xref: /openbmc/linux/mm/madvise.c (revision e149ca29)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *	linux/mm/madvise.c
4  *
5  * Copyright (C) 1999  Linus Torvalds
6  * Copyright (C) 2002  Christoph Hellwig
7  */
8 
9 #include <linux/mman.h>
10 #include <linux/pagemap.h>
11 #include <linux/syscalls.h>
12 #include <linux/mempolicy.h>
13 #include <linux/page-isolation.h>
14 #include <linux/page_idle.h>
15 #include <linux/userfaultfd_k.h>
16 #include <linux/hugetlb.h>
17 #include <linux/falloc.h>
18 #include <linux/fadvise.h>
19 #include <linux/sched.h>
20 #include <linux/ksm.h>
21 #include <linux/fs.h>
22 #include <linux/file.h>
23 #include <linux/blkdev.h>
24 #include <linux/backing-dev.h>
25 #include <linux/pagewalk.h>
26 #include <linux/swap.h>
27 #include <linux/swapops.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/mmu_notifier.h>
30 
31 #include <asm/tlb.h>
32 
33 #include "internal.h"
34 
35 struct madvise_walk_private {
36 	struct mmu_gather *tlb;
37 	bool pageout;
38 };
39 
40 /*
41  * Any behaviour which results in changes to the vma->vm_flags needs to
42  * take mmap_sem for writing. Others, which simply traverse vmas, need
43  * to only take it for reading.
44  */
45 static int madvise_need_mmap_write(int behavior)
46 {
47 	switch (behavior) {
48 	case MADV_REMOVE:
49 	case MADV_WILLNEED:
50 	case MADV_DONTNEED:
51 	case MADV_COLD:
52 	case MADV_PAGEOUT:
53 	case MADV_FREE:
54 		return 0;
55 	default:
56 		/* be safe, default to 1. list exceptions explicitly */
57 		return 1;
58 	}
59 }
60 
61 /*
62  * We can potentially split a vm area into separate
63  * areas, each area with its own behavior.
64  */
65 static long madvise_behavior(struct vm_area_struct *vma,
66 		     struct vm_area_struct **prev,
67 		     unsigned long start, unsigned long end, int behavior)
68 {
69 	struct mm_struct *mm = vma->vm_mm;
70 	int error = 0;
71 	pgoff_t pgoff;
72 	unsigned long new_flags = vma->vm_flags;
73 
74 	switch (behavior) {
75 	case MADV_NORMAL:
76 		new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ;
77 		break;
78 	case MADV_SEQUENTIAL:
79 		new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ;
80 		break;
81 	case MADV_RANDOM:
82 		new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ;
83 		break;
84 	case MADV_DONTFORK:
85 		new_flags |= VM_DONTCOPY;
86 		break;
87 	case MADV_DOFORK:
88 		if (vma->vm_flags & VM_IO) {
89 			error = -EINVAL;
90 			goto out;
91 		}
92 		new_flags &= ~VM_DONTCOPY;
93 		break;
94 	case MADV_WIPEONFORK:
95 		/* MADV_WIPEONFORK is only supported on anonymous memory. */
96 		if (vma->vm_file || vma->vm_flags & VM_SHARED) {
97 			error = -EINVAL;
98 			goto out;
99 		}
100 		new_flags |= VM_WIPEONFORK;
101 		break;
102 	case MADV_KEEPONFORK:
103 		new_flags &= ~VM_WIPEONFORK;
104 		break;
105 	case MADV_DONTDUMP:
106 		new_flags |= VM_DONTDUMP;
107 		break;
108 	case MADV_DODUMP:
109 		if (!is_vm_hugetlb_page(vma) && new_flags & VM_SPECIAL) {
110 			error = -EINVAL;
111 			goto out;
112 		}
113 		new_flags &= ~VM_DONTDUMP;
114 		break;
115 	case MADV_MERGEABLE:
116 	case MADV_UNMERGEABLE:
117 		error = ksm_madvise(vma, start, end, behavior, &new_flags);
118 		if (error)
119 			goto out_convert_errno;
120 		break;
121 	case MADV_HUGEPAGE:
122 	case MADV_NOHUGEPAGE:
123 		error = hugepage_madvise(vma, &new_flags, behavior);
124 		if (error)
125 			goto out_convert_errno;
126 		break;
127 	}
128 
129 	if (new_flags == vma->vm_flags) {
130 		*prev = vma;
131 		goto out;
132 	}
133 
134 	pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
135 	*prev = vma_merge(mm, *prev, start, end, new_flags, vma->anon_vma,
136 			  vma->vm_file, pgoff, vma_policy(vma),
137 			  vma->vm_userfaultfd_ctx);
138 	if (*prev) {
139 		vma = *prev;
140 		goto success;
141 	}
142 
143 	*prev = vma;
144 
145 	if (start != vma->vm_start) {
146 		if (unlikely(mm->map_count >= sysctl_max_map_count)) {
147 			error = -ENOMEM;
148 			goto out;
149 		}
150 		error = __split_vma(mm, vma, start, 1);
151 		if (error)
152 			goto out_convert_errno;
153 	}
154 
155 	if (end != vma->vm_end) {
156 		if (unlikely(mm->map_count >= sysctl_max_map_count)) {
157 			error = -ENOMEM;
158 			goto out;
159 		}
160 		error = __split_vma(mm, vma, end, 0);
161 		if (error)
162 			goto out_convert_errno;
163 	}
164 
165 success:
166 	/*
167 	 * vm_flags is protected by the mmap_sem held in write mode.
168 	 */
169 	vma->vm_flags = new_flags;
170 
171 out_convert_errno:
172 	/*
173 	 * madvise() returns EAGAIN if kernel resources, such as
174 	 * slab, are temporarily unavailable.
175 	 */
176 	if (error == -ENOMEM)
177 		error = -EAGAIN;
178 out:
179 	return error;
180 }
181 
182 #ifdef CONFIG_SWAP
183 static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start,
184 	unsigned long end, struct mm_walk *walk)
185 {
186 	pte_t *orig_pte;
187 	struct vm_area_struct *vma = walk->private;
188 	unsigned long index;
189 
190 	if (pmd_none_or_trans_huge_or_clear_bad(pmd))
191 		return 0;
192 
193 	for (index = start; index != end; index += PAGE_SIZE) {
194 		pte_t pte;
195 		swp_entry_t entry;
196 		struct page *page;
197 		spinlock_t *ptl;
198 
199 		orig_pte = pte_offset_map_lock(vma->vm_mm, pmd, start, &ptl);
200 		pte = *(orig_pte + ((index - start) / PAGE_SIZE));
201 		pte_unmap_unlock(orig_pte, ptl);
202 
203 		if (pte_present(pte) || pte_none(pte))
204 			continue;
205 		entry = pte_to_swp_entry(pte);
206 		if (unlikely(non_swap_entry(entry)))
207 			continue;
208 
209 		page = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE,
210 							vma, index, false);
211 		if (page)
212 			put_page(page);
213 	}
214 
215 	return 0;
216 }
217 
218 static const struct mm_walk_ops swapin_walk_ops = {
219 	.pmd_entry		= swapin_walk_pmd_entry,
220 };
221 
222 static void force_shm_swapin_readahead(struct vm_area_struct *vma,
223 		unsigned long start, unsigned long end,
224 		struct address_space *mapping)
225 {
226 	pgoff_t index;
227 	struct page *page;
228 	swp_entry_t swap;
229 
230 	for (; start < end; start += PAGE_SIZE) {
231 		index = ((start - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
232 
233 		page = find_get_entry(mapping, index);
234 		if (!xa_is_value(page)) {
235 			if (page)
236 				put_page(page);
237 			continue;
238 		}
239 		swap = radix_to_swp_entry(page);
240 		page = read_swap_cache_async(swap, GFP_HIGHUSER_MOVABLE,
241 							NULL, 0, false);
242 		if (page)
243 			put_page(page);
244 	}
245 
246 	lru_add_drain();	/* Push any new pages onto the LRU now */
247 }
248 #endif		/* CONFIG_SWAP */
249 
250 /*
251  * Schedule all required I/O operations.  Do not wait for completion.
252  */
253 static long madvise_willneed(struct vm_area_struct *vma,
254 			     struct vm_area_struct **prev,
255 			     unsigned long start, unsigned long end)
256 {
257 	struct file *file = vma->vm_file;
258 	loff_t offset;
259 
260 	*prev = vma;
261 #ifdef CONFIG_SWAP
262 	if (!file) {
263 		walk_page_range(vma->vm_mm, start, end, &swapin_walk_ops, vma);
264 		lru_add_drain(); /* Push any new pages onto the LRU now */
265 		return 0;
266 	}
267 
268 	if (shmem_mapping(file->f_mapping)) {
269 		force_shm_swapin_readahead(vma, start, end,
270 					file->f_mapping);
271 		return 0;
272 	}
273 #else
274 	if (!file)
275 		return -EBADF;
276 #endif
277 
278 	if (IS_DAX(file_inode(file))) {
279 		/* no bad return value, but ignore advice */
280 		return 0;
281 	}
282 
283 	/*
284 	 * Filesystem's fadvise may need to take various locks.  We need to
285 	 * explicitly grab a reference because the vma (and hence the
286 	 * vma's reference to the file) can go away as soon as we drop
287 	 * mmap_sem.
288 	 */
289 	*prev = NULL;	/* tell sys_madvise we drop mmap_sem */
290 	get_file(file);
291 	up_read(&current->mm->mmap_sem);
292 	offset = (loff_t)(start - vma->vm_start)
293 			+ ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
294 	vfs_fadvise(file, offset, end - start, POSIX_FADV_WILLNEED);
295 	fput(file);
296 	down_read(&current->mm->mmap_sem);
297 	return 0;
298 }
299 
300 static int madvise_cold_or_pageout_pte_range(pmd_t *pmd,
301 				unsigned long addr, unsigned long end,
302 				struct mm_walk *walk)
303 {
304 	struct madvise_walk_private *private = walk->private;
305 	struct mmu_gather *tlb = private->tlb;
306 	bool pageout = private->pageout;
307 	struct mm_struct *mm = tlb->mm;
308 	struct vm_area_struct *vma = walk->vma;
309 	pte_t *orig_pte, *pte, ptent;
310 	spinlock_t *ptl;
311 	struct page *page = NULL;
312 	LIST_HEAD(page_list);
313 
314 	if (fatal_signal_pending(current))
315 		return -EINTR;
316 
317 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
318 	if (pmd_trans_huge(*pmd)) {
319 		pmd_t orig_pmd;
320 		unsigned long next = pmd_addr_end(addr, end);
321 
322 		tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
323 		ptl = pmd_trans_huge_lock(pmd, vma);
324 		if (!ptl)
325 			return 0;
326 
327 		orig_pmd = *pmd;
328 		if (is_huge_zero_pmd(orig_pmd))
329 			goto huge_unlock;
330 
331 		if (unlikely(!pmd_present(orig_pmd))) {
332 			VM_BUG_ON(thp_migration_supported() &&
333 					!is_pmd_migration_entry(orig_pmd));
334 			goto huge_unlock;
335 		}
336 
337 		page = pmd_page(orig_pmd);
338 
339 		/* Do not interfere with other mappings of this page */
340 		if (page_mapcount(page) != 1)
341 			goto huge_unlock;
342 
343 		if (next - addr != HPAGE_PMD_SIZE) {
344 			int err;
345 
346 			get_page(page);
347 			spin_unlock(ptl);
348 			lock_page(page);
349 			err = split_huge_page(page);
350 			unlock_page(page);
351 			put_page(page);
352 			if (!err)
353 				goto regular_page;
354 			return 0;
355 		}
356 
357 		if (pmd_young(orig_pmd)) {
358 			pmdp_invalidate(vma, addr, pmd);
359 			orig_pmd = pmd_mkold(orig_pmd);
360 
361 			set_pmd_at(mm, addr, pmd, orig_pmd);
362 			tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
363 		}
364 
365 		ClearPageReferenced(page);
366 		test_and_clear_page_young(page);
367 		if (pageout) {
368 			if (!isolate_lru_page(page)) {
369 				if (PageUnevictable(page))
370 					putback_lru_page(page);
371 				else
372 					list_add(&page->lru, &page_list);
373 			}
374 		} else
375 			deactivate_page(page);
376 huge_unlock:
377 		spin_unlock(ptl);
378 		if (pageout)
379 			reclaim_pages(&page_list);
380 		return 0;
381 	}
382 
383 	if (pmd_trans_unstable(pmd))
384 		return 0;
385 regular_page:
386 #endif
387 	tlb_change_page_size(tlb, PAGE_SIZE);
388 	orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
389 	flush_tlb_batched_pending(mm);
390 	arch_enter_lazy_mmu_mode();
391 	for (; addr < end; pte++, addr += PAGE_SIZE) {
392 		ptent = *pte;
393 
394 		if (pte_none(ptent))
395 			continue;
396 
397 		if (!pte_present(ptent))
398 			continue;
399 
400 		page = vm_normal_page(vma, addr, ptent);
401 		if (!page)
402 			continue;
403 
404 		/*
405 		 * Creating a THP page is expensive so split it only if we
406 		 * are sure it's worth. Split it if we are only owner.
407 		 */
408 		if (PageTransCompound(page)) {
409 			if (page_mapcount(page) != 1)
410 				break;
411 			get_page(page);
412 			if (!trylock_page(page)) {
413 				put_page(page);
414 				break;
415 			}
416 			pte_unmap_unlock(orig_pte, ptl);
417 			if (split_huge_page(page)) {
418 				unlock_page(page);
419 				put_page(page);
420 				pte_offset_map_lock(mm, pmd, addr, &ptl);
421 				break;
422 			}
423 			unlock_page(page);
424 			put_page(page);
425 			pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
426 			pte--;
427 			addr -= PAGE_SIZE;
428 			continue;
429 		}
430 
431 		/* Do not interfere with other mappings of this page */
432 		if (page_mapcount(page) != 1)
433 			continue;
434 
435 		VM_BUG_ON_PAGE(PageTransCompound(page), page);
436 
437 		if (pte_young(ptent)) {
438 			ptent = ptep_get_and_clear_full(mm, addr, pte,
439 							tlb->fullmm);
440 			ptent = pte_mkold(ptent);
441 			set_pte_at(mm, addr, pte, ptent);
442 			tlb_remove_tlb_entry(tlb, pte, addr);
443 		}
444 
445 		/*
446 		 * We are deactivating a page for accelerating reclaiming.
447 		 * VM couldn't reclaim the page unless we clear PG_young.
448 		 * As a side effect, it makes confuse idle-page tracking
449 		 * because they will miss recent referenced history.
450 		 */
451 		ClearPageReferenced(page);
452 		test_and_clear_page_young(page);
453 		if (pageout) {
454 			if (!isolate_lru_page(page)) {
455 				if (PageUnevictable(page))
456 					putback_lru_page(page);
457 				else
458 					list_add(&page->lru, &page_list);
459 			}
460 		} else
461 			deactivate_page(page);
462 	}
463 
464 	arch_leave_lazy_mmu_mode();
465 	pte_unmap_unlock(orig_pte, ptl);
466 	if (pageout)
467 		reclaim_pages(&page_list);
468 	cond_resched();
469 
470 	return 0;
471 }
472 
473 static const struct mm_walk_ops cold_walk_ops = {
474 	.pmd_entry = madvise_cold_or_pageout_pte_range,
475 };
476 
477 static void madvise_cold_page_range(struct mmu_gather *tlb,
478 			     struct vm_area_struct *vma,
479 			     unsigned long addr, unsigned long end)
480 {
481 	struct madvise_walk_private walk_private = {
482 		.pageout = false,
483 		.tlb = tlb,
484 	};
485 
486 	tlb_start_vma(tlb, vma);
487 	walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
488 	tlb_end_vma(tlb, vma);
489 }
490 
491 static long madvise_cold(struct vm_area_struct *vma,
492 			struct vm_area_struct **prev,
493 			unsigned long start_addr, unsigned long end_addr)
494 {
495 	struct mm_struct *mm = vma->vm_mm;
496 	struct mmu_gather tlb;
497 
498 	*prev = vma;
499 	if (!can_madv_lru_vma(vma))
500 		return -EINVAL;
501 
502 	lru_add_drain();
503 	tlb_gather_mmu(&tlb, mm, start_addr, end_addr);
504 	madvise_cold_page_range(&tlb, vma, start_addr, end_addr);
505 	tlb_finish_mmu(&tlb, start_addr, end_addr);
506 
507 	return 0;
508 }
509 
510 static void madvise_pageout_page_range(struct mmu_gather *tlb,
511 			     struct vm_area_struct *vma,
512 			     unsigned long addr, unsigned long end)
513 {
514 	struct madvise_walk_private walk_private = {
515 		.pageout = true,
516 		.tlb = tlb,
517 	};
518 
519 	tlb_start_vma(tlb, vma);
520 	walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
521 	tlb_end_vma(tlb, vma);
522 }
523 
524 static inline bool can_do_pageout(struct vm_area_struct *vma)
525 {
526 	if (vma_is_anonymous(vma))
527 		return true;
528 	if (!vma->vm_file)
529 		return false;
530 	/*
531 	 * paging out pagecache only for non-anonymous mappings that correspond
532 	 * to the files the calling process could (if tried) open for writing;
533 	 * otherwise we'd be including shared non-exclusive mappings, which
534 	 * opens a side channel.
535 	 */
536 	return inode_owner_or_capable(file_inode(vma->vm_file)) ||
537 		inode_permission(file_inode(vma->vm_file), MAY_WRITE) == 0;
538 }
539 
540 static long madvise_pageout(struct vm_area_struct *vma,
541 			struct vm_area_struct **prev,
542 			unsigned long start_addr, unsigned long end_addr)
543 {
544 	struct mm_struct *mm = vma->vm_mm;
545 	struct mmu_gather tlb;
546 
547 	*prev = vma;
548 	if (!can_madv_lru_vma(vma))
549 		return -EINVAL;
550 
551 	if (!can_do_pageout(vma))
552 		return 0;
553 
554 	lru_add_drain();
555 	tlb_gather_mmu(&tlb, mm, start_addr, end_addr);
556 	madvise_pageout_page_range(&tlb, vma, start_addr, end_addr);
557 	tlb_finish_mmu(&tlb, start_addr, end_addr);
558 
559 	return 0;
560 }
561 
562 static int madvise_free_pte_range(pmd_t *pmd, unsigned long addr,
563 				unsigned long end, struct mm_walk *walk)
564 
565 {
566 	struct mmu_gather *tlb = walk->private;
567 	struct mm_struct *mm = tlb->mm;
568 	struct vm_area_struct *vma = walk->vma;
569 	spinlock_t *ptl;
570 	pte_t *orig_pte, *pte, ptent;
571 	struct page *page;
572 	int nr_swap = 0;
573 	unsigned long next;
574 
575 	next = pmd_addr_end(addr, end);
576 	if (pmd_trans_huge(*pmd))
577 		if (madvise_free_huge_pmd(tlb, vma, pmd, addr, next))
578 			goto next;
579 
580 	if (pmd_trans_unstable(pmd))
581 		return 0;
582 
583 	tlb_change_page_size(tlb, PAGE_SIZE);
584 	orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
585 	flush_tlb_batched_pending(mm);
586 	arch_enter_lazy_mmu_mode();
587 	for (; addr != end; pte++, addr += PAGE_SIZE) {
588 		ptent = *pte;
589 
590 		if (pte_none(ptent))
591 			continue;
592 		/*
593 		 * If the pte has swp_entry, just clear page table to
594 		 * prevent swap-in which is more expensive rather than
595 		 * (page allocation + zeroing).
596 		 */
597 		if (!pte_present(ptent)) {
598 			swp_entry_t entry;
599 
600 			entry = pte_to_swp_entry(ptent);
601 			if (non_swap_entry(entry))
602 				continue;
603 			nr_swap--;
604 			free_swap_and_cache(entry);
605 			pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
606 			continue;
607 		}
608 
609 		page = vm_normal_page(vma, addr, ptent);
610 		if (!page)
611 			continue;
612 
613 		/*
614 		 * If pmd isn't transhuge but the page is THP and
615 		 * is owned by only this process, split it and
616 		 * deactivate all pages.
617 		 */
618 		if (PageTransCompound(page)) {
619 			if (page_mapcount(page) != 1)
620 				goto out;
621 			get_page(page);
622 			if (!trylock_page(page)) {
623 				put_page(page);
624 				goto out;
625 			}
626 			pte_unmap_unlock(orig_pte, ptl);
627 			if (split_huge_page(page)) {
628 				unlock_page(page);
629 				put_page(page);
630 				pte_offset_map_lock(mm, pmd, addr, &ptl);
631 				goto out;
632 			}
633 			unlock_page(page);
634 			put_page(page);
635 			pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
636 			pte--;
637 			addr -= PAGE_SIZE;
638 			continue;
639 		}
640 
641 		VM_BUG_ON_PAGE(PageTransCompound(page), page);
642 
643 		if (PageSwapCache(page) || PageDirty(page)) {
644 			if (!trylock_page(page))
645 				continue;
646 			/*
647 			 * If page is shared with others, we couldn't clear
648 			 * PG_dirty of the page.
649 			 */
650 			if (page_mapcount(page) != 1) {
651 				unlock_page(page);
652 				continue;
653 			}
654 
655 			if (PageSwapCache(page) && !try_to_free_swap(page)) {
656 				unlock_page(page);
657 				continue;
658 			}
659 
660 			ClearPageDirty(page);
661 			unlock_page(page);
662 		}
663 
664 		if (pte_young(ptent) || pte_dirty(ptent)) {
665 			/*
666 			 * Some of architecture(ex, PPC) don't update TLB
667 			 * with set_pte_at and tlb_remove_tlb_entry so for
668 			 * the portability, remap the pte with old|clean
669 			 * after pte clearing.
670 			 */
671 			ptent = ptep_get_and_clear_full(mm, addr, pte,
672 							tlb->fullmm);
673 
674 			ptent = pte_mkold(ptent);
675 			ptent = pte_mkclean(ptent);
676 			set_pte_at(mm, addr, pte, ptent);
677 			tlb_remove_tlb_entry(tlb, pte, addr);
678 		}
679 		mark_page_lazyfree(page);
680 	}
681 out:
682 	if (nr_swap) {
683 		if (current->mm == mm)
684 			sync_mm_rss(mm);
685 
686 		add_mm_counter(mm, MM_SWAPENTS, nr_swap);
687 	}
688 	arch_leave_lazy_mmu_mode();
689 	pte_unmap_unlock(orig_pte, ptl);
690 	cond_resched();
691 next:
692 	return 0;
693 }
694 
695 static const struct mm_walk_ops madvise_free_walk_ops = {
696 	.pmd_entry		= madvise_free_pte_range,
697 };
698 
699 static int madvise_free_single_vma(struct vm_area_struct *vma,
700 			unsigned long start_addr, unsigned long end_addr)
701 {
702 	struct mm_struct *mm = vma->vm_mm;
703 	struct mmu_notifier_range range;
704 	struct mmu_gather tlb;
705 
706 	/* MADV_FREE works for only anon vma at the moment */
707 	if (!vma_is_anonymous(vma))
708 		return -EINVAL;
709 
710 	range.start = max(vma->vm_start, start_addr);
711 	if (range.start >= vma->vm_end)
712 		return -EINVAL;
713 	range.end = min(vma->vm_end, end_addr);
714 	if (range.end <= vma->vm_start)
715 		return -EINVAL;
716 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
717 				range.start, range.end);
718 
719 	lru_add_drain();
720 	tlb_gather_mmu(&tlb, mm, range.start, range.end);
721 	update_hiwater_rss(mm);
722 
723 	mmu_notifier_invalidate_range_start(&range);
724 	tlb_start_vma(&tlb, vma);
725 	walk_page_range(vma->vm_mm, range.start, range.end,
726 			&madvise_free_walk_ops, &tlb);
727 	tlb_end_vma(&tlb, vma);
728 	mmu_notifier_invalidate_range_end(&range);
729 	tlb_finish_mmu(&tlb, range.start, range.end);
730 
731 	return 0;
732 }
733 
734 /*
735  * Application no longer needs these pages.  If the pages are dirty,
736  * it's OK to just throw them away.  The app will be more careful about
737  * data it wants to keep.  Be sure to free swap resources too.  The
738  * zap_page_range call sets things up for shrink_active_list to actually free
739  * these pages later if no one else has touched them in the meantime,
740  * although we could add these pages to a global reuse list for
741  * shrink_active_list to pick up before reclaiming other pages.
742  *
743  * NB: This interface discards data rather than pushes it out to swap,
744  * as some implementations do.  This has performance implications for
745  * applications like large transactional databases which want to discard
746  * pages in anonymous maps after committing to backing store the data
747  * that was kept in them.  There is no reason to write this data out to
748  * the swap area if the application is discarding it.
749  *
750  * An interface that causes the system to free clean pages and flush
751  * dirty pages is already available as msync(MS_INVALIDATE).
752  */
753 static long madvise_dontneed_single_vma(struct vm_area_struct *vma,
754 					unsigned long start, unsigned long end)
755 {
756 	zap_page_range(vma, start, end - start);
757 	return 0;
758 }
759 
760 static long madvise_dontneed_free(struct vm_area_struct *vma,
761 				  struct vm_area_struct **prev,
762 				  unsigned long start, unsigned long end,
763 				  int behavior)
764 {
765 	*prev = vma;
766 	if (!can_madv_lru_vma(vma))
767 		return -EINVAL;
768 
769 	if (!userfaultfd_remove(vma, start, end)) {
770 		*prev = NULL; /* mmap_sem has been dropped, prev is stale */
771 
772 		down_read(&current->mm->mmap_sem);
773 		vma = find_vma(current->mm, start);
774 		if (!vma)
775 			return -ENOMEM;
776 		if (start < vma->vm_start) {
777 			/*
778 			 * This "vma" under revalidation is the one
779 			 * with the lowest vma->vm_start where start
780 			 * is also < vma->vm_end. If start <
781 			 * vma->vm_start it means an hole materialized
782 			 * in the user address space within the
783 			 * virtual range passed to MADV_DONTNEED
784 			 * or MADV_FREE.
785 			 */
786 			return -ENOMEM;
787 		}
788 		if (!can_madv_lru_vma(vma))
789 			return -EINVAL;
790 		if (end > vma->vm_end) {
791 			/*
792 			 * Don't fail if end > vma->vm_end. If the old
793 			 * vma was splitted while the mmap_sem was
794 			 * released the effect of the concurrent
795 			 * operation may not cause madvise() to
796 			 * have an undefined result. There may be an
797 			 * adjacent next vma that we'll walk
798 			 * next. userfaultfd_remove() will generate an
799 			 * UFFD_EVENT_REMOVE repetition on the
800 			 * end-vma->vm_end range, but the manager can
801 			 * handle a repetition fine.
802 			 */
803 			end = vma->vm_end;
804 		}
805 		VM_WARN_ON(start >= end);
806 	}
807 
808 	if (behavior == MADV_DONTNEED)
809 		return madvise_dontneed_single_vma(vma, start, end);
810 	else if (behavior == MADV_FREE)
811 		return madvise_free_single_vma(vma, start, end);
812 	else
813 		return -EINVAL;
814 }
815 
816 /*
817  * Application wants to free up the pages and associated backing store.
818  * This is effectively punching a hole into the middle of a file.
819  */
820 static long madvise_remove(struct vm_area_struct *vma,
821 				struct vm_area_struct **prev,
822 				unsigned long start, unsigned long end)
823 {
824 	loff_t offset;
825 	int error;
826 	struct file *f;
827 
828 	*prev = NULL;	/* tell sys_madvise we drop mmap_sem */
829 
830 	if (vma->vm_flags & VM_LOCKED)
831 		return -EINVAL;
832 
833 	f = vma->vm_file;
834 
835 	if (!f || !f->f_mapping || !f->f_mapping->host) {
836 			return -EINVAL;
837 	}
838 
839 	if ((vma->vm_flags & (VM_SHARED|VM_WRITE)) != (VM_SHARED|VM_WRITE))
840 		return -EACCES;
841 
842 	offset = (loff_t)(start - vma->vm_start)
843 			+ ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
844 
845 	/*
846 	 * Filesystem's fallocate may need to take i_mutex.  We need to
847 	 * explicitly grab a reference because the vma (and hence the
848 	 * vma's reference to the file) can go away as soon as we drop
849 	 * mmap_sem.
850 	 */
851 	get_file(f);
852 	if (userfaultfd_remove(vma, start, end)) {
853 		/* mmap_sem was not released by userfaultfd_remove() */
854 		up_read(&current->mm->mmap_sem);
855 	}
856 	error = vfs_fallocate(f,
857 				FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
858 				offset, end - start);
859 	fput(f);
860 	down_read(&current->mm->mmap_sem);
861 	return error;
862 }
863 
864 #ifdef CONFIG_MEMORY_FAILURE
865 /*
866  * Error injection support for memory error handling.
867  */
868 static int madvise_inject_error(int behavior,
869 		unsigned long start, unsigned long end)
870 {
871 	struct page *page;
872 	struct zone *zone;
873 	unsigned long size;
874 
875 	if (!capable(CAP_SYS_ADMIN))
876 		return -EPERM;
877 
878 
879 	for (; start < end; start += size) {
880 		unsigned long pfn;
881 		int ret;
882 
883 		ret = get_user_pages_fast(start, 1, 0, &page);
884 		if (ret != 1)
885 			return ret;
886 		pfn = page_to_pfn(page);
887 
888 		/*
889 		 * When soft offlining hugepages, after migrating the page
890 		 * we dissolve it, therefore in the second loop "page" will
891 		 * no longer be a compound page.
892 		 */
893 		size = page_size(compound_head(page));
894 
895 		if (PageHWPoison(page)) {
896 			put_page(page);
897 			continue;
898 		}
899 
900 		if (behavior == MADV_SOFT_OFFLINE) {
901 			pr_info("Soft offlining pfn %#lx at process virtual address %#lx\n",
902 					pfn, start);
903 
904 			ret = soft_offline_page(pfn, MF_COUNT_INCREASED);
905 			if (ret)
906 				return ret;
907 			continue;
908 		}
909 
910 		pr_info("Injecting memory failure for pfn %#lx at process virtual address %#lx\n",
911 				pfn, start);
912 
913 		/*
914 		 * Drop the page reference taken by get_user_pages_fast(). In
915 		 * the absence of MF_COUNT_INCREASED the memory_failure()
916 		 * routine is responsible for pinning the page to prevent it
917 		 * from being released back to the page allocator.
918 		 */
919 		put_page(page);
920 		ret = memory_failure(pfn, 0);
921 		if (ret)
922 			return ret;
923 	}
924 
925 	/* Ensure that all poisoned pages are removed from per-cpu lists */
926 	for_each_populated_zone(zone)
927 		drain_all_pages(zone);
928 
929 	return 0;
930 }
931 #endif
932 
933 static long
934 madvise_vma(struct vm_area_struct *vma, struct vm_area_struct **prev,
935 		unsigned long start, unsigned long end, int behavior)
936 {
937 	switch (behavior) {
938 	case MADV_REMOVE:
939 		return madvise_remove(vma, prev, start, end);
940 	case MADV_WILLNEED:
941 		return madvise_willneed(vma, prev, start, end);
942 	case MADV_COLD:
943 		return madvise_cold(vma, prev, start, end);
944 	case MADV_PAGEOUT:
945 		return madvise_pageout(vma, prev, start, end);
946 	case MADV_FREE:
947 	case MADV_DONTNEED:
948 		return madvise_dontneed_free(vma, prev, start, end, behavior);
949 	default:
950 		return madvise_behavior(vma, prev, start, end, behavior);
951 	}
952 }
953 
954 static bool
955 madvise_behavior_valid(int behavior)
956 {
957 	switch (behavior) {
958 	case MADV_DOFORK:
959 	case MADV_DONTFORK:
960 	case MADV_NORMAL:
961 	case MADV_SEQUENTIAL:
962 	case MADV_RANDOM:
963 	case MADV_REMOVE:
964 	case MADV_WILLNEED:
965 	case MADV_DONTNEED:
966 	case MADV_FREE:
967 	case MADV_COLD:
968 	case MADV_PAGEOUT:
969 #ifdef CONFIG_KSM
970 	case MADV_MERGEABLE:
971 	case MADV_UNMERGEABLE:
972 #endif
973 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
974 	case MADV_HUGEPAGE:
975 	case MADV_NOHUGEPAGE:
976 #endif
977 	case MADV_DONTDUMP:
978 	case MADV_DODUMP:
979 	case MADV_WIPEONFORK:
980 	case MADV_KEEPONFORK:
981 #ifdef CONFIG_MEMORY_FAILURE
982 	case MADV_SOFT_OFFLINE:
983 	case MADV_HWPOISON:
984 #endif
985 		return true;
986 
987 	default:
988 		return false;
989 	}
990 }
991 
992 /*
993  * The madvise(2) system call.
994  *
995  * Applications can use madvise() to advise the kernel how it should
996  * handle paging I/O in this VM area.  The idea is to help the kernel
997  * use appropriate read-ahead and caching techniques.  The information
998  * provided is advisory only, and can be safely disregarded by the
999  * kernel without affecting the correct operation of the application.
1000  *
1001  * behavior values:
1002  *  MADV_NORMAL - the default behavior is to read clusters.  This
1003  *		results in some read-ahead and read-behind.
1004  *  MADV_RANDOM - the system should read the minimum amount of data
1005  *		on any access, since it is unlikely that the appli-
1006  *		cation will need more than what it asks for.
1007  *  MADV_SEQUENTIAL - pages in the given range will probably be accessed
1008  *		once, so they can be aggressively read ahead, and
1009  *		can be freed soon after they are accessed.
1010  *  MADV_WILLNEED - the application is notifying the system to read
1011  *		some pages ahead.
1012  *  MADV_DONTNEED - the application is finished with the given range,
1013  *		so the kernel can free resources associated with it.
1014  *  MADV_FREE - the application marks pages in the given range as lazy free,
1015  *		where actual purges are postponed until memory pressure happens.
1016  *  MADV_REMOVE - the application wants to free up the given range of
1017  *		pages and associated backing store.
1018  *  MADV_DONTFORK - omit this area from child's address space when forking:
1019  *		typically, to avoid COWing pages pinned by get_user_pages().
1020  *  MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking.
1021  *  MADV_WIPEONFORK - present the child process with zero-filled memory in this
1022  *              range after a fork.
1023  *  MADV_KEEPONFORK - undo the effect of MADV_WIPEONFORK
1024  *  MADV_HWPOISON - trigger memory error handler as if the given memory range
1025  *		were corrupted by unrecoverable hardware memory failure.
1026  *  MADV_SOFT_OFFLINE - try to soft-offline the given range of memory.
1027  *  MADV_MERGEABLE - the application recommends that KSM try to merge pages in
1028  *		this area with pages of identical content from other such areas.
1029  *  MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others.
1030  *  MADV_HUGEPAGE - the application wants to back the given range by transparent
1031  *		huge pages in the future. Existing pages might be coalesced and
1032  *		new pages might be allocated as THP.
1033  *  MADV_NOHUGEPAGE - mark the given range as not worth being backed by
1034  *		transparent huge pages so the existing pages will not be
1035  *		coalesced into THP and new pages will not be allocated as THP.
1036  *  MADV_DONTDUMP - the application wants to prevent pages in the given range
1037  *		from being included in its core dump.
1038  *  MADV_DODUMP - cancel MADV_DONTDUMP: no longer exclude from core dump.
1039  *
1040  * return values:
1041  *  zero    - success
1042  *  -EINVAL - start + len < 0, start is not page-aligned,
1043  *		"behavior" is not a valid value, or application
1044  *		is attempting to release locked or shared pages,
1045  *		or the specified address range includes file, Huge TLB,
1046  *		MAP_SHARED or VMPFNMAP range.
1047  *  -ENOMEM - addresses in the specified range are not currently
1048  *		mapped, or are outside the AS of the process.
1049  *  -EIO    - an I/O error occurred while paging in data.
1050  *  -EBADF  - map exists, but area maps something that isn't a file.
1051  *  -EAGAIN - a kernel resource was temporarily unavailable.
1052  */
1053 int do_madvise(unsigned long start, size_t len_in, int behavior)
1054 {
1055 	unsigned long end, tmp;
1056 	struct vm_area_struct *vma, *prev;
1057 	int unmapped_error = 0;
1058 	int error = -EINVAL;
1059 	int write;
1060 	size_t len;
1061 	struct blk_plug plug;
1062 
1063 	start = untagged_addr(start);
1064 
1065 	if (!madvise_behavior_valid(behavior))
1066 		return error;
1067 
1068 	if (!PAGE_ALIGNED(start))
1069 		return error;
1070 	len = PAGE_ALIGN(len_in);
1071 
1072 	/* Check to see whether len was rounded up from small -ve to zero */
1073 	if (len_in && !len)
1074 		return error;
1075 
1076 	end = start + len;
1077 	if (end < start)
1078 		return error;
1079 
1080 	error = 0;
1081 	if (end == start)
1082 		return error;
1083 
1084 #ifdef CONFIG_MEMORY_FAILURE
1085 	if (behavior == MADV_HWPOISON || behavior == MADV_SOFT_OFFLINE)
1086 		return madvise_inject_error(behavior, start, start + len_in);
1087 #endif
1088 
1089 	write = madvise_need_mmap_write(behavior);
1090 	if (write) {
1091 		if (down_write_killable(&current->mm->mmap_sem))
1092 			return -EINTR;
1093 	} else {
1094 		down_read(&current->mm->mmap_sem);
1095 	}
1096 
1097 	/*
1098 	 * If the interval [start,end) covers some unmapped address
1099 	 * ranges, just ignore them, but return -ENOMEM at the end.
1100 	 * - different from the way of handling in mlock etc.
1101 	 */
1102 	vma = find_vma_prev(current->mm, start, &prev);
1103 	if (vma && start > vma->vm_start)
1104 		prev = vma;
1105 
1106 	blk_start_plug(&plug);
1107 	for (;;) {
1108 		/* Still start < end. */
1109 		error = -ENOMEM;
1110 		if (!vma)
1111 			goto out;
1112 
1113 		/* Here start < (end|vma->vm_end). */
1114 		if (start < vma->vm_start) {
1115 			unmapped_error = -ENOMEM;
1116 			start = vma->vm_start;
1117 			if (start >= end)
1118 				goto out;
1119 		}
1120 
1121 		/* Here vma->vm_start <= start < (end|vma->vm_end) */
1122 		tmp = vma->vm_end;
1123 		if (end < tmp)
1124 			tmp = end;
1125 
1126 		/* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */
1127 		error = madvise_vma(vma, &prev, start, tmp, behavior);
1128 		if (error)
1129 			goto out;
1130 		start = tmp;
1131 		if (prev && start < prev->vm_end)
1132 			start = prev->vm_end;
1133 		error = unmapped_error;
1134 		if (start >= end)
1135 			goto out;
1136 		if (prev)
1137 			vma = prev->vm_next;
1138 		else	/* madvise_remove dropped mmap_sem */
1139 			vma = find_vma(current->mm, start);
1140 	}
1141 out:
1142 	blk_finish_plug(&plug);
1143 	if (write)
1144 		up_write(&current->mm->mmap_sem);
1145 	else
1146 		up_read(&current->mm->mmap_sem);
1147 
1148 	return error;
1149 }
1150 
1151 SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior)
1152 {
1153 	return do_madvise(start, len_in, behavior);
1154 }
1155