = pte_to_swp_entry(pte);
214 		if (unlikely(non_swap_entry(entry)))
215 			continue;
216 
217 		pte_unmap_unlock(ptep, ptl);
218 		ptep = NULL;
219 
220 		page = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE,
221 					     vma, addr, false, &splug);
222 		if (page)
223 			put_page(page);
224 	}
225 
226 	if (ptep)
227 		pte_unmap_unlock(ptep, ptl);
228 	swap_read_unplug(splug);
229 	cond_resched();
230 
231 	return 0;
232 }
233 
234 static const struct mm_walk_ops swapin_walk_ops = {
235 	.pmd_entry		= swapin_walk_pmd_entry,
236 	.walk_lock		= PGWALK_RDLOCK,
237 };
238 
239 static void shmem_swapin_range(struct vm_area_struct *vma,
240 		unsigned long start, unsigned long end,
241 		struct address_space *mapping)
242 {
243 	XA_STATE(xas, &mapping->i_pages, linear_page_index(vma, start));
244 	pgoff_t end_index = linear_page_index(vma, end) - 1;
245 	struct page *page;
246 	struct swap_iocb *splug = NULL;
247 
248 	rcu_read_lock();
249 	xas_for_each(&xas, page, end_index) {
250 		unsigned long addr;
251 		swp_entry_t entry;
252 
253 		if (!xa_is_value(page))
254 			continue;
255 		entry = radix_to_swp_entry(page);
256 		/* There might be swapin error entries in shmem mapping. */
257 		if (non_swap_entry(entry))
258 			continue;
259 
260 		addr = vma->vm_start +
261 			((xas.xa_index - vma->vm_pgoff) << PAGE_SHIFT);
262 		xas_pause(&xas);
263 		rcu_read_unlock();
264 
265 		page = read_swap_cache_async(entry, mapping_gfp_mask(mapping),
266 					     vma, addr, false, &splug);
267 		if (page)
268 			put_page(page);
269 
270 		rcu_read_lock();
271 	}
272 	rcu_read_unlock();
273 	swap_read_unplug(splug);
274 }
275 #endif		/* CONFIG_SWAP */
276 
277 /*
278  * Schedule all required I/O operations.  Do not wait for completion.
279  */
280 static long madvise_willneed(struct vm_area_struct *vma,
281 			     struct vm_area_struct **prev,
282 			     unsigned long start, unsigned long end)
283 {
284 	struct mm_struct *mm = vma->vm_mm;
285 	struct file *file = vma->vm_file;
286 	loff_t offset;
287 
288 	*prev = vma;
289 #ifdef CONFIG_SWAP
290 	if (!file) {
291 		walk_page_range(vma->vm_mm, start, end, &swapin_walk_ops, vma);
292 		lru_add_drain(); /* Push any new pages onto the LRU now */
293 		return 0;
294 	}
295 
296 	if (shmem_mapping(file->f_mapping)) {
297 		shmem_swapin_range(vma, start, end, file->f_mapping);
298 		lru_add_drain(); /* Push any new pages onto the LRU now */
299 		return 0;
300 	}
301 #else
302 	if (!file)
303 		return -EBADF;
304 #endif
305 
306 	if (IS_DAX(file_inode(file))) {
307 		/* no bad return value, but ignore advice */
308 		return 0;
309 	}
310 
311 	/*
312 	 * Filesystem's fadvise may need to take various locks.  We need to
313 	 * explicitly grab a reference because the vma (and hence the
314 	 * vma's reference to the file) can go away as soon as we drop
315 	 * mmap_lock.
316 	 */
317 	*prev = NULL;	/* tell sys_madvise we drop mmap_lock */
318 	get_file(file);
319 	offset = (loff_t)(start - vma->vm_start)
320 			+ ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
321 	mmap_read_unlock(mm);
322 	vfs_fadvise(file, offset, end - start, POSIX_FADV_WILLNEED);
323 	fput(file);
324 	mmap_read_lock(mm);
325 	return 0;
326 }
327 
328 static inline bool can_do_file_pageout(struct vm_area_struct *vma)
329 {
330 	if (!vma->vm_file)
331 		return false;
332 	/*
333 	 * paging out pagecache only for non-anonymous mappings that correspond
334 	 * to the files the calling process could (if tried) open for writing;
335 	 * otherwise we'd be including shared non-exclusive mappings, which
336 	 * opens a side channel.
337 	 */
338 	return inode_owner_or_capable(&nop_mnt_idmap,
339 				      file_inode(vma->vm_file)) ||
340 	       file_permission(vma->vm_file, MAY_WRITE) == 0;
341 }
342 
343 static int madvise_cold_or_pageout_pte_range(pmd_t *pmd,
344 				unsigned long addr, unsigned long end,
345 				struct mm_walk *walk)
346 {
347 	struct madvise_walk_private *private = walk->private;
348 	struct mmu_gather *tlb = private->tlb;
349 	bool pageout = private->pageout;
350 	struct mm_struct *mm = tlb->mm;
351 	struct vm_area_struct *vma = walk->vma;
352 	pte_t *start_pte, *pte, ptent;
353 	spinlock_t *ptl;
354 	struct folio *folio = NULL;
355 	LIST_HEAD(folio_list);
356 	bool pageout_anon_only_filter;
357 
358 	if (fatal_signal_pending(current))
359 		return -EINTR;
360 
361 	pageout_anon_only_filter = pageout && !vma_is_anonymous(vma) &&
362 					!can_do_file_pageout(vma);
363 
364 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
365 	if (pmd_trans_huge(*pmd)) {
366 		pmd_t orig_pmd;
367 		unsigned long next = pmd_addr_end(addr, end);
368 
369 		tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
370 		ptl = pmd_trans_huge_lock(pmd, vma);
371 		if (!ptl)
372 			return 0;
373 
374 		orig_pmd = *pmd;
375 		if (is_huge_zero_pmd(orig_pmd))
376 			goto huge_unlock;
377 
378 		if (unlikely(!pmd_present(orig_pmd))) {
379 			VM_BUG_ON(thp_migration_supported() &&
380 					!is_pmd_migration_entry(orig_pmd));
381 			goto huge_unlock;
382 		}
383 
384 		folio = pfn_folio(pmd_pfn(orig_pmd));
385 
386 		/* Do not interfere with other mappings of this folio */
387 		if (folio_estimated_sharers(folio) != 1)
388 			goto huge_unlock;
389 
390 		if (pageout_anon_only_filter && !folio_test_anon(folio))
391 			goto huge_unlock;
392 
393 		if (next - addr != HPAGE_PMD_SIZE) {
394 			int err;
395 
396 			folio_get(folio);
397 			spin_unlock(ptl);
398 			folio_lock(folio);
399 			err = split_folio(folio);
400 			folio_unlock(folio);
401 			folio_put(folio);
402 			if (!err)
403 				goto regular_folio;
404 			return 0;
405 		}
406 
407 		if (pmd_young(orig_pmd)) {
408 			pmdp_invalidate(vma, addr, pmd);
409 			orig_pmd = pmd_mkold(orig_pmd);
410 
411 			set_pmd_at(mm, addr, pmd, orig_pmd);
412 			tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
413 		}
414 
415 		folio_clear_referenced(folio);
416 		folio_test_clear_young(folio);
417 		if (pageout) {
418 			if (folio_isolate_lru(folio)) {
419 				if (folio_test_unevictable(folio))
420 					folio_putback_lru(folio);
421 				else
422 					list_add(&folio->lru, &folio_list);
423 			}
424 		} else
425 			folio_deactivate(folio);
426 huge_unlock:
427 		spin_unlock(ptl);
428 		if (pageout)
429 			reclaim_pages(&folio_list);
430 		return 0;
431 	}
432 
433 regular_folio:
434 #endif
435 	tlb_change_page_size(tlb, PAGE_SIZE);
436 	start_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
437 	if (!start_pte)
438 		return 0;
439 	flush_tlb_batched_pending(mm);
440 	arch_enter_lazy_mmu_mode();
441 	for (; addr < end; pte++, addr += PAGE_SIZE) {
442 		ptent = ptep_get(pte);
443 
444 		if (pte_none(ptent))
445 			continue;
446 
447 		if (!pte_present(ptent))
448 			continue;
449 
450 		folio = vm_normal_folio(vma, addr, ptent);
451 		if (!folio || folio_is_zone_device(folio))
452 			continue;
453 
454 		/*
455 		 * Creating a THP page is expensive so split it only if we
456 		 * are sure it's worth. Split it if we are only owner.
457 		 */
458 		if (folio_test_large(folio)) {
459 			int err;
460 
461 			if (folio_estimated_sharers(folio) != 1)
462 				break;
463 			if (pageout_anon_only_filter && !folio_test_anon(folio))
464 				break;
465 			if (!folio_trylock(folio))
466 				break;
467 			folio_get(folio);
468 			arch_leave_lazy_mmu_mode();
469 			pte_unmap_unlock(start_pte, ptl);
470 			start_pte = NULL;
471 			err = split_folio(folio);
472 			folio_unlock(folio);
473 			folio_put(folio);
474 			if (err)
475 				break;
476 			start_pte = pte =
477 				pte_offset_map_lock(mm, pmd, addr, &ptl);
478 			if (!start_pte)
479 				break;
480 			arch_enter_lazy_mmu_mode();
481 			pte--;
482 			addr -= PAGE_SIZE;
483 			continue;
484 		}
485 
486 		/*
487 		 * Do not interfere with other mappings of this folio and
488 		 * non-LRU folio.
489 		 */
490 		if (!folio_test_lru(folio) || folio_mapcount(folio) != 1)
491 			continue;
492 
493 		if (pageout_anon_only_filter && !folio_test_anon(folio))
494 			continue;
495 
496 		VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
497 
498 		if (pte_young(ptent)) {
499 			ptent = ptep_get_and_clear_full(mm, addr, pte,
500 							tlb->fullmm);
501 			ptent = pte_mkold(ptent);
502 			set_pte_at(mm, addr, pte, ptent);
503 			tlb_remove_tlb_entry(tlb, pte, addr);
504 		}
505 
506 		/*
507 		 * We are deactivating a folio for accelerating reclaiming.
508 		 * VM couldn't reclaim the folio unless we clear PG_young.
509 		 * As a side effect, it makes confuse idle-page tracking
510 		 * because they will miss recent referenced history.
511 		 */
512 		folio_clear_referenced(folio);
513 		folio_test_clear_young(folio);
514 		if (pageout) {
515 			if (folio_isolate_lru(folio)) {
516 				if (folio_test_unevictable(folio))
517 					folio_putback_lru(folio);
518 				else
519 					list_add(&folio->lru, &folio_list);
520 			}
521 		} else
522 			folio_deactivate(folio);
523 	}
524 
525 	if (start_pte) {
526 		arch_leave_lazy_mmu_mode();
527 		pte_unmap_unlock(start_pte, ptl);
528 	}
529 	if (pageout)
530 		reclaim_pages(&folio_list);
531 	cond_resched();
532 
533 	return 0;
534 }
535 
536 static const struct mm_walk_ops cold_walk_ops = {
537 	.pmd_entry = madvise_cold_or_pageout_pte_range,
538 	.walk_lock = PGWALK_RDLOCK,
539 };
540 
541 static void madvise_cold_page_range(struct mmu_gather *tlb,
542 			     struct vm_area_struct *vma,
543 			     unsigned long addr, unsigned long end)
544 {
545 	struct madvise_walk_private walk_private = {
546 		.pageout = false,
547 		.tlb = tlb,
548 	};
549 
550 	tlb_start_vma(tlb, vma);
551 	walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
552 	tlb_end_vma(tlb, vma);
553 }
554 
555 static inline bool can_madv_lru_vma(struct vm_area_struct *vma)
556 {
557 	return !(vma->vm_flags & (VM_LOCKED|VM_PFNMAP|VM_HUGETLB));
558 }
559 
560 static long madvise_cold(struct vm_area_struct *vma,
561 			struct vm_area_struct **prev,
562 			unsigned long start_addr, unsigned long end_addr)
563 {
564 	struct mm_struct *mm = vma->vm_mm;
565 	struct mmu_gather tlb;
566 
567 	*prev = vma;
568 	if (!can_madv_lru_vma(vma))
569 		return -EINVAL;
570 
571 	lru_add_drain();
572 	tlb_gather_mmu(&tlb, mm);
573 	madvise_cold_page_range(&tlb, vma, start_addr, end_addr);
574 	tlb_finish_mmu(&tlb);
575 
576 	return 0;
577 }
578 
579 static void madvise_pageout_page_range(struct mmu_gather *tlb,
580 			     struct vm_area_struct *vma,
581 			     unsigned long addr, unsigned long end)
582 {
583 	struct madvise_walk_private walk_private = {
584 		.pageout = true,
585 		.tlb = tlb,
586 	};
587 
588 	tlb_start_vma(tlb, vma);
589 	walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
590 	tlb_end_vma(tlb, vma);
591 }
592 
593 static long madvise_pageout(struct vm_area_struct *vma,
594 			struct vm_area_struct **prev,
595 			unsigned long start_addr, unsigned long end_addr)
596 {
597 	struct mm_struct *mm = vma->vm_mm;
598 	struct mmu_gather tlb;
599 
600 	*prev = vma;
601 	if (!can_madv_lru_vma(vma))
602 		return -EINVAL;
603 
604 	/*
605 	 * If the VMA belongs to a private file mapping, there can be private
606 	 * dirty pages which can be paged out if even this process is neither
607 	 * owner nor write capable of the file. We allow private file mappings
608 	 * further to pageout dirty anon pages.
609 	 */
610 	if (!vma_is_anonymous(vma) && (!can_do_file_pageout(vma) &&
611 				(vma->vm_flags & VM_MAYSHARE)))
612 		return 0;
613 
614 	lru_add_drain();
615 	tlb_gather_mmu(&tlb, mm);
616 	madvise_pageout_page_range(&tlb, vma, start_addr, end_addr);
617 	tlb_finish_mmu(&tlb);
618 
619 	return 0;
620 }
621 
622 static int madvise_free_pte_range(pmd_t *pmd, unsigned long addr,
623 				unsigned long end, struct mm_walk *walk)
624 
625 {
626 	struct mmu_gather *tlb = walk->private;
627 	struct mm_struct *mm = tlb->mm;
628 	struct vm_area_struct *vma = walk->vma;
629 	spinlock_t *ptl;
630 	pte_t *start_pte, *pte, ptent;
631 	struct folio *folio;
632 	int nr_swap = 0;
633 	unsigned long next;
634 
635 	next = pmd_addr_end(addr, end);
636 	if (pmd_trans_huge(*pmd))
637 		if (madvise_free_huge_pmd(tlb, vma, pmd, addr, next))
638 			return 0;
639 
640 	tlb_change_page_size(tlb, PAGE_SIZE);
641 	start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
642 	if (!start_pte)
643 		return 0;
644 	flush_tlb_batched_pending(mm);
645 	arch_enter_lazy_mmu_mode();
646 	for (; addr != end; pte++, addr += PAGE_SIZE) {
647 		ptent = ptep_get(pte);
648 
649 		if (pte_none(ptent))
650 			continue;
651 		/*
652 		 * If the pte has swp_entry, just clear page table to
653 		 * prevent swap-in which is more expensive rather than
654 		 * (page allocation + zeroing).
655 		 */
656 		if (!pte_present(ptent)) {
657 			swp_entry_t entry;
658 
659 			entry = pte_to_swp_entry(ptent);
660 			if (!non_swap_entry(entry)) {
661 				nr_swap--;
662 				free_swap_and_cache(entry);
663 				pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
664 			} else if (is_hwpoison_entry(entry) ||
665 				   is_swapin_error_entry(entry)) {
666 				pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
667 			}
668 			continue;
669 		}
670 
671 		folio = vm_normal_folio(vma, addr, ptent);
672 		if (!folio || folio_is_zone_device(folio))
673 			continue;
674 
675 		/*
676 		 * If pmd isn't transhuge but the folio is large and
677 		 * is owned by only this process, split it and
678 		 * deactivate all pages.
679 		 */
680 		if (folio_test_large(folio)) {
681 			int err;
682 
683 			if (folio_estimated_sharers(folio) != 1)
684 				break;
685 			if (!folio_trylock(folio))
686 				break;
687 			folio_get(folio);
688 			arch_leave_lazy_mmu_mode();
689 			pte_unmap_unlock(start_pte, ptl);
690 			start_pte = NULL;
691 			err = split_folio(folio);
692 			folio_unlock(folio);
693 			folio_put(folio);
694 			if (err)
695 				break;
696 			start_pte = pte =
697 				pte_offset_map_lock(mm, pmd, addr, &ptl);
698 			if (!start_pte)
699 				break;
700 			arch_enter_lazy_mmu_mode();
701 			pte--;
702 			addr -= PAGE_SIZE;
703 			continue;
704 		}
705 
706 		if (folio_test_swapcache(folio) || folio_test_dirty(folio)) {
707 			if (!folio_trylock(folio))
708 				continue;
709 			/*
710 			 * If folio is shared with others, we mustn't clear
711 			 * the folio's dirty flag.
712 			 */
713 			if (folio_mapcount(folio) != 1) {
714 				folio_unlock(folio);
715 				continue;
716 			}
717 
718 			if (folio_test_swapcache(folio) &&
719 			    !folio_free_swap(folio)) {
720 				folio_unlock(folio);
721 				continue;
722 			}
723 
724 			folio_clear_dirty(folio);
725 			folio_unlock(folio);
726 		}
727 
728 		if (pte_young(ptent) || pte_dirty(ptent)) {
729 			/*
730 			 * Some of architecture(ex, PPC) don't update TLB
731 			 * with set_pte_at and tlb_remove_tlb_entry so for
732 			 * the portability, remap the pte with old|clean
733 			 * after pte clearing.
734 			 */
735 			ptent = ptep_get_and_clear_full(mm, addr, pte,
736 							tlb->fullmm);
737 
738 			ptent = pte_mkold(ptent);
739 			ptent = pte_mkclean(ptent);
740 			set_pte_at(mm, addr, pte, ptent);
741 			tlb_remove_tlb_entry(tlb, pte, addr);
742 		}
743 		folio_mark_lazyfree(folio);
744 	}
745 
746 	if (nr_swap) {
747 		if (current->mm == mm)
748 			sync_mm_rss(mm);
749 		add_mm_counter(mm, MM_SWAPENTS, nr_swap);
750 	}
751 	if (start_pte) {
752 		arch_leave_lazy_mmu_mode();
753 		pte_unmap_unlock(start_pte, ptl);
754 	}
755 	cond_resched();
756 
757 	return 0;
758 }
759 
760 static const struct mm_walk_ops madvise_free_walk_ops = {
761 	.pmd_entry		= madvise_free_pte_range,
762 	.walk_lock		= PGWALK_RDLOCK,
763 };
764 
765 static int madvise_free_single_vma(struct vm_area_struct *vma,
766 			unsigned long start_addr, unsigned long end_addr)
767 {
768 	struct mm_struct *mm = vma->vm_mm;
769 	struct mmu_notifier_range range;
770 	struct mmu_gather tlb;
771 
772 	/* MADV_FREE works for only anon vma at the moment */
773 	if (!vma_is_anonymous(vma))
774 		return -EINVAL;
775 
776 	range.start = max(vma->vm_start, start_addr);
777 	if (range.start >= vma->vm_end)
778 		return -EINVAL;
779 	range.end = min(vma->vm_end, end_addr);
780 	if (range.end <= vma->vm_start)
781 		return -EINVAL;
782 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
783 				range.start, range.end);
784 
785 	lru_add_drain();
786 	tlb_gather_mmu(&tlb, mm);
787 	update_hiwater_rss(mm);
788 
789 	mmu_notifier_invalidate_range_start(&range);
790 	tlb_start_vma(&tlb, vma);
791 	walk_page_range(vma->vm_mm, range.start, range.end,
792 			&madvise_free_walk_ops, &tlb);
793 	tlb_end_vma(&tlb, vma);
794 	mmu_notifier_invalidate_range_end(&range);
795 	tlb_finish_mmu(&tlb);
796 
797 	return 0;
798 }
799 
800 /*
801  * Application no longer needs these pages.  If the pages are dirty,
802  * it's OK to just throw them away.  The app will be more careful about
803  * data it wants to keep.  Be sure to free swap resources too.  The
804  * zap_page_range_single call sets things up for shrink_active_list to actually
805  * free these pages later if no one else has touched them in the meantime,
806  * although we could add these pages to a global reuse list for
807  * shrink_active_list to pick up before reclaiming other pages.
808  *
809  * NB: This interface discards data rather than pushes it out to swap,
810  * as some implementations do.  This has performance implications for
811  * applications like large transactional databases which want to discard
812  * pages in anonymous maps after committing to backing store the data
813  * that was kept in them.  There is no reason to write this data out to
814  * the swap area if the application is discarding it.
815  *
816  * An interface that causes the system to free clean pages and flush
817  * dirty pages is already available as msync(MS_INVALIDATE).
818  */
819 static long madvise_dontneed_single_vma(struct vm_area_struct *vma,
820 					unsigned long start, unsigned long end)
821 {
822 	zap_page_range_single(vma, start, end - start, NULL);
823 	return 0;
824 }
825 
826 static bool madvise_dontneed_free_valid_vma(struct vm_area_struct *vma,
827 					    unsigned long start,
828 					    unsigned long *end,
829 					    int behavior)
830 {
831 	if (!is_vm_hugetlb_page(vma)) {
832 		unsigned int forbidden = VM_PFNMAP;
833 
834 		if (behavior != MADV_DONTNEED_LOCKED)
835 			forbidden |= VM_LOCKED;
836 
837 		return !(vma->vm_flags & forbidden);
838 	}
839 
840 	if (behavior != MADV_DONTNEED && behavior != MADV_DONTNEED_LOCKED)
841 		return false;
842 	if (start & ~huge_page_mask(hstate_vma(vma)))
843 		return false;
844 
845 	/*
846 	 * Madvise callers expect the length to be rounded up to PAGE_SIZE
847 	 * boundaries, and may be unaware that this VMA uses huge pages.
848 	 * Avoid unexpected data loss by rounding down the number of
849 	 * huge pages freed.
850 	 */
851 	*end = ALIGN_DOWN(*end, huge_page_size(hstate_vma(vma)));
852 
853 	return true;
854 }
855 
856 static long madvise_dontneed_free(struct vm_area_struct *vma,
857 				  struct vm_area_struct **prev,
858 				  unsigned long start, unsigned long end,
859 				  int behavior)
860 {
861 	struct mm_struct *mm = vma->vm_mm;
862 
863 	*prev = vma;
864 	if (!madvise_dontneed_free_valid_vma(vma, start, &end, behavior))
865 		return -EINVAL;
866 
867 	if (start == end)
868 		return 0;
869 
870 	if (!userfaultfd_remove(vma, start, end)) {
871 		*prev = NULL; /* mmap_lock has been dropped, prev is stale */
872 
873 		mmap_read_lock(mm);
874 		vma = vma_lookup(mm, start);
875 		if (!vma)
876 			return -ENOMEM;
877 		/*
878 		 * Potential end adjustment for hugetlb vma is OK as
879 		 * the check below keeps end within vma.
880 		 */
881 		if (!madvise_dontneed_free_valid_vma(vma, start, &end,
882 						     behavior))
883 			return -EINVAL;
884 		if (end > vma->vm_end) {
885 			/*
886 			 * Don't fail if end > vma->vm_end. If the old
887 			 * vma was split while the mmap_lock was
888 			 * released the effect of the concurrent
889 			 * operation may not cause madvise() to
890 			 * have an undefined result. There may be an
891 			 * adjacent next vma that we'll walk
892 			 * next. userfaultfd_remove() will generate an
893 			 * UFFD_EVENT_REMOVE repetition on the
894 			 * end-vma->vm_end range, but the manager can
895 			 * handle a repetition fine.
896 			 */
897 			end = vma->vm_end;
898 		}
899 		VM_WARN_ON(start >= end);
900 	}
901 
902 	if (behavior == MADV_DONTNEED || behavior == MADV_DONTNEED_LOCKED)
903 		return madvise_dontneed_single_vma(vma, start, end);
904 	else if (behavior == MADV_FREE)
905 		return madvise_free_single_vma(vma, start, end);
906 	else
907 		return -EINVAL;
908 }
909 
910 static long madvise_populate(struct vm_area_struct *vma,
911 			     struct vm_area_struct **prev,
912 			     unsigned long start, unsigned long end,
913 			     int behavior)
914 {
915 	const bool write = behavior == MADV_POPULATE_WRITE;
916 	struct mm_struct *mm = vma->vm_mm;
917 	unsigned long tmp_end;
918 	int locked = 1;
919 	long pages;
920 
921 	*prev = vma;
922 
923 	while (start < end) {
924 		/*
925 		 * We might have temporarily dropped the lock. For example,
926 		 * our VMA might have been split.
927 		 */
928 		if (!vma || start >= vma->vm_end) {
929 			vma = vma_lookup(mm, start);
930 			if (!vma)
931 				return -ENOMEM;
932 		}
933 
934 		tmp_end = min_t(unsigned long, end, vma->vm_end);
935 		/* Populate (prefault) page tables readable/writable. */
936 		pages = faultin_vma_page_range(vma, start, tmp_end, write,
937 					       &locked);
938 		if (!locked) {
939 			mmap_read_lock(mm);
940 			locked = 1;
941 			*prev = NULL;
942 			vma = NULL;
943 		}
944 		if (pages < 0) {
945 			switch (pages) {
946 			case -EINTR:
947 				return -EINTR;
948 			case -EINVAL: /* Incompatible mappings / permissions. */
949 				return -EINVAL;
950 			case -EHWPOISON:
951 				return -EHWPOISON;
952 			case -EFAULT: /* VM_FAULT_SIGBUS or VM_FAULT_SIGSEGV */
953 				return -EFAULT;
954 			default:
955 				pr_warn_once("%s: unhandled return value: %ld\n",
956 					     __func__, pages);
957 				fallthrough;
958 			case -ENOMEM:
959 				return -ENOMEM;
960 			}
961 		}
962 		start += pages * PAGE_SIZE;
963 	}
964 	return 0;
965 }
966 
967 /*
968  * Application wants to free up the pages and associated backing store.
969  * This is effectively punching a hole into the middle of a file.
970  */
971 static long madvise_remove(struct vm_area_struct *vma,
972 				struct vm_area_struct **prev,
973 				unsigned long start, unsigned long end)
974 {
975 	loff_t offset;
976 	int error;
977 	struct file *f;
978 	struct mm_struct *mm = vma->vm_mm;
979 
980 	*prev = NULL;	/* tell sys_madvise we drop mmap_lock */
981 
982 	if (vma->vm_flags & VM_LOCKED)
983 		return -EINVAL;
984 
985 	f = vma->vm_file;
986 
987 	if (!f || !f->f_mapping || !f->f_mapping->host) {
988 			return -EINVAL;
989 	}
990 
991 	if ((vma->vm_flags & (VM_SHARED|VM_WRITE)) != (VM_SHARED|VM_WRITE))
992 		return -EACCES;
993 
994 	offset = (loff_t)(start - vma->vm_start)
995 			+ ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
996 
997 	/*
998 	 * Filesystem's fallocate may need to take i_rwsem.  We need to
999 	 * explicitly grab a reference because the vma (and hence the
1000 	 * vma's reference to the file) can go away as soon as we drop
1001 	 * mmap_lock.
1002 	 */
1003 	get_file(f);
1004 	if (userfaultfd_remove(vma, start, end)) {
1005 		/* mmap_lock was not released by userfaultfd_remove() */
1006 		mmap_read_unlock(mm);
1007 	}
1008 	error = vfs_fallocate(f,
1009 				FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
1010 				offset, end - start);
1011 	fput(f);
1012 	mmap_read_lock(mm);
1013 	return error;
1014 }
1015 
1016 /*
1017  * Apply an madvise behavior to a region of a vma.  madvise_update_vma
1018  * will handle splitting a vm area into separate areas, each area with its own
1019  * behavior.
1020  */
1021 static int madvise_vma_behavior(struct vm_area_struct *vma,
1022 				struct vm_area_struct **prev,
1023 				unsigned long start, unsigned long end,
1024 				unsigned long behavior)
1025 {
1026 	int error;
1027 	struct anon_vma_name *anon_name;
1028 	unsigned long new_flags = vma->vm_flags;
1029 
1030 	switch (behavior) {
1031 	case MADV_REMOVE:
1032 		return madvise_remove(vma, prev, start, end);
1033 	case MADV_WILLNEED:
1034 		return madvise_willneed(vma, prev, start, end);
1035 	case MADV_COLD:
1036 		return madvise_cold(vma, prev, start, end);
1037 	case MADV_PAGEOUT:
1038 		return madvise_pageout(vma, prev, start, end);
1039 	case MADV_FREE:
1040 	case MADV_DONTNEED:
1041 	case MADV_DONTNEED_LOCKED:
1042 		return madvise_dontneed_free(vma, prev, start, end, behavior);
1043 	case MADV_POPULATE_READ:
1044 	case MADV_POPULATE_WRITE:
1045 		return madvise_populate(vma, prev, start, end, behavior);
1046 	case MADV_NORMAL:
1047 		new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ;
1048 		break;
1049 	case MADV_SEQUENTIAL:
1050 		new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ;
1051 		break;
1052 	case MADV_RANDOM:
1053 		new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ;
1054 		break;
1055 	case MADV_DONTFORK:
1056 		new_flags |= VM_DONTCOPY;
1057 		break;
1058 	case MADV_DOFORK:
1059 		if (vma->vm_flags & VM_IO)
1060 			return -EINVAL;
1061 		new_flags &= ~VM_DONTCOPY;
1062 		break;
1063 	case MADV_WIPEONFORK:
1064 		/* MADV_WIPEONFORK is only supported on anonymous memory. */
1065 		if (vma->vm_file || vma->vm_flags & VM_SHARED)
1066 			return -EINVAL;
1067 		new_flags |= VM_WIPEONFORK;
1068 		break;
1069 	case MADV_KEEPONFORK:
1070 		new_flags &= ~VM_WIPEONFORK;
1071 		break;
1072 	case MADV_DONTDUMP:
1073 		new_flags |= VM_DONTDUMP;
1074 		break;
1075 	case MADV_DODUMP:
1076 		if (!is_vm_hugetlb_page(vma) && new_flags & VM_SPECIAL)
1077 			return -EINVAL;
1078 		new_flags &= ~VM_DONTDUMP;
1079 		break;
1080 	case MADV_MERGEABLE:
1081 	case MADV_UNMERGEABLE:
1082 		error = ksm_madvise(vma, start, end, behavior, &new_flags);
1083 		if (error)
1084 			goto out;
1085 		break;
1086 	case MADV_HUGEPAGE:
1087 	case MADV_NOHUGEPAGE:
1088 		error = hugepage_madvise(vma, &new_flags, behavior);
1089 		if (error)
1090 			goto out;
1091 		break;
1092 	case MADV_COLLAPSE:
1093 		return madvise_collapse(vma, prev, start, end);
1094 	}
1095 
1096 	anon_name = anon_vma_name(vma);
1097 	anon_vma_name_get(anon_name);
1098 	error = madvise_update_vma(vma, prev, start, end, new_flags,
1099 				   anon_name);
1100 	anon_vma_name_put(anon_name);
1101 
1102 out:
1103 	/*
1104 	 * madvise() returns EAGAIN if kernel resources, such as
1105 	 * slab, are temporarily unavailable.
1106 	 */
1107 	if (error == -ENOMEM)
1108 		error = -EAGAIN;
1109 	return error;
1110 }
1111 
1112 #ifdef CONFIG_MEMORY_FAILURE
1113 /*
1114  * Error injection support for memory error handling.
1115  */
1116 static int madvise_inject_error(int behavior,
1117 		unsigned long start, unsigned long end)
1118 {
1119 	unsigned long size;
1120 
1121 	if (!capable(CAP_SYS_ADMIN))
1122 		return -EPERM;
1123 
1124 
1125 	for (; start < end; start += size) {
1126 		unsigned long pfn;
1127 		struct page *page;
1128 		int ret;
1129 
1130 		ret = get_user_pages_fast(start, 1, 0, &page);
1131 		if (ret != 1)
1132 			return ret;
1133 		pfn = page_to_pfn(page);
1134 
1135 		/*
1136 		 * When soft offlining hugepages, after migrating the page
1137 		 * we dissolve it, therefore in the second loop "page" will
1138 		 * no longer be a compound page.
1139 		 */
1140 		size = page_size(compound_head(page));
1141 
1142 		if (behavior == MADV_SOFT_OFFLINE) {
1143 			pr_info("Soft offlining pfn %#lx at process virtual address %#lx\n",
1144 				 pfn, start);
1145 			ret = soft_offline_page(pfn, MF_COUNT_INCREASED);
1146 		} else {
1147 			pr_info("Injecting memory failure for pfn %#lx at process virtual address %#lx\n",
1148 				 pfn, start);
1149 			ret = memory_failure(pfn, MF_COUNT_INCREASED | MF_SW_SIMULATED);
1150 			if (ret == -EOPNOTSUPP)
1151 				ret = 0;
1152 		}
1153 
1154 		if (ret)
1155 			return ret;
1156 	}
1157 
1158 	return 0;
1159 }
1160 #endif
1161 
1162 static bool
1163 madvise_behavior_valid(int behavior)
1164 {
1165 	switch (behavior) {
1166 	case MADV_DOFORK:
1167 	case MADV_DONTFORK:
1168 	case MADV_NORMAL:
1169 	case MADV_SEQUENTIAL:
1170 	case MADV_RANDOM:
1171 	case MADV_REMOVE:
1172 	case MADV_WILLNEED:
1173 	case MADV_DONTNEED:
1174 	case MADV_DONTNEED_LOCKED:
1175 	case MADV_FREE:
1176 	case MADV_COLD:
1177 	case MADV_PAGEOUT:
1178 	case MADV_POPULATE_READ:
1179 	case MADV_POPULATE_WRITE:
1180 #ifdef CONFIG_KSM
1181 	case MADV_MERGEABLE:
1182 	case MADV_UNMERGEABLE:
1183 #endif
1184 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1185 	case MADV_HUGEPAGE:
1186 	case MADV_NOHUGEPAGE:
1187 	case MADV_COLLAPSE:
1188 #endif
1189 	case MADV_DONTDUMP:
1190 	case MADV_DODUMP:
1191 	case MADV_WIPEONFORK:
1192 	case MADV_KEEPONFORK:
1193 #ifdef CONFIG_MEMORY_FAILURE
1194 	case MADV_SOFT_OFFLINE:
1195 	case MADV_HWPOISON:
1196 #endif
1197 		return true;
1198 
1199 	default:
1200 		return false;
1201 	}
1202 }
1203 
1204 static bool process_madvise_behavior_valid(int behavior)
1205 {
1206 	switch (behavior) {
1207 	case MADV_COLD:
1208 	case MADV_PAGEOUT:
1209 	case MADV_WILLNEED:
1210 	case MADV_COLLAPSE:
1211 		return true;
1212 	default:
1213 		return false;
1214 	}
1215 }
1216 
1217 /*
1218  * Walk the vmas in range [start,end), and call the visit function on each one.
1219  * The visit function will get start and end parameters that cover the overlap
1220  * between the current vma and the original range.  Any unmapped regions in the
1221  * original range will result in this function returning -ENOMEM while still
1222  * calling the visit function on all of the existing vmas in the range.
1223  * Must be called with the mmap_lock held for reading or writing.
1224  */
1225 static
1226 int madvise_walk_vmas(struct mm_struct *mm, unsigned long start,
1227 		      unsigned long end, unsigned long arg,
1228 		      int (*visit)(struct vm_area_struct *vma,
1229 				   struct vm_area_struct **prev, unsigned long start,
1230 				   unsigned long end, unsigned long arg))
1231 {
1232 	struct vm_area_struct *vma;
1233 	struct vm_area_struct *prev;
1234 	unsigned long tmp;
1235 	int unmapped_error = 0;
1236 
1237 	/*
1238 	 * If the interval [start,end) covers some unmapped address
1239 	 * ranges, just ignore them, but return -ENOMEM at the end.
1240 	 * - different from the way of handling in mlock etc.
1241 	 */
1242 	vma = find_vma_prev(mm, start, &prev);
1243 	if (vma && start > vma->vm_start)
1244 		prev = vma;
1245 
1246 	for (;;) {
1247 		int error;
1248 
1249 		/* Still start < end. */
1250 		if (!vma)
1251 			return -ENOMEM;
1252 
1253 		/* Here start < (end|vma->vm_end). */
1254 		if (start < vma->vm_start) {
1255 			unmapped_error = -ENOMEM;
1256 			start = vma->vm_start;
1257 			if (start >= end)
1258 				break;
1259 		}
1260 
1261 		/* Here vma->vm_start <= start < (end|vma->vm_end) */
1262 		tmp = vma->vm_end;
1263 		if (end < tmp)
1264 			tmp = end;
1265 
1266 		/* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */
1267 		error = visit(vma, &prev, start, tmp, arg);
1268 		if (error)
1269 			return error;
1270 		start = tmp;
1271 		if (prev && start < prev->vm_end)
1272 			start = prev->vm_end;
1273 		if (start >= end)
1274 			break;
1275 		if (prev)
1276 			vma = find_vma(mm, prev->vm_end);
1277 		else	/* madvise_remove dropped mmap_lock */
1278 			vma = find_vma(mm, start);
1279 	}
1280 
1281 	return unmapped_error;
1282 }
1283 
1284 #ifdef CONFIG_ANON_VMA_NAME
1285 static int madvise_vma_anon_name(struct vm_area_struct *vma,
1286 				 struct vm_area_struct **prev,
1287 				 unsigned long start, unsigned long end,
1288 				 unsigned long anon_name)
1289 {
1290 	int error;
1291 
1292 	/* Only anonymous mappings can be named */
1293 	if (vma->vm_file && !vma_is_anon_shmem(vma))
1294 		return -EBADF;
1295 
1296 	error = madvise_update_vma(vma, prev, start, end, vma->vm_flags,
1297 				   (struct anon_vma_name *)anon_name);
1298 
1299 	/*
1300 	 * madvise() returns EAGAIN if kernel resources, such as
1301 	 * slab, are temporarily unavailable.
1302 	 */
1303 	if (error == -ENOMEM)
1304 		error = -EAGAIN;
1305 	return error;
1306 }
1307 
1308 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
1309 			  unsigned long len_in, struct anon_vma_name *anon_name)
1310 {
1311 	unsigned long end;
1312 	unsigned long len;
1313 
1314 	if (start & ~PAGE_MASK)
1315 		return -EINVAL;
1316 	len = (len_in + ~PAGE_MASK) & PAGE_MASK;
1317 
1318 	/* Check to see whether len was rounded up from small -ve to zero */
1319 	if (len_in && !len)
1320 		return -EINVAL;
1321 
1322 	end = start + len;
1323 	if (end < start)
1324 		return -EINVAL;
1325 
1326 	if (end == start)
1327 		return 0;
1328 
1329 	return madvise_walk_vmas(mm, start, end, (unsigned long)anon_name,
1330 				 madvise_vma_anon_name);
1331 }
1332 #endif /* CONFIG_ANON_VMA_NAME */
1333 /*
1334  * The madvise(2) system call.
1335  *
1336  * Applications can use madvise() to advise the kernel how it should
1337  * handle paging I/O in this VM area.  The idea is to help the kernel
1338  * use appropriate read-ahead and caching techniques.  The information
1339  * provided is advisory only, and can be safely disregarded by the
1340  * kernel without affecting the correct operation of the application.
1341  *
1342  * behavior values:
1343  *  MADV_NORMAL - the default behavior is to read clusters.  This
1344  *		results in some read-ahead and read-behind.
1345  *  MADV_RANDOM - the system should read the minimum amount of data
1346  *		on any access, since it is unlikely that the appli-
1347  *		cation will need more than what it asks for.
1348  *  MADV_SEQUENTIAL - pages in the given range will probably be accessed
1349  *		once, so they can be aggressively read ahead, and
1350  *		can be freed soon after they are accessed.
1351  *  MADV_WILLNEED - the application is notifying the system to read
1352  *		some pages ahead.
1353  *  MADV_DONTNEED - the application is finished with the given range,
1354  *		so the kernel can free resources associated with it.
1355  *  MADV_FREE - the application marks pages in the given range as lazy free,
1356  *		where actual purges are postponed until memory pressure happens.
1357  *  MADV_REMOVE - the application wants to free up the given range of
1358  *		pages and associated backing store.
1359  *  MADV_DONTFORK - omit this area from child's address space when forking:
1360  *		typically, to avoid COWing pages pinned by get_user_pages().
1361  *  MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking.
1362  *  MADV_WIPEONFORK - present the child process with zero-filled memory in this
1363  *              range after a fork.
1364  *  MADV_KEEPONFORK - undo the effect of MADV_WIPEONFORK
1365  *  MADV_HWPOISON - trigger memory error handler as if the given memory range
1366  *		were corrupted by unrecoverable hardware memory failure.
1367  *  MADV_SOFT_OFFLINE - try to soft-offline the given range of memory.
1368  *  MADV_MERGEABLE - the application recommends that KSM try to merge pages in
1369  *		this area with pages of identical content from other such areas.
1370  *  MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others.
1371  *  MADV_HUGEPAGE - the application wants to back the given range by transparent
1372  *		huge pages in the future. Existing pages might be coalesced and
1373  *		new pages might be allocated as THP.
1374  *  MADV_NOHUGEPAGE - mark the given range as not worth being backed by
1375  *		transparent huge pages so the existing pages will not be
1376  *		coalesced into THP and new pages will not be allocated as THP.
1377  *  MADV_COLLAPSE - synchronously coalesce pages into new THP.
1378  *  MADV_DONTDUMP - the application wants to prevent pages in the given range
1379  *		from being included in its core dump.
1380  *  MADV_DODUMP - cancel MADV_DONTDUMP: no longer exclude from core dump.
1381  *  MADV_COLD - the application is not expected to use this memory soon,
1382  *		deactivate pages in this range so that they can be reclaimed
1383  *		easily if memory pressure happens.
1384  *  MADV_PAGEOUT - the application is not expected to use this memory soon,
1385  *		page out the pages in this range immediately.
1386  *  MADV_POPULATE_READ - populate (prefault) page tables readable by
1387  *		triggering read faults if required
1388  *  MADV_POPULATE_WRITE - populate (prefault) page tables writable by
1389  *		triggering write faults if required
1390  *
1391  * return values:
1392  *  zero    - success
1393  *  -EINVAL - start + len < 0, start is not page-aligned,
1394  *		"behavior" is not a valid value, or application
1395  *		is attempting to release locked or shared pages,
1396  *		or the specified address range includes file, Huge TLB,
1397  *		MAP_SHARED or VMPFNMAP range.
1398  *  -ENOMEM - addresses in the specified range are not currently
1399  *		mapped, or are outside the AS of the process.
1400  *  -EIO    - an I/O error occurred while paging in data.
1401  *  -EBADF  - map exists, but area maps something that isn't a file.
1402  *  -EAGAIN - a kernel resource was temporarily unavailable.
1403  */
1404 int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior)
1405 {
1406 	unsigned long end;
1407 	int error;
1408 	int write;
1409 	size_t len;
1410 	struct blk_plug plug;
1411 
1412 	if (!madvise_behavior_valid(behavior))
1413 		return -EINVAL;
1414 
1415 	if (!PAGE_ALIGNED(start))
1416 		return -EINVAL;
1417 	len = PAGE_ALIGN(len_in);
1418 
1419 	/* Check to see whether len was rounded up from small -ve to zero */
1420 	if (len_in && !len)
1421 		return -EINVAL;
1422 
1423 	end = start + len;
1424 	if (end < start)
1425 		return -EINVAL;
1426 
1427 	if (end == start)
1428 		return 0;
1429 
1430 #ifdef CONFIG_MEMORY_FAILURE
1431 	if (behavior == MADV_HWPOISON || behavior == MADV_SOFT_OFFLINE)
1432 		return madvise_inject_error(behavior, start, start + len_in);
1433 #endif
1434 
1435 	write = madvise_need_mmap_write(behavior);
1436 	if (write) {
1437 		if (mmap_write_lock_killable(mm))
1438 			return -EINTR;
1439 	} else {
1440 		mmap_read_lock(mm);
1441 	}
1442 
1443 	start = untagged_addr_remote(mm, start);
1444 	end = start + len;
1445 
1446 	blk_start_plug(&plug);
1447 	error = madvise_walk_vmas(mm, start, end, behavior,
1448 			madvise_vma_behavior);
1449 	blk_finish_plug(&plug);
1450 	if (write)
1451 		mmap_write_unlock(mm);
1452 	else
1453 		mmap_read_unlock(mm);
1454 
1455 	return error;
1456 }
1457 
1458 SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior)
1459 {
1460 	return do_madvise(current->mm, start, len_in, behavior);
1461 }
1462 
1463 SYSCALL_DEFINE5(process_madvise, int, pidfd, const struct iovec __user *, vec,
1464 		size_t, vlen, int, behavior, unsigned int, flags)
1465 {
1466 	ssize_t ret;
1467 	struct iovec iovstack[UIO_FASTIOV];
1468 	struct iovec *iov = iovstack;
1469 	struct iov_iter iter;
1470 	struct task_struct *task;
1471 	struct mm_struct *mm;
1472 	size_t total_len;
1473 	unsigned int f_flags;
1474 
1475 	if (flags != 0) {
1476 		ret = -EINVAL;
1477 		goto out;
1478 	}
1479 
1480 	ret = import_iovec(ITER_DEST, vec, vlen, ARRAY_SIZE(iovstack), &iov, &iter);
1481 	if (ret < 0)
1482 		goto out;
1483 
1484 	task = pidfd_get_task(pidfd, &f_flags);
1485 	if (IS_ERR(task)) {
1486 		ret = PTR_ERR(task);
1487 		goto free_iov;
1488 	}
1489 
1490 	if (!process_madvise_behavior_valid(behavior)) {
1491 		ret = -EINVAL;
1492 		goto release_task;
1493 	}
1494 
1495 	/* Require PTRACE_MODE_READ to avoid leaking ASLR metadata. */
1496 	mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1497 	if (IS_ERR_OR_NULL(mm)) {
1498 		ret = IS_ERR(mm) ? PTR_ERR(mm) : -ESRCH;
1499 		goto release_task;
1500 	}
1501 
1502 	/*
1503 	 * Require CAP_SYS_NICE for influencing process performance. Note that
1504 	 * only non-destructive hints are currently supported.
1505 	 */
1506 	if (!capable(CAP_SYS_NICE)) {
1507 		ret = -EPERM;
1508 		goto release_mm;
1509 	}
1510 
1511 	total_len = iov_iter_count(&iter);
1512 
1513 	while (iov_iter_count(&iter)) {
1514 		ret = do_madvise(mm, (unsigned long)iter_iov_addr(&iter),
1515 					iter_iov_len(&iter), behavior);
1516 		if (ret < 0)
1517 			break;
1518 		iov_iter_advance(&iter, iter_iov_len(&iter));
1519 	}
1520 
1521 	ret = (total_len - iov_iter_count(&iter)) ? : ret;
1522 
1523 release_mm:
1524 	mmput(mm);
1525 release_task:
1526 	put_task_struct(task);
1527 free_iov:
1528 	kfree(iov);
1529 out:
1530 	return ret;
1531 }
1532