xref: /openbmc/linux/mm/madvise.c (revision a080a92a6f89e716b8a264f6b93123b41a1c004c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *	linux/mm/madvise.c
4  *
5  * Copyright (C) 1999  Linus Torvalds
6  * Copyright (C) 2002  Christoph Hellwig
7  */
8 
9 #include <linux/mman.h>
10 #include <linux/pagemap.h>
11 #include <linux/syscalls.h>
12 #include <linux/mempolicy.h>
13 #include <linux/page-isolation.h>
14 #include <linux/page_idle.h>
15 #include <linux/userfaultfd_k.h>
16 #include <linux/hugetlb.h>
17 #include <linux/falloc.h>
18 #include <linux/fadvise.h>
19 #include <linux/sched.h>
20 #include <linux/ksm.h>
21 #include <linux/fs.h>
22 #include <linux/file.h>
23 #include <linux/blkdev.h>
24 #include <linux/backing-dev.h>
25 #include <linux/pagewalk.h>
26 #include <linux/swap.h>
27 #include <linux/swapops.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/mmu_notifier.h>
30 
31 #include <asm/tlb.h>
32 
33 #include "internal.h"
34 
35 struct madvise_walk_private {
36 	struct mmu_gather *tlb;
37 	bool pageout;
38 };
39 
40 /*
41  * Any behaviour which results in changes to the vma->vm_flags needs to
42  * take mmap_sem for writing. Others, which simply traverse vmas, need
43  * to only take it for reading.
44  */
45 static int madvise_need_mmap_write(int behavior)
46 {
47 	switch (behavior) {
48 	case MADV_REMOVE:
49 	case MADV_WILLNEED:
50 	case MADV_DONTNEED:
51 	case MADV_COLD:
52 	case MADV_PAGEOUT:
53 	case MADV_FREE:
54 		return 0;
55 	default:
56 		/* be safe, default to 1. list exceptions explicitly */
57 		return 1;
58 	}
59 }
60 
61 /*
62  * We can potentially split a vm area into separate
63  * areas, each area with its own behavior.
64  */
65 static long madvise_behavior(struct vm_area_struct *vma,
66 		     struct vm_area_struct **prev,
67 		     unsigned long start, unsigned long end, int behavior)
68 {
69 	struct mm_struct *mm = vma->vm_mm;
70 	int error = 0;
71 	pgoff_t pgoff;
72 	unsigned long new_flags = vma->vm_flags;
73 
74 	switch (behavior) {
75 	case MADV_NORMAL:
76 		new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ;
77 		break;
78 	case MADV_SEQUENTIAL:
79 		new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ;
80 		break;
81 	case MADV_RANDOM:
82 		new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ;
83 		break;
84 	case MADV_DONTFORK:
85 		new_flags |= VM_DONTCOPY;
86 		break;
87 	case MADV_DOFORK:
88 		if (vma->vm_flags & VM_IO) {
89 			error = -EINVAL;
90 			goto out;
91 		}
92 		new_flags &= ~VM_DONTCOPY;
93 		break;
94 	case MADV_WIPEONFORK:
95 		/* MADV_WIPEONFORK is only supported on anonymous memory. */
96 		if (vma->vm_file || vma->vm_flags & VM_SHARED) {
97 			error = -EINVAL;
98 			goto out;
99 		}
100 		new_flags |= VM_WIPEONFORK;
101 		break;
102 	case MADV_KEEPONFORK:
103 		new_flags &= ~VM_WIPEONFORK;
104 		break;
105 	case MADV_DONTDUMP:
106 		new_flags |= VM_DONTDUMP;
107 		break;
108 	case MADV_DODUMP:
109 		if (!is_vm_hugetlb_page(vma) && new_flags & VM_SPECIAL) {
110 			error = -EINVAL;
111 			goto out;
112 		}
113 		new_flags &= ~VM_DONTDUMP;
114 		break;
115 	case MADV_MERGEABLE:
116 	case MADV_UNMERGEABLE:
117 		error = ksm_madvise(vma, start, end, behavior, &new_flags);
118 		if (error)
119 			goto out_convert_errno;
120 		break;
121 	case MADV_HUGEPAGE:
122 	case MADV_NOHUGEPAGE:
123 		error = hugepage_madvise(vma, &new_flags, behavior);
124 		if (error)
125 			goto out_convert_errno;
126 		break;
127 	}
128 
129 	if (new_flags == vma->vm_flags) {
130 		*prev = vma;
131 		goto out;
132 	}
133 
134 	pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
135 	*prev = vma_merge(mm, *prev, start, end, new_flags, vma->anon_vma,
136 			  vma->vm_file, pgoff, vma_policy(vma),
137 			  vma->vm_userfaultfd_ctx);
138 	if (*prev) {
139 		vma = *prev;
140 		goto success;
141 	}
142 
143 	*prev = vma;
144 
145 	if (start != vma->vm_start) {
146 		if (unlikely(mm->map_count >= sysctl_max_map_count)) {
147 			error = -ENOMEM;
148 			goto out;
149 		}
150 		error = __split_vma(mm, vma, start, 1);
151 		if (error)
152 			goto out_convert_errno;
153 	}
154 
155 	if (end != vma->vm_end) {
156 		if (unlikely(mm->map_count >= sysctl_max_map_count)) {
157 			error = -ENOMEM;
158 			goto out;
159 		}
160 		error = __split_vma(mm, vma, end, 0);
161 		if (error)
162 			goto out_convert_errno;
163 	}
164 
165 success:
166 	/*
167 	 * vm_flags is protected by the mmap_sem held in write mode.
168 	 */
169 	vma->vm_flags = new_flags;
170 
171 out_convert_errno:
172 	/*
173 	 * madvise() returns EAGAIN if kernel resources, such as
174 	 * slab, are temporarily unavailable.
175 	 */
176 	if (error == -ENOMEM)
177 		error = -EAGAIN;
178 out:
179 	return error;
180 }
181 
182 #ifdef CONFIG_SWAP
183 static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start,
184 	unsigned long end, struct mm_walk *walk)
185 {
186 	pte_t *orig_pte;
187 	struct vm_area_struct *vma = walk->private;
188 	unsigned long index;
189 
190 	if (pmd_none_or_trans_huge_or_clear_bad(pmd))
191 		return 0;
192 
193 	for (index = start; index != end; index += PAGE_SIZE) {
194 		pte_t pte;
195 		swp_entry_t entry;
196 		struct page *page;
197 		spinlock_t *ptl;
198 
199 		orig_pte = pte_offset_map_lock(vma->vm_mm, pmd, start, &ptl);
200 		pte = *(orig_pte + ((index - start) / PAGE_SIZE));
201 		pte_unmap_unlock(orig_pte, ptl);
202 
203 		if (pte_present(pte) || pte_none(pte))
204 			continue;
205 		entry = pte_to_swp_entry(pte);
206 		if (unlikely(non_swap_entry(entry)))
207 			continue;
208 
209 		page = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE,
210 							vma, index, false);
211 		if (page)
212 			put_page(page);
213 	}
214 
215 	return 0;
216 }
217 
218 static const struct mm_walk_ops swapin_walk_ops = {
219 	.pmd_entry		= swapin_walk_pmd_entry,
220 };
221 
222 static void force_shm_swapin_readahead(struct vm_area_struct *vma,
223 		unsigned long start, unsigned long end,
224 		struct address_space *mapping)
225 {
226 	pgoff_t index;
227 	struct page *page;
228 	swp_entry_t swap;
229 
230 	for (; start < end; start += PAGE_SIZE) {
231 		index = ((start - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
232 
233 		page = find_get_entry(mapping, index);
234 		if (!xa_is_value(page)) {
235 			if (page)
236 				put_page(page);
237 			continue;
238 		}
239 		swap = radix_to_swp_entry(page);
240 		page = read_swap_cache_async(swap, GFP_HIGHUSER_MOVABLE,
241 							NULL, 0, false);
242 		if (page)
243 			put_page(page);
244 	}
245 
246 	lru_add_drain();	/* Push any new pages onto the LRU now */
247 }
248 #endif		/* CONFIG_SWAP */
249 
250 /*
251  * Schedule all required I/O operations.  Do not wait for completion.
252  */
253 static long madvise_willneed(struct vm_area_struct *vma,
254 			     struct vm_area_struct **prev,
255 			     unsigned long start, unsigned long end)
256 {
257 	struct file *file = vma->vm_file;
258 	loff_t offset;
259 
260 	*prev = vma;
261 #ifdef CONFIG_SWAP
262 	if (!file) {
263 		walk_page_range(vma->vm_mm, start, end, &swapin_walk_ops, vma);
264 		lru_add_drain(); /* Push any new pages onto the LRU now */
265 		return 0;
266 	}
267 
268 	if (shmem_mapping(file->f_mapping)) {
269 		force_shm_swapin_readahead(vma, start, end,
270 					file->f_mapping);
271 		return 0;
272 	}
273 #else
274 	if (!file)
275 		return -EBADF;
276 #endif
277 
278 	if (IS_DAX(file_inode(file))) {
279 		/* no bad return value, but ignore advice */
280 		return 0;
281 	}
282 
283 	/*
284 	 * Filesystem's fadvise may need to take various locks.  We need to
285 	 * explicitly grab a reference because the vma (and hence the
286 	 * vma's reference to the file) can go away as soon as we drop
287 	 * mmap_sem.
288 	 */
289 	*prev = NULL;	/* tell sys_madvise we drop mmap_sem */
290 	get_file(file);
291 	up_read(&current->mm->mmap_sem);
292 	offset = (loff_t)(start - vma->vm_start)
293 			+ ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
294 	vfs_fadvise(file, offset, end - start, POSIX_FADV_WILLNEED);
295 	fput(file);
296 	down_read(&current->mm->mmap_sem);
297 	return 0;
298 }
299 
300 static int madvise_cold_or_pageout_pte_range(pmd_t *pmd,
301 				unsigned long addr, unsigned long end,
302 				struct mm_walk *walk)
303 {
304 	struct madvise_walk_private *private = walk->private;
305 	struct mmu_gather *tlb = private->tlb;
306 	bool pageout = private->pageout;
307 	struct mm_struct *mm = tlb->mm;
308 	struct vm_area_struct *vma = walk->vma;
309 	pte_t *orig_pte, *pte, ptent;
310 	spinlock_t *ptl;
311 	struct page *page = NULL;
312 	LIST_HEAD(page_list);
313 
314 	if (fatal_signal_pending(current))
315 		return -EINTR;
316 
317 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
318 	if (pmd_trans_huge(*pmd)) {
319 		pmd_t orig_pmd;
320 		unsigned long next = pmd_addr_end(addr, end);
321 
322 		tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
323 		ptl = pmd_trans_huge_lock(pmd, vma);
324 		if (!ptl)
325 			return 0;
326 
327 		orig_pmd = *pmd;
328 		if (is_huge_zero_pmd(orig_pmd))
329 			goto huge_unlock;
330 
331 		if (unlikely(!pmd_present(orig_pmd))) {
332 			VM_BUG_ON(thp_migration_supported() &&
333 					!is_pmd_migration_entry(orig_pmd));
334 			goto huge_unlock;
335 		}
336 
337 		page = pmd_page(orig_pmd);
338 		if (next - addr != HPAGE_PMD_SIZE) {
339 			int err;
340 
341 			if (page_mapcount(page) != 1)
342 				goto huge_unlock;
343 
344 			get_page(page);
345 			spin_unlock(ptl);
346 			lock_page(page);
347 			err = split_huge_page(page);
348 			unlock_page(page);
349 			put_page(page);
350 			if (!err)
351 				goto regular_page;
352 			return 0;
353 		}
354 
355 		if (pmd_young(orig_pmd)) {
356 			pmdp_invalidate(vma, addr, pmd);
357 			orig_pmd = pmd_mkold(orig_pmd);
358 
359 			set_pmd_at(mm, addr, pmd, orig_pmd);
360 			tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
361 		}
362 
363 		ClearPageReferenced(page);
364 		test_and_clear_page_young(page);
365 		if (pageout) {
366 			if (!isolate_lru_page(page)) {
367 				if (PageUnevictable(page))
368 					putback_lru_page(page);
369 				else
370 					list_add(&page->lru, &page_list);
371 			}
372 		} else
373 			deactivate_page(page);
374 huge_unlock:
375 		spin_unlock(ptl);
376 		if (pageout)
377 			reclaim_pages(&page_list);
378 		return 0;
379 	}
380 
381 	if (pmd_trans_unstable(pmd))
382 		return 0;
383 regular_page:
384 #endif
385 	tlb_change_page_size(tlb, PAGE_SIZE);
386 	orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
387 	flush_tlb_batched_pending(mm);
388 	arch_enter_lazy_mmu_mode();
389 	for (; addr < end; pte++, addr += PAGE_SIZE) {
390 		ptent = *pte;
391 
392 		if (pte_none(ptent))
393 			continue;
394 
395 		if (!pte_present(ptent))
396 			continue;
397 
398 		page = vm_normal_page(vma, addr, ptent);
399 		if (!page)
400 			continue;
401 
402 		/*
403 		 * Creating a THP page is expensive so split it only if we
404 		 * are sure it's worth. Split it if we are only owner.
405 		 */
406 		if (PageTransCompound(page)) {
407 			if (page_mapcount(page) != 1)
408 				break;
409 			get_page(page);
410 			if (!trylock_page(page)) {
411 				put_page(page);
412 				break;
413 			}
414 			pte_unmap_unlock(orig_pte, ptl);
415 			if (split_huge_page(page)) {
416 				unlock_page(page);
417 				put_page(page);
418 				pte_offset_map_lock(mm, pmd, addr, &ptl);
419 				break;
420 			}
421 			unlock_page(page);
422 			put_page(page);
423 			pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
424 			pte--;
425 			addr -= PAGE_SIZE;
426 			continue;
427 		}
428 
429 		VM_BUG_ON_PAGE(PageTransCompound(page), page);
430 
431 		if (pte_young(ptent)) {
432 			ptent = ptep_get_and_clear_full(mm, addr, pte,
433 							tlb->fullmm);
434 			ptent = pte_mkold(ptent);
435 			set_pte_at(mm, addr, pte, ptent);
436 			tlb_remove_tlb_entry(tlb, pte, addr);
437 		}
438 
439 		/*
440 		 * We are deactivating a page for accelerating reclaiming.
441 		 * VM couldn't reclaim the page unless we clear PG_young.
442 		 * As a side effect, it makes confuse idle-page tracking
443 		 * because they will miss recent referenced history.
444 		 */
445 		ClearPageReferenced(page);
446 		test_and_clear_page_young(page);
447 		if (pageout) {
448 			if (!isolate_lru_page(page)) {
449 				if (PageUnevictable(page))
450 					putback_lru_page(page);
451 				else
452 					list_add(&page->lru, &page_list);
453 			}
454 		} else
455 			deactivate_page(page);
456 	}
457 
458 	arch_leave_lazy_mmu_mode();
459 	pte_unmap_unlock(orig_pte, ptl);
460 	if (pageout)
461 		reclaim_pages(&page_list);
462 	cond_resched();
463 
464 	return 0;
465 }
466 
467 static const struct mm_walk_ops cold_walk_ops = {
468 	.pmd_entry = madvise_cold_or_pageout_pte_range,
469 };
470 
471 static void madvise_cold_page_range(struct mmu_gather *tlb,
472 			     struct vm_area_struct *vma,
473 			     unsigned long addr, unsigned long end)
474 {
475 	struct madvise_walk_private walk_private = {
476 		.pageout = false,
477 		.tlb = tlb,
478 	};
479 
480 	tlb_start_vma(tlb, vma);
481 	walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
482 	tlb_end_vma(tlb, vma);
483 }
484 
485 static long madvise_cold(struct vm_area_struct *vma,
486 			struct vm_area_struct **prev,
487 			unsigned long start_addr, unsigned long end_addr)
488 {
489 	struct mm_struct *mm = vma->vm_mm;
490 	struct mmu_gather tlb;
491 
492 	*prev = vma;
493 	if (!can_madv_lru_vma(vma))
494 		return -EINVAL;
495 
496 	lru_add_drain();
497 	tlb_gather_mmu(&tlb, mm, start_addr, end_addr);
498 	madvise_cold_page_range(&tlb, vma, start_addr, end_addr);
499 	tlb_finish_mmu(&tlb, start_addr, end_addr);
500 
501 	return 0;
502 }
503 
504 static void madvise_pageout_page_range(struct mmu_gather *tlb,
505 			     struct vm_area_struct *vma,
506 			     unsigned long addr, unsigned long end)
507 {
508 	struct madvise_walk_private walk_private = {
509 		.pageout = true,
510 		.tlb = tlb,
511 	};
512 
513 	tlb_start_vma(tlb, vma);
514 	walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
515 	tlb_end_vma(tlb, vma);
516 }
517 
518 static inline bool can_do_pageout(struct vm_area_struct *vma)
519 {
520 	if (vma_is_anonymous(vma))
521 		return true;
522 	if (!vma->vm_file)
523 		return false;
524 	/*
525 	 * paging out pagecache only for non-anonymous mappings that correspond
526 	 * to the files the calling process could (if tried) open for writing;
527 	 * otherwise we'd be including shared non-exclusive mappings, which
528 	 * opens a side channel.
529 	 */
530 	return inode_owner_or_capable(file_inode(vma->vm_file)) ||
531 		inode_permission(file_inode(vma->vm_file), MAY_WRITE) == 0;
532 }
533 
534 static long madvise_pageout(struct vm_area_struct *vma,
535 			struct vm_area_struct **prev,
536 			unsigned long start_addr, unsigned long end_addr)
537 {
538 	struct mm_struct *mm = vma->vm_mm;
539 	struct mmu_gather tlb;
540 
541 	*prev = vma;
542 	if (!can_madv_lru_vma(vma))
543 		return -EINVAL;
544 
545 	if (!can_do_pageout(vma))
546 		return 0;
547 
548 	lru_add_drain();
549 	tlb_gather_mmu(&tlb, mm, start_addr, end_addr);
550 	madvise_pageout_page_range(&tlb, vma, start_addr, end_addr);
551 	tlb_finish_mmu(&tlb, start_addr, end_addr);
552 
553 	return 0;
554 }
555 
556 static int madvise_free_pte_range(pmd_t *pmd, unsigned long addr,
557 				unsigned long end, struct mm_walk *walk)
558 
559 {
560 	struct mmu_gather *tlb = walk->private;
561 	struct mm_struct *mm = tlb->mm;
562 	struct vm_area_struct *vma = walk->vma;
563 	spinlock_t *ptl;
564 	pte_t *orig_pte, *pte, ptent;
565 	struct page *page;
566 	int nr_swap = 0;
567 	unsigned long next;
568 
569 	next = pmd_addr_end(addr, end);
570 	if (pmd_trans_huge(*pmd))
571 		if (madvise_free_huge_pmd(tlb, vma, pmd, addr, next))
572 			goto next;
573 
574 	if (pmd_trans_unstable(pmd))
575 		return 0;
576 
577 	tlb_change_page_size(tlb, PAGE_SIZE);
578 	orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
579 	flush_tlb_batched_pending(mm);
580 	arch_enter_lazy_mmu_mode();
581 	for (; addr != end; pte++, addr += PAGE_SIZE) {
582 		ptent = *pte;
583 
584 		if (pte_none(ptent))
585 			continue;
586 		/*
587 		 * If the pte has swp_entry, just clear page table to
588 		 * prevent swap-in which is more expensive rather than
589 		 * (page allocation + zeroing).
590 		 */
591 		if (!pte_present(ptent)) {
592 			swp_entry_t entry;
593 
594 			entry = pte_to_swp_entry(ptent);
595 			if (non_swap_entry(entry))
596 				continue;
597 			nr_swap--;
598 			free_swap_and_cache(entry);
599 			pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
600 			continue;
601 		}
602 
603 		page = vm_normal_page(vma, addr, ptent);
604 		if (!page)
605 			continue;
606 
607 		/*
608 		 * If pmd isn't transhuge but the page is THP and
609 		 * is owned by only this process, split it and
610 		 * deactivate all pages.
611 		 */
612 		if (PageTransCompound(page)) {
613 			if (page_mapcount(page) != 1)
614 				goto out;
615 			get_page(page);
616 			if (!trylock_page(page)) {
617 				put_page(page);
618 				goto out;
619 			}
620 			pte_unmap_unlock(orig_pte, ptl);
621 			if (split_huge_page(page)) {
622 				unlock_page(page);
623 				put_page(page);
624 				pte_offset_map_lock(mm, pmd, addr, &ptl);
625 				goto out;
626 			}
627 			unlock_page(page);
628 			put_page(page);
629 			pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
630 			pte--;
631 			addr -= PAGE_SIZE;
632 			continue;
633 		}
634 
635 		VM_BUG_ON_PAGE(PageTransCompound(page), page);
636 
637 		if (PageSwapCache(page) || PageDirty(page)) {
638 			if (!trylock_page(page))
639 				continue;
640 			/*
641 			 * If page is shared with others, we couldn't clear
642 			 * PG_dirty of the page.
643 			 */
644 			if (page_mapcount(page) != 1) {
645 				unlock_page(page);
646 				continue;
647 			}
648 
649 			if (PageSwapCache(page) && !try_to_free_swap(page)) {
650 				unlock_page(page);
651 				continue;
652 			}
653 
654 			ClearPageDirty(page);
655 			unlock_page(page);
656 		}
657 
658 		if (pte_young(ptent) || pte_dirty(ptent)) {
659 			/*
660 			 * Some of architecture(ex, PPC) don't update TLB
661 			 * with set_pte_at and tlb_remove_tlb_entry so for
662 			 * the portability, remap the pte with old|clean
663 			 * after pte clearing.
664 			 */
665 			ptent = ptep_get_and_clear_full(mm, addr, pte,
666 							tlb->fullmm);
667 
668 			ptent = pte_mkold(ptent);
669 			ptent = pte_mkclean(ptent);
670 			set_pte_at(mm, addr, pte, ptent);
671 			tlb_remove_tlb_entry(tlb, pte, addr);
672 		}
673 		mark_page_lazyfree(page);
674 	}
675 out:
676 	if (nr_swap) {
677 		if (current->mm == mm)
678 			sync_mm_rss(mm);
679 
680 		add_mm_counter(mm, MM_SWAPENTS, nr_swap);
681 	}
682 	arch_leave_lazy_mmu_mode();
683 	pte_unmap_unlock(orig_pte, ptl);
684 	cond_resched();
685 next:
686 	return 0;
687 }
688 
689 static const struct mm_walk_ops madvise_free_walk_ops = {
690 	.pmd_entry		= madvise_free_pte_range,
691 };
692 
693 static int madvise_free_single_vma(struct vm_area_struct *vma,
694 			unsigned long start_addr, unsigned long end_addr)
695 {
696 	struct mm_struct *mm = vma->vm_mm;
697 	struct mmu_notifier_range range;
698 	struct mmu_gather tlb;
699 
700 	/* MADV_FREE works for only anon vma at the moment */
701 	if (!vma_is_anonymous(vma))
702 		return -EINVAL;
703 
704 	range.start = max(vma->vm_start, start_addr);
705 	if (range.start >= vma->vm_end)
706 		return -EINVAL;
707 	range.end = min(vma->vm_end, end_addr);
708 	if (range.end <= vma->vm_start)
709 		return -EINVAL;
710 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
711 				range.start, range.end);
712 
713 	lru_add_drain();
714 	tlb_gather_mmu(&tlb, mm, range.start, range.end);
715 	update_hiwater_rss(mm);
716 
717 	mmu_notifier_invalidate_range_start(&range);
718 	tlb_start_vma(&tlb, vma);
719 	walk_page_range(vma->vm_mm, range.start, range.end,
720 			&madvise_free_walk_ops, &tlb);
721 	tlb_end_vma(&tlb, vma);
722 	mmu_notifier_invalidate_range_end(&range);
723 	tlb_finish_mmu(&tlb, range.start, range.end);
724 
725 	return 0;
726 }
727 
728 /*
729  * Application no longer needs these pages.  If the pages are dirty,
730  * it's OK to just throw them away.  The app will be more careful about
731  * data it wants to keep.  Be sure to free swap resources too.  The
732  * zap_page_range call sets things up for shrink_active_list to actually free
733  * these pages later if no one else has touched them in the meantime,
734  * although we could add these pages to a global reuse list for
735  * shrink_active_list to pick up before reclaiming other pages.
736  *
737  * NB: This interface discards data rather than pushes it out to swap,
738  * as some implementations do.  This has performance implications for
739  * applications like large transactional databases which want to discard
740  * pages in anonymous maps after committing to backing store the data
741  * that was kept in them.  There is no reason to write this data out to
742  * the swap area if the application is discarding it.
743  *
744  * An interface that causes the system to free clean pages and flush
745  * dirty pages is already available as msync(MS_INVALIDATE).
746  */
747 static long madvise_dontneed_single_vma(struct vm_area_struct *vma,
748 					unsigned long start, unsigned long end)
749 {
750 	zap_page_range(vma, start, end - start);
751 	return 0;
752 }
753 
754 static long madvise_dontneed_free(struct vm_area_struct *vma,
755 				  struct vm_area_struct **prev,
756 				  unsigned long start, unsigned long end,
757 				  int behavior)
758 {
759 	*prev = vma;
760 	if (!can_madv_lru_vma(vma))
761 		return -EINVAL;
762 
763 	if (!userfaultfd_remove(vma, start, end)) {
764 		*prev = NULL; /* mmap_sem has been dropped, prev is stale */
765 
766 		down_read(&current->mm->mmap_sem);
767 		vma = find_vma(current->mm, start);
768 		if (!vma)
769 			return -ENOMEM;
770 		if (start < vma->vm_start) {
771 			/*
772 			 * This "vma" under revalidation is the one
773 			 * with the lowest vma->vm_start where start
774 			 * is also < vma->vm_end. If start <
775 			 * vma->vm_start it means an hole materialized
776 			 * in the user address space within the
777 			 * virtual range passed to MADV_DONTNEED
778 			 * or MADV_FREE.
779 			 */
780 			return -ENOMEM;
781 		}
782 		if (!can_madv_lru_vma(vma))
783 			return -EINVAL;
784 		if (end > vma->vm_end) {
785 			/*
786 			 * Don't fail if end > vma->vm_end. If the old
787 			 * vma was splitted while the mmap_sem was
788 			 * released the effect of the concurrent
789 			 * operation may not cause madvise() to
790 			 * have an undefined result. There may be an
791 			 * adjacent next vma that we'll walk
792 			 * next. userfaultfd_remove() will generate an
793 			 * UFFD_EVENT_REMOVE repetition on the
794 			 * end-vma->vm_end range, but the manager can
795 			 * handle a repetition fine.
796 			 */
797 			end = vma->vm_end;
798 		}
799 		VM_WARN_ON(start >= end);
800 	}
801 
802 	if (behavior == MADV_DONTNEED)
803 		return madvise_dontneed_single_vma(vma, start, end);
804 	else if (behavior == MADV_FREE)
805 		return madvise_free_single_vma(vma, start, end);
806 	else
807 		return -EINVAL;
808 }
809 
810 /*
811  * Application wants to free up the pages and associated backing store.
812  * This is effectively punching a hole into the middle of a file.
813  */
814 static long madvise_remove(struct vm_area_struct *vma,
815 				struct vm_area_struct **prev,
816 				unsigned long start, unsigned long end)
817 {
818 	loff_t offset;
819 	int error;
820 	struct file *f;
821 
822 	*prev = NULL;	/* tell sys_madvise we drop mmap_sem */
823 
824 	if (vma->vm_flags & VM_LOCKED)
825 		return -EINVAL;
826 
827 	f = vma->vm_file;
828 
829 	if (!f || !f->f_mapping || !f->f_mapping->host) {
830 			return -EINVAL;
831 	}
832 
833 	if ((vma->vm_flags & (VM_SHARED|VM_WRITE)) != (VM_SHARED|VM_WRITE))
834 		return -EACCES;
835 
836 	offset = (loff_t)(start - vma->vm_start)
837 			+ ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
838 
839 	/*
840 	 * Filesystem's fallocate may need to take i_mutex.  We need to
841 	 * explicitly grab a reference because the vma (and hence the
842 	 * vma's reference to the file) can go away as soon as we drop
843 	 * mmap_sem.
844 	 */
845 	get_file(f);
846 	if (userfaultfd_remove(vma, start, end)) {
847 		/* mmap_sem was not released by userfaultfd_remove() */
848 		up_read(&current->mm->mmap_sem);
849 	}
850 	error = vfs_fallocate(f,
851 				FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
852 				offset, end - start);
853 	fput(f);
854 	down_read(&current->mm->mmap_sem);
855 	return error;
856 }
857 
858 #ifdef CONFIG_MEMORY_FAILURE
859 /*
860  * Error injection support for memory error handling.
861  */
862 static int madvise_inject_error(int behavior,
863 		unsigned long start, unsigned long end)
864 {
865 	struct page *page;
866 	struct zone *zone;
867 	unsigned long size;
868 
869 	if (!capable(CAP_SYS_ADMIN))
870 		return -EPERM;
871 
872 
873 	for (; start < end; start += size) {
874 		unsigned long pfn;
875 		int ret;
876 
877 		ret = get_user_pages_fast(start, 1, 0, &page);
878 		if (ret != 1)
879 			return ret;
880 		pfn = page_to_pfn(page);
881 
882 		/*
883 		 * When soft offlining hugepages, after migrating the page
884 		 * we dissolve it, therefore in the second loop "page" will
885 		 * no longer be a compound page.
886 		 */
887 		size = page_size(compound_head(page));
888 
889 		if (PageHWPoison(page)) {
890 			put_page(page);
891 			continue;
892 		}
893 
894 		if (behavior == MADV_SOFT_OFFLINE) {
895 			pr_info("Soft offlining pfn %#lx at process virtual address %#lx\n",
896 					pfn, start);
897 
898 			ret = soft_offline_page(pfn, MF_COUNT_INCREASED);
899 			if (ret)
900 				return ret;
901 			continue;
902 		}
903 
904 		pr_info("Injecting memory failure for pfn %#lx at process virtual address %#lx\n",
905 				pfn, start);
906 
907 		/*
908 		 * Drop the page reference taken by get_user_pages_fast(). In
909 		 * the absence of MF_COUNT_INCREASED the memory_failure()
910 		 * routine is responsible for pinning the page to prevent it
911 		 * from being released back to the page allocator.
912 		 */
913 		put_page(page);
914 		ret = memory_failure(pfn, 0);
915 		if (ret)
916 			return ret;
917 	}
918 
919 	/* Ensure that all poisoned pages are removed from per-cpu lists */
920 	for_each_populated_zone(zone)
921 		drain_all_pages(zone);
922 
923 	return 0;
924 }
925 #endif
926 
927 static long
928 madvise_vma(struct vm_area_struct *vma, struct vm_area_struct **prev,
929 		unsigned long start, unsigned long end, int behavior)
930 {
931 	switch (behavior) {
932 	case MADV_REMOVE:
933 		return madvise_remove(vma, prev, start, end);
934 	case MADV_WILLNEED:
935 		return madvise_willneed(vma, prev, start, end);
936 	case MADV_COLD:
937 		return madvise_cold(vma, prev, start, end);
938 	case MADV_PAGEOUT:
939 		return madvise_pageout(vma, prev, start, end);
940 	case MADV_FREE:
941 	case MADV_DONTNEED:
942 		return madvise_dontneed_free(vma, prev, start, end, behavior);
943 	default:
944 		return madvise_behavior(vma, prev, start, end, behavior);
945 	}
946 }
947 
948 static bool
949 madvise_behavior_valid(int behavior)
950 {
951 	switch (behavior) {
952 	case MADV_DOFORK:
953 	case MADV_DONTFORK:
954 	case MADV_NORMAL:
955 	case MADV_SEQUENTIAL:
956 	case MADV_RANDOM:
957 	case MADV_REMOVE:
958 	case MADV_WILLNEED:
959 	case MADV_DONTNEED:
960 	case MADV_FREE:
961 	case MADV_COLD:
962 	case MADV_PAGEOUT:
963 #ifdef CONFIG_KSM
964 	case MADV_MERGEABLE:
965 	case MADV_UNMERGEABLE:
966 #endif
967 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
968 	case MADV_HUGEPAGE:
969 	case MADV_NOHUGEPAGE:
970 #endif
971 	case MADV_DONTDUMP:
972 	case MADV_DODUMP:
973 	case MADV_WIPEONFORK:
974 	case MADV_KEEPONFORK:
975 #ifdef CONFIG_MEMORY_FAILURE
976 	case MADV_SOFT_OFFLINE:
977 	case MADV_HWPOISON:
978 #endif
979 		return true;
980 
981 	default:
982 		return false;
983 	}
984 }
985 
986 /*
987  * The madvise(2) system call.
988  *
989  * Applications can use madvise() to advise the kernel how it should
990  * handle paging I/O in this VM area.  The idea is to help the kernel
991  * use appropriate read-ahead and caching techniques.  The information
992  * provided is advisory only, and can be safely disregarded by the
993  * kernel without affecting the correct operation of the application.
994  *
995  * behavior values:
996  *  MADV_NORMAL - the default behavior is to read clusters.  This
997  *		results in some read-ahead and read-behind.
998  *  MADV_RANDOM - the system should read the minimum amount of data
999  *		on any access, since it is unlikely that the appli-
1000  *		cation will need more than what it asks for.
1001  *  MADV_SEQUENTIAL - pages in the given range will probably be accessed
1002  *		once, so they can be aggressively read ahead, and
1003  *		can be freed soon after they are accessed.
1004  *  MADV_WILLNEED - the application is notifying the system to read
1005  *		some pages ahead.
1006  *  MADV_DONTNEED - the application is finished with the given range,
1007  *		so the kernel can free resources associated with it.
1008  *  MADV_FREE - the application marks pages in the given range as lazy free,
1009  *		where actual purges are postponed until memory pressure happens.
1010  *  MADV_REMOVE - the application wants to free up the given range of
1011  *		pages and associated backing store.
1012  *  MADV_DONTFORK - omit this area from child's address space when forking:
1013  *		typically, to avoid COWing pages pinned by get_user_pages().
1014  *  MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking.
1015  *  MADV_WIPEONFORK - present the child process with zero-filled memory in this
1016  *              range after a fork.
1017  *  MADV_KEEPONFORK - undo the effect of MADV_WIPEONFORK
1018  *  MADV_HWPOISON - trigger memory error handler as if the given memory range
1019  *		were corrupted by unrecoverable hardware memory failure.
1020  *  MADV_SOFT_OFFLINE - try to soft-offline the given range of memory.
1021  *  MADV_MERGEABLE - the application recommends that KSM try to merge pages in
1022  *		this area with pages of identical content from other such areas.
1023  *  MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others.
1024  *  MADV_HUGEPAGE - the application wants to back the given range by transparent
1025  *		huge pages in the future. Existing pages might be coalesced and
1026  *		new pages might be allocated as THP.
1027  *  MADV_NOHUGEPAGE - mark the given range as not worth being backed by
1028  *		transparent huge pages so the existing pages will not be
1029  *		coalesced into THP and new pages will not be allocated as THP.
1030  *  MADV_DONTDUMP - the application wants to prevent pages in the given range
1031  *		from being included in its core dump.
1032  *  MADV_DODUMP - cancel MADV_DONTDUMP: no longer exclude from core dump.
1033  *
1034  * return values:
1035  *  zero    - success
1036  *  -EINVAL - start + len < 0, start is not page-aligned,
1037  *		"behavior" is not a valid value, or application
1038  *		is attempting to release locked or shared pages,
1039  *		or the specified address range includes file, Huge TLB,
1040  *		MAP_SHARED or VMPFNMAP range.
1041  *  -ENOMEM - addresses in the specified range are not currently
1042  *		mapped, or are outside the AS of the process.
1043  *  -EIO    - an I/O error occurred while paging in data.
1044  *  -EBADF  - map exists, but area maps something that isn't a file.
1045  *  -EAGAIN - a kernel resource was temporarily unavailable.
1046  */
1047 int do_madvise(unsigned long start, size_t len_in, int behavior)
1048 {
1049 	unsigned long end, tmp;
1050 	struct vm_area_struct *vma, *prev;
1051 	int unmapped_error = 0;
1052 	int error = -EINVAL;
1053 	int write;
1054 	size_t len;
1055 	struct blk_plug plug;
1056 
1057 	start = untagged_addr(start);
1058 
1059 	if (!madvise_behavior_valid(behavior))
1060 		return error;
1061 
1062 	if (!PAGE_ALIGNED(start))
1063 		return error;
1064 	len = PAGE_ALIGN(len_in);
1065 
1066 	/* Check to see whether len was rounded up from small -ve to zero */
1067 	if (len_in && !len)
1068 		return error;
1069 
1070 	end = start + len;
1071 	if (end < start)
1072 		return error;
1073 
1074 	error = 0;
1075 	if (end == start)
1076 		return error;
1077 
1078 #ifdef CONFIG_MEMORY_FAILURE
1079 	if (behavior == MADV_HWPOISON || behavior == MADV_SOFT_OFFLINE)
1080 		return madvise_inject_error(behavior, start, start + len_in);
1081 #endif
1082 
1083 	write = madvise_need_mmap_write(behavior);
1084 	if (write) {
1085 		if (down_write_killable(&current->mm->mmap_sem))
1086 			return -EINTR;
1087 	} else {
1088 		down_read(&current->mm->mmap_sem);
1089 	}
1090 
1091 	/*
1092 	 * If the interval [start,end) covers some unmapped address
1093 	 * ranges, just ignore them, but return -ENOMEM at the end.
1094 	 * - different from the way of handling in mlock etc.
1095 	 */
1096 	vma = find_vma_prev(current->mm, start, &prev);
1097 	if (vma && start > vma->vm_start)
1098 		prev = vma;
1099 
1100 	blk_start_plug(&plug);
1101 	for (;;) {
1102 		/* Still start < end. */
1103 		error = -ENOMEM;
1104 		if (!vma)
1105 			goto out;
1106 
1107 		/* Here start < (end|vma->vm_end). */
1108 		if (start < vma->vm_start) {
1109 			unmapped_error = -ENOMEM;
1110 			start = vma->vm_start;
1111 			if (start >= end)
1112 				goto out;
1113 		}
1114 
1115 		/* Here vma->vm_start <= start < (end|vma->vm_end) */
1116 		tmp = vma->vm_end;
1117 		if (end < tmp)
1118 			tmp = end;
1119 
1120 		/* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */
1121 		error = madvise_vma(vma, &prev, start, tmp, behavior);
1122 		if (error)
1123 			goto out;
1124 		start = tmp;
1125 		if (prev && start < prev->vm_end)
1126 			start = prev->vm_end;
1127 		error = unmapped_error;
1128 		if (start >= end)
1129 			goto out;
1130 		if (prev)
1131 			vma = prev->vm_next;
1132 		else	/* madvise_remove dropped mmap_sem */
1133 			vma = find_vma(current->mm, start);
1134 	}
1135 out:
1136 	blk_finish_plug(&plug);
1137 	if (write)
1138 		up_write(&current->mm->mmap_sem);
1139 	else
1140 		up_read(&current->mm->mmap_sem);
1141 
1142 	return error;
1143 }
1144 
1145 SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior)
1146 {
1147 	return do_madvise(start, len_in, behavior);
1148 }
1149