1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/madvise.c 4 * 5 * Copyright (C) 1999 Linus Torvalds 6 * Copyright (C) 2002 Christoph Hellwig 7 */ 8 9 #include <linux/mman.h> 10 #include <linux/pagemap.h> 11 #include <linux/syscalls.h> 12 #include <linux/mempolicy.h> 13 #include <linux/page-isolation.h> 14 #include <linux/page_idle.h> 15 #include <linux/userfaultfd_k.h> 16 #include <linux/hugetlb.h> 17 #include <linux/falloc.h> 18 #include <linux/fadvise.h> 19 #include <linux/sched.h> 20 #include <linux/ksm.h> 21 #include <linux/fs.h> 22 #include <linux/file.h> 23 #include <linux/blkdev.h> 24 #include <linux/backing-dev.h> 25 #include <linux/pagewalk.h> 26 #include <linux/swap.h> 27 #include <linux/swapops.h> 28 #include <linux/shmem_fs.h> 29 #include <linux/mmu_notifier.h> 30 31 #include <asm/tlb.h> 32 33 #include "internal.h" 34 35 struct madvise_walk_private { 36 struct mmu_gather *tlb; 37 bool pageout; 38 }; 39 40 /* 41 * Any behaviour which results in changes to the vma->vm_flags needs to 42 * take mmap_sem for writing. Others, which simply traverse vmas, need 43 * to only take it for reading. 44 */ 45 static int madvise_need_mmap_write(int behavior) 46 { 47 switch (behavior) { 48 case MADV_REMOVE: 49 case MADV_WILLNEED: 50 case MADV_DONTNEED: 51 case MADV_COLD: 52 case MADV_PAGEOUT: 53 case MADV_FREE: 54 return 0; 55 default: 56 /* be safe, default to 1. list exceptions explicitly */ 57 return 1; 58 } 59 } 60 61 /* 62 * We can potentially split a vm area into separate 63 * areas, each area with its own behavior. 64 */ 65 static long madvise_behavior(struct vm_area_struct *vma, 66 struct vm_area_struct **prev, 67 unsigned long start, unsigned long end, int behavior) 68 { 69 struct mm_struct *mm = vma->vm_mm; 70 int error = 0; 71 pgoff_t pgoff; 72 unsigned long new_flags = vma->vm_flags; 73 74 switch (behavior) { 75 case MADV_NORMAL: 76 new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ; 77 break; 78 case MADV_SEQUENTIAL: 79 new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ; 80 break; 81 case MADV_RANDOM: 82 new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ; 83 break; 84 case MADV_DONTFORK: 85 new_flags |= VM_DONTCOPY; 86 break; 87 case MADV_DOFORK: 88 if (vma->vm_flags & VM_IO) { 89 error = -EINVAL; 90 goto out; 91 } 92 new_flags &= ~VM_DONTCOPY; 93 break; 94 case MADV_WIPEONFORK: 95 /* MADV_WIPEONFORK is only supported on anonymous memory. */ 96 if (vma->vm_file || vma->vm_flags & VM_SHARED) { 97 error = -EINVAL; 98 goto out; 99 } 100 new_flags |= VM_WIPEONFORK; 101 break; 102 case MADV_KEEPONFORK: 103 new_flags &= ~VM_WIPEONFORK; 104 break; 105 case MADV_DONTDUMP: 106 new_flags |= VM_DONTDUMP; 107 break; 108 case MADV_DODUMP: 109 if (!is_vm_hugetlb_page(vma) && new_flags & VM_SPECIAL) { 110 error = -EINVAL; 111 goto out; 112 } 113 new_flags &= ~VM_DONTDUMP; 114 break; 115 case MADV_MERGEABLE: 116 case MADV_UNMERGEABLE: 117 error = ksm_madvise(vma, start, end, behavior, &new_flags); 118 if (error) 119 goto out_convert_errno; 120 break; 121 case MADV_HUGEPAGE: 122 case MADV_NOHUGEPAGE: 123 error = hugepage_madvise(vma, &new_flags, behavior); 124 if (error) 125 goto out_convert_errno; 126 break; 127 } 128 129 if (new_flags == vma->vm_flags) { 130 *prev = vma; 131 goto out; 132 } 133 134 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT); 135 *prev = vma_merge(mm, *prev, start, end, new_flags, vma->anon_vma, 136 vma->vm_file, pgoff, vma_policy(vma), 137 vma->vm_userfaultfd_ctx); 138 if (*prev) { 139 vma = *prev; 140 goto success; 141 } 142 143 *prev = vma; 144 145 if (start != vma->vm_start) { 146 if (unlikely(mm->map_count >= sysctl_max_map_count)) { 147 error = -ENOMEM; 148 goto out; 149 } 150 error = __split_vma(mm, vma, start, 1); 151 if (error) 152 goto out_convert_errno; 153 } 154 155 if (end != vma->vm_end) { 156 if (unlikely(mm->map_count >= sysctl_max_map_count)) { 157 error = -ENOMEM; 158 goto out; 159 } 160 error = __split_vma(mm, vma, end, 0); 161 if (error) 162 goto out_convert_errno; 163 } 164 165 success: 166 /* 167 * vm_flags is protected by the mmap_sem held in write mode. 168 */ 169 vma->vm_flags = new_flags; 170 171 out_convert_errno: 172 /* 173 * madvise() returns EAGAIN if kernel resources, such as 174 * slab, are temporarily unavailable. 175 */ 176 if (error == -ENOMEM) 177 error = -EAGAIN; 178 out: 179 return error; 180 } 181 182 #ifdef CONFIG_SWAP 183 static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start, 184 unsigned long end, struct mm_walk *walk) 185 { 186 pte_t *orig_pte; 187 struct vm_area_struct *vma = walk->private; 188 unsigned long index; 189 190 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 191 return 0; 192 193 for (index = start; index != end; index += PAGE_SIZE) { 194 pte_t pte; 195 swp_entry_t entry; 196 struct page *page; 197 spinlock_t *ptl; 198 199 orig_pte = pte_offset_map_lock(vma->vm_mm, pmd, start, &ptl); 200 pte = *(orig_pte + ((index - start) / PAGE_SIZE)); 201 pte_unmap_unlock(orig_pte, ptl); 202 203 if (pte_present(pte) || pte_none(pte)) 204 continue; 205 entry = pte_to_swp_entry(pte); 206 if (unlikely(non_swap_entry(entry))) 207 continue; 208 209 page = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE, 210 vma, index, false); 211 if (page) 212 put_page(page); 213 } 214 215 return 0; 216 } 217 218 static const struct mm_walk_ops swapin_walk_ops = { 219 .pmd_entry = swapin_walk_pmd_entry, 220 }; 221 222 static void force_shm_swapin_readahead(struct vm_area_struct *vma, 223 unsigned long start, unsigned long end, 224 struct address_space *mapping) 225 { 226 pgoff_t index; 227 struct page *page; 228 swp_entry_t swap; 229 230 for (; start < end; start += PAGE_SIZE) { 231 index = ((start - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 232 233 page = find_get_entry(mapping, index); 234 if (!xa_is_value(page)) { 235 if (page) 236 put_page(page); 237 continue; 238 } 239 swap = radix_to_swp_entry(page); 240 page = read_swap_cache_async(swap, GFP_HIGHUSER_MOVABLE, 241 NULL, 0, false); 242 if (page) 243 put_page(page); 244 } 245 246 lru_add_drain(); /* Push any new pages onto the LRU now */ 247 } 248 #endif /* CONFIG_SWAP */ 249 250 /* 251 * Schedule all required I/O operations. Do not wait for completion. 252 */ 253 static long madvise_willneed(struct vm_area_struct *vma, 254 struct vm_area_struct **prev, 255 unsigned long start, unsigned long end) 256 { 257 struct file *file = vma->vm_file; 258 loff_t offset; 259 260 *prev = vma; 261 #ifdef CONFIG_SWAP 262 if (!file) { 263 walk_page_range(vma->vm_mm, start, end, &swapin_walk_ops, vma); 264 lru_add_drain(); /* Push any new pages onto the LRU now */ 265 return 0; 266 } 267 268 if (shmem_mapping(file->f_mapping)) { 269 force_shm_swapin_readahead(vma, start, end, 270 file->f_mapping); 271 return 0; 272 } 273 #else 274 if (!file) 275 return -EBADF; 276 #endif 277 278 if (IS_DAX(file_inode(file))) { 279 /* no bad return value, but ignore advice */ 280 return 0; 281 } 282 283 /* 284 * Filesystem's fadvise may need to take various locks. We need to 285 * explicitly grab a reference because the vma (and hence the 286 * vma's reference to the file) can go away as soon as we drop 287 * mmap_sem. 288 */ 289 *prev = NULL; /* tell sys_madvise we drop mmap_sem */ 290 get_file(file); 291 up_read(¤t->mm->mmap_sem); 292 offset = (loff_t)(start - vma->vm_start) 293 + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 294 vfs_fadvise(file, offset, end - start, POSIX_FADV_WILLNEED); 295 fput(file); 296 down_read(¤t->mm->mmap_sem); 297 return 0; 298 } 299 300 static int madvise_cold_or_pageout_pte_range(pmd_t *pmd, 301 unsigned long addr, unsigned long end, 302 struct mm_walk *walk) 303 { 304 struct madvise_walk_private *private = walk->private; 305 struct mmu_gather *tlb = private->tlb; 306 bool pageout = private->pageout; 307 struct mm_struct *mm = tlb->mm; 308 struct vm_area_struct *vma = walk->vma; 309 pte_t *orig_pte, *pte, ptent; 310 spinlock_t *ptl; 311 struct page *page = NULL; 312 LIST_HEAD(page_list); 313 314 if (fatal_signal_pending(current)) 315 return -EINTR; 316 317 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 318 if (pmd_trans_huge(*pmd)) { 319 pmd_t orig_pmd; 320 unsigned long next = pmd_addr_end(addr, end); 321 322 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 323 ptl = pmd_trans_huge_lock(pmd, vma); 324 if (!ptl) 325 return 0; 326 327 orig_pmd = *pmd; 328 if (is_huge_zero_pmd(orig_pmd)) 329 goto huge_unlock; 330 331 if (unlikely(!pmd_present(orig_pmd))) { 332 VM_BUG_ON(thp_migration_supported() && 333 !is_pmd_migration_entry(orig_pmd)); 334 goto huge_unlock; 335 } 336 337 page = pmd_page(orig_pmd); 338 if (next - addr != HPAGE_PMD_SIZE) { 339 int err; 340 341 if (page_mapcount(page) != 1) 342 goto huge_unlock; 343 344 get_page(page); 345 spin_unlock(ptl); 346 lock_page(page); 347 err = split_huge_page(page); 348 unlock_page(page); 349 put_page(page); 350 if (!err) 351 goto regular_page; 352 return 0; 353 } 354 355 if (pmd_young(orig_pmd)) { 356 pmdp_invalidate(vma, addr, pmd); 357 orig_pmd = pmd_mkold(orig_pmd); 358 359 set_pmd_at(mm, addr, pmd, orig_pmd); 360 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 361 } 362 363 ClearPageReferenced(page); 364 test_and_clear_page_young(page); 365 if (pageout) { 366 if (!isolate_lru_page(page)) { 367 if (PageUnevictable(page)) 368 putback_lru_page(page); 369 else 370 list_add(&page->lru, &page_list); 371 } 372 } else 373 deactivate_page(page); 374 huge_unlock: 375 spin_unlock(ptl); 376 if (pageout) 377 reclaim_pages(&page_list); 378 return 0; 379 } 380 381 if (pmd_trans_unstable(pmd)) 382 return 0; 383 regular_page: 384 #endif 385 tlb_change_page_size(tlb, PAGE_SIZE); 386 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 387 flush_tlb_batched_pending(mm); 388 arch_enter_lazy_mmu_mode(); 389 for (; addr < end; pte++, addr += PAGE_SIZE) { 390 ptent = *pte; 391 392 if (pte_none(ptent)) 393 continue; 394 395 if (!pte_present(ptent)) 396 continue; 397 398 page = vm_normal_page(vma, addr, ptent); 399 if (!page) 400 continue; 401 402 /* 403 * Creating a THP page is expensive so split it only if we 404 * are sure it's worth. Split it if we are only owner. 405 */ 406 if (PageTransCompound(page)) { 407 if (page_mapcount(page) != 1) 408 break; 409 get_page(page); 410 if (!trylock_page(page)) { 411 put_page(page); 412 break; 413 } 414 pte_unmap_unlock(orig_pte, ptl); 415 if (split_huge_page(page)) { 416 unlock_page(page); 417 put_page(page); 418 pte_offset_map_lock(mm, pmd, addr, &ptl); 419 break; 420 } 421 unlock_page(page); 422 put_page(page); 423 pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 424 pte--; 425 addr -= PAGE_SIZE; 426 continue; 427 } 428 429 VM_BUG_ON_PAGE(PageTransCompound(page), page); 430 431 if (pte_young(ptent)) { 432 ptent = ptep_get_and_clear_full(mm, addr, pte, 433 tlb->fullmm); 434 ptent = pte_mkold(ptent); 435 set_pte_at(mm, addr, pte, ptent); 436 tlb_remove_tlb_entry(tlb, pte, addr); 437 } 438 439 /* 440 * We are deactivating a page for accelerating reclaiming. 441 * VM couldn't reclaim the page unless we clear PG_young. 442 * As a side effect, it makes confuse idle-page tracking 443 * because they will miss recent referenced history. 444 */ 445 ClearPageReferenced(page); 446 test_and_clear_page_young(page); 447 if (pageout) { 448 if (!isolate_lru_page(page)) { 449 if (PageUnevictable(page)) 450 putback_lru_page(page); 451 else 452 list_add(&page->lru, &page_list); 453 } 454 } else 455 deactivate_page(page); 456 } 457 458 arch_leave_lazy_mmu_mode(); 459 pte_unmap_unlock(orig_pte, ptl); 460 if (pageout) 461 reclaim_pages(&page_list); 462 cond_resched(); 463 464 return 0; 465 } 466 467 static const struct mm_walk_ops cold_walk_ops = { 468 .pmd_entry = madvise_cold_or_pageout_pte_range, 469 }; 470 471 static void madvise_cold_page_range(struct mmu_gather *tlb, 472 struct vm_area_struct *vma, 473 unsigned long addr, unsigned long end) 474 { 475 struct madvise_walk_private walk_private = { 476 .pageout = false, 477 .tlb = tlb, 478 }; 479 480 tlb_start_vma(tlb, vma); 481 walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private); 482 tlb_end_vma(tlb, vma); 483 } 484 485 static long madvise_cold(struct vm_area_struct *vma, 486 struct vm_area_struct **prev, 487 unsigned long start_addr, unsigned long end_addr) 488 { 489 struct mm_struct *mm = vma->vm_mm; 490 struct mmu_gather tlb; 491 492 *prev = vma; 493 if (!can_madv_lru_vma(vma)) 494 return -EINVAL; 495 496 lru_add_drain(); 497 tlb_gather_mmu(&tlb, mm, start_addr, end_addr); 498 madvise_cold_page_range(&tlb, vma, start_addr, end_addr); 499 tlb_finish_mmu(&tlb, start_addr, end_addr); 500 501 return 0; 502 } 503 504 static void madvise_pageout_page_range(struct mmu_gather *tlb, 505 struct vm_area_struct *vma, 506 unsigned long addr, unsigned long end) 507 { 508 struct madvise_walk_private walk_private = { 509 .pageout = true, 510 .tlb = tlb, 511 }; 512 513 tlb_start_vma(tlb, vma); 514 walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private); 515 tlb_end_vma(tlb, vma); 516 } 517 518 static inline bool can_do_pageout(struct vm_area_struct *vma) 519 { 520 if (vma_is_anonymous(vma)) 521 return true; 522 if (!vma->vm_file) 523 return false; 524 /* 525 * paging out pagecache only for non-anonymous mappings that correspond 526 * to the files the calling process could (if tried) open for writing; 527 * otherwise we'd be including shared non-exclusive mappings, which 528 * opens a side channel. 529 */ 530 return inode_owner_or_capable(file_inode(vma->vm_file)) || 531 inode_permission(file_inode(vma->vm_file), MAY_WRITE) == 0; 532 } 533 534 static long madvise_pageout(struct vm_area_struct *vma, 535 struct vm_area_struct **prev, 536 unsigned long start_addr, unsigned long end_addr) 537 { 538 struct mm_struct *mm = vma->vm_mm; 539 struct mmu_gather tlb; 540 541 *prev = vma; 542 if (!can_madv_lru_vma(vma)) 543 return -EINVAL; 544 545 if (!can_do_pageout(vma)) 546 return 0; 547 548 lru_add_drain(); 549 tlb_gather_mmu(&tlb, mm, start_addr, end_addr); 550 madvise_pageout_page_range(&tlb, vma, start_addr, end_addr); 551 tlb_finish_mmu(&tlb, start_addr, end_addr); 552 553 return 0; 554 } 555 556 static int madvise_free_pte_range(pmd_t *pmd, unsigned long addr, 557 unsigned long end, struct mm_walk *walk) 558 559 { 560 struct mmu_gather *tlb = walk->private; 561 struct mm_struct *mm = tlb->mm; 562 struct vm_area_struct *vma = walk->vma; 563 spinlock_t *ptl; 564 pte_t *orig_pte, *pte, ptent; 565 struct page *page; 566 int nr_swap = 0; 567 unsigned long next; 568 569 next = pmd_addr_end(addr, end); 570 if (pmd_trans_huge(*pmd)) 571 if (madvise_free_huge_pmd(tlb, vma, pmd, addr, next)) 572 goto next; 573 574 if (pmd_trans_unstable(pmd)) 575 return 0; 576 577 tlb_change_page_size(tlb, PAGE_SIZE); 578 orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 579 flush_tlb_batched_pending(mm); 580 arch_enter_lazy_mmu_mode(); 581 for (; addr != end; pte++, addr += PAGE_SIZE) { 582 ptent = *pte; 583 584 if (pte_none(ptent)) 585 continue; 586 /* 587 * If the pte has swp_entry, just clear page table to 588 * prevent swap-in which is more expensive rather than 589 * (page allocation + zeroing). 590 */ 591 if (!pte_present(ptent)) { 592 swp_entry_t entry; 593 594 entry = pte_to_swp_entry(ptent); 595 if (non_swap_entry(entry)) 596 continue; 597 nr_swap--; 598 free_swap_and_cache(entry); 599 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 600 continue; 601 } 602 603 page = vm_normal_page(vma, addr, ptent); 604 if (!page) 605 continue; 606 607 /* 608 * If pmd isn't transhuge but the page is THP and 609 * is owned by only this process, split it and 610 * deactivate all pages. 611 */ 612 if (PageTransCompound(page)) { 613 if (page_mapcount(page) != 1) 614 goto out; 615 get_page(page); 616 if (!trylock_page(page)) { 617 put_page(page); 618 goto out; 619 } 620 pte_unmap_unlock(orig_pte, ptl); 621 if (split_huge_page(page)) { 622 unlock_page(page); 623 put_page(page); 624 pte_offset_map_lock(mm, pmd, addr, &ptl); 625 goto out; 626 } 627 unlock_page(page); 628 put_page(page); 629 pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 630 pte--; 631 addr -= PAGE_SIZE; 632 continue; 633 } 634 635 VM_BUG_ON_PAGE(PageTransCompound(page), page); 636 637 if (PageSwapCache(page) || PageDirty(page)) { 638 if (!trylock_page(page)) 639 continue; 640 /* 641 * If page is shared with others, we couldn't clear 642 * PG_dirty of the page. 643 */ 644 if (page_mapcount(page) != 1) { 645 unlock_page(page); 646 continue; 647 } 648 649 if (PageSwapCache(page) && !try_to_free_swap(page)) { 650 unlock_page(page); 651 continue; 652 } 653 654 ClearPageDirty(page); 655 unlock_page(page); 656 } 657 658 if (pte_young(ptent) || pte_dirty(ptent)) { 659 /* 660 * Some of architecture(ex, PPC) don't update TLB 661 * with set_pte_at and tlb_remove_tlb_entry so for 662 * the portability, remap the pte with old|clean 663 * after pte clearing. 664 */ 665 ptent = ptep_get_and_clear_full(mm, addr, pte, 666 tlb->fullmm); 667 668 ptent = pte_mkold(ptent); 669 ptent = pte_mkclean(ptent); 670 set_pte_at(mm, addr, pte, ptent); 671 tlb_remove_tlb_entry(tlb, pte, addr); 672 } 673 mark_page_lazyfree(page); 674 } 675 out: 676 if (nr_swap) { 677 if (current->mm == mm) 678 sync_mm_rss(mm); 679 680 add_mm_counter(mm, MM_SWAPENTS, nr_swap); 681 } 682 arch_leave_lazy_mmu_mode(); 683 pte_unmap_unlock(orig_pte, ptl); 684 cond_resched(); 685 next: 686 return 0; 687 } 688 689 static const struct mm_walk_ops madvise_free_walk_ops = { 690 .pmd_entry = madvise_free_pte_range, 691 }; 692 693 static int madvise_free_single_vma(struct vm_area_struct *vma, 694 unsigned long start_addr, unsigned long end_addr) 695 { 696 struct mm_struct *mm = vma->vm_mm; 697 struct mmu_notifier_range range; 698 struct mmu_gather tlb; 699 700 /* MADV_FREE works for only anon vma at the moment */ 701 if (!vma_is_anonymous(vma)) 702 return -EINVAL; 703 704 range.start = max(vma->vm_start, start_addr); 705 if (range.start >= vma->vm_end) 706 return -EINVAL; 707 range.end = min(vma->vm_end, end_addr); 708 if (range.end <= vma->vm_start) 709 return -EINVAL; 710 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, 711 range.start, range.end); 712 713 lru_add_drain(); 714 tlb_gather_mmu(&tlb, mm, range.start, range.end); 715 update_hiwater_rss(mm); 716 717 mmu_notifier_invalidate_range_start(&range); 718 tlb_start_vma(&tlb, vma); 719 walk_page_range(vma->vm_mm, range.start, range.end, 720 &madvise_free_walk_ops, &tlb); 721 tlb_end_vma(&tlb, vma); 722 mmu_notifier_invalidate_range_end(&range); 723 tlb_finish_mmu(&tlb, range.start, range.end); 724 725 return 0; 726 } 727 728 /* 729 * Application no longer needs these pages. If the pages are dirty, 730 * it's OK to just throw them away. The app will be more careful about 731 * data it wants to keep. Be sure to free swap resources too. The 732 * zap_page_range call sets things up for shrink_active_list to actually free 733 * these pages later if no one else has touched them in the meantime, 734 * although we could add these pages to a global reuse list for 735 * shrink_active_list to pick up before reclaiming other pages. 736 * 737 * NB: This interface discards data rather than pushes it out to swap, 738 * as some implementations do. This has performance implications for 739 * applications like large transactional databases which want to discard 740 * pages in anonymous maps after committing to backing store the data 741 * that was kept in them. There is no reason to write this data out to 742 * the swap area if the application is discarding it. 743 * 744 * An interface that causes the system to free clean pages and flush 745 * dirty pages is already available as msync(MS_INVALIDATE). 746 */ 747 static long madvise_dontneed_single_vma(struct vm_area_struct *vma, 748 unsigned long start, unsigned long end) 749 { 750 zap_page_range(vma, start, end - start); 751 return 0; 752 } 753 754 static long madvise_dontneed_free(struct vm_area_struct *vma, 755 struct vm_area_struct **prev, 756 unsigned long start, unsigned long end, 757 int behavior) 758 { 759 *prev = vma; 760 if (!can_madv_lru_vma(vma)) 761 return -EINVAL; 762 763 if (!userfaultfd_remove(vma, start, end)) { 764 *prev = NULL; /* mmap_sem has been dropped, prev is stale */ 765 766 down_read(¤t->mm->mmap_sem); 767 vma = find_vma(current->mm, start); 768 if (!vma) 769 return -ENOMEM; 770 if (start < vma->vm_start) { 771 /* 772 * This "vma" under revalidation is the one 773 * with the lowest vma->vm_start where start 774 * is also < vma->vm_end. If start < 775 * vma->vm_start it means an hole materialized 776 * in the user address space within the 777 * virtual range passed to MADV_DONTNEED 778 * or MADV_FREE. 779 */ 780 return -ENOMEM; 781 } 782 if (!can_madv_lru_vma(vma)) 783 return -EINVAL; 784 if (end > vma->vm_end) { 785 /* 786 * Don't fail if end > vma->vm_end. If the old 787 * vma was splitted while the mmap_sem was 788 * released the effect of the concurrent 789 * operation may not cause madvise() to 790 * have an undefined result. There may be an 791 * adjacent next vma that we'll walk 792 * next. userfaultfd_remove() will generate an 793 * UFFD_EVENT_REMOVE repetition on the 794 * end-vma->vm_end range, but the manager can 795 * handle a repetition fine. 796 */ 797 end = vma->vm_end; 798 } 799 VM_WARN_ON(start >= end); 800 } 801 802 if (behavior == MADV_DONTNEED) 803 return madvise_dontneed_single_vma(vma, start, end); 804 else if (behavior == MADV_FREE) 805 return madvise_free_single_vma(vma, start, end); 806 else 807 return -EINVAL; 808 } 809 810 /* 811 * Application wants to free up the pages and associated backing store. 812 * This is effectively punching a hole into the middle of a file. 813 */ 814 static long madvise_remove(struct vm_area_struct *vma, 815 struct vm_area_struct **prev, 816 unsigned long start, unsigned long end) 817 { 818 loff_t offset; 819 int error; 820 struct file *f; 821 822 *prev = NULL; /* tell sys_madvise we drop mmap_sem */ 823 824 if (vma->vm_flags & VM_LOCKED) 825 return -EINVAL; 826 827 f = vma->vm_file; 828 829 if (!f || !f->f_mapping || !f->f_mapping->host) { 830 return -EINVAL; 831 } 832 833 if ((vma->vm_flags & (VM_SHARED|VM_WRITE)) != (VM_SHARED|VM_WRITE)) 834 return -EACCES; 835 836 offset = (loff_t)(start - vma->vm_start) 837 + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 838 839 /* 840 * Filesystem's fallocate may need to take i_mutex. We need to 841 * explicitly grab a reference because the vma (and hence the 842 * vma's reference to the file) can go away as soon as we drop 843 * mmap_sem. 844 */ 845 get_file(f); 846 if (userfaultfd_remove(vma, start, end)) { 847 /* mmap_sem was not released by userfaultfd_remove() */ 848 up_read(¤t->mm->mmap_sem); 849 } 850 error = vfs_fallocate(f, 851 FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 852 offset, end - start); 853 fput(f); 854 down_read(¤t->mm->mmap_sem); 855 return error; 856 } 857 858 #ifdef CONFIG_MEMORY_FAILURE 859 /* 860 * Error injection support for memory error handling. 861 */ 862 static int madvise_inject_error(int behavior, 863 unsigned long start, unsigned long end) 864 { 865 struct page *page; 866 struct zone *zone; 867 unsigned long size; 868 869 if (!capable(CAP_SYS_ADMIN)) 870 return -EPERM; 871 872 873 for (; start < end; start += size) { 874 unsigned long pfn; 875 int ret; 876 877 ret = get_user_pages_fast(start, 1, 0, &page); 878 if (ret != 1) 879 return ret; 880 pfn = page_to_pfn(page); 881 882 /* 883 * When soft offlining hugepages, after migrating the page 884 * we dissolve it, therefore in the second loop "page" will 885 * no longer be a compound page. 886 */ 887 size = page_size(compound_head(page)); 888 889 if (PageHWPoison(page)) { 890 put_page(page); 891 continue; 892 } 893 894 if (behavior == MADV_SOFT_OFFLINE) { 895 pr_info("Soft offlining pfn %#lx at process virtual address %#lx\n", 896 pfn, start); 897 898 ret = soft_offline_page(pfn, MF_COUNT_INCREASED); 899 if (ret) 900 return ret; 901 continue; 902 } 903 904 pr_info("Injecting memory failure for pfn %#lx at process virtual address %#lx\n", 905 pfn, start); 906 907 /* 908 * Drop the page reference taken by get_user_pages_fast(). In 909 * the absence of MF_COUNT_INCREASED the memory_failure() 910 * routine is responsible for pinning the page to prevent it 911 * from being released back to the page allocator. 912 */ 913 put_page(page); 914 ret = memory_failure(pfn, 0); 915 if (ret) 916 return ret; 917 } 918 919 /* Ensure that all poisoned pages are removed from per-cpu lists */ 920 for_each_populated_zone(zone) 921 drain_all_pages(zone); 922 923 return 0; 924 } 925 #endif 926 927 static long 928 madvise_vma(struct vm_area_struct *vma, struct vm_area_struct **prev, 929 unsigned long start, unsigned long end, int behavior) 930 { 931 switch (behavior) { 932 case MADV_REMOVE: 933 return madvise_remove(vma, prev, start, end); 934 case MADV_WILLNEED: 935 return madvise_willneed(vma, prev, start, end); 936 case MADV_COLD: 937 return madvise_cold(vma, prev, start, end); 938 case MADV_PAGEOUT: 939 return madvise_pageout(vma, prev, start, end); 940 case MADV_FREE: 941 case MADV_DONTNEED: 942 return madvise_dontneed_free(vma, prev, start, end, behavior); 943 default: 944 return madvise_behavior(vma, prev, start, end, behavior); 945 } 946 } 947 948 static bool 949 madvise_behavior_valid(int behavior) 950 { 951 switch (behavior) { 952 case MADV_DOFORK: 953 case MADV_DONTFORK: 954 case MADV_NORMAL: 955 case MADV_SEQUENTIAL: 956 case MADV_RANDOM: 957 case MADV_REMOVE: 958 case MADV_WILLNEED: 959 case MADV_DONTNEED: 960 case MADV_FREE: 961 case MADV_COLD: 962 case MADV_PAGEOUT: 963 #ifdef CONFIG_KSM 964 case MADV_MERGEABLE: 965 case MADV_UNMERGEABLE: 966 #endif 967 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 968 case MADV_HUGEPAGE: 969 case MADV_NOHUGEPAGE: 970 #endif 971 case MADV_DONTDUMP: 972 case MADV_DODUMP: 973 case MADV_WIPEONFORK: 974 case MADV_KEEPONFORK: 975 #ifdef CONFIG_MEMORY_FAILURE 976 case MADV_SOFT_OFFLINE: 977 case MADV_HWPOISON: 978 #endif 979 return true; 980 981 default: 982 return false; 983 } 984 } 985 986 /* 987 * The madvise(2) system call. 988 * 989 * Applications can use madvise() to advise the kernel how it should 990 * handle paging I/O in this VM area. The idea is to help the kernel 991 * use appropriate read-ahead and caching techniques. The information 992 * provided is advisory only, and can be safely disregarded by the 993 * kernel without affecting the correct operation of the application. 994 * 995 * behavior values: 996 * MADV_NORMAL - the default behavior is to read clusters. This 997 * results in some read-ahead and read-behind. 998 * MADV_RANDOM - the system should read the minimum amount of data 999 * on any access, since it is unlikely that the appli- 1000 * cation will need more than what it asks for. 1001 * MADV_SEQUENTIAL - pages in the given range will probably be accessed 1002 * once, so they can be aggressively read ahead, and 1003 * can be freed soon after they are accessed. 1004 * MADV_WILLNEED - the application is notifying the system to read 1005 * some pages ahead. 1006 * MADV_DONTNEED - the application is finished with the given range, 1007 * so the kernel can free resources associated with it. 1008 * MADV_FREE - the application marks pages in the given range as lazy free, 1009 * where actual purges are postponed until memory pressure happens. 1010 * MADV_REMOVE - the application wants to free up the given range of 1011 * pages and associated backing store. 1012 * MADV_DONTFORK - omit this area from child's address space when forking: 1013 * typically, to avoid COWing pages pinned by get_user_pages(). 1014 * MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking. 1015 * MADV_WIPEONFORK - present the child process with zero-filled memory in this 1016 * range after a fork. 1017 * MADV_KEEPONFORK - undo the effect of MADV_WIPEONFORK 1018 * MADV_HWPOISON - trigger memory error handler as if the given memory range 1019 * were corrupted by unrecoverable hardware memory failure. 1020 * MADV_SOFT_OFFLINE - try to soft-offline the given range of memory. 1021 * MADV_MERGEABLE - the application recommends that KSM try to merge pages in 1022 * this area with pages of identical content from other such areas. 1023 * MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others. 1024 * MADV_HUGEPAGE - the application wants to back the given range by transparent 1025 * huge pages in the future. Existing pages might be coalesced and 1026 * new pages might be allocated as THP. 1027 * MADV_NOHUGEPAGE - mark the given range as not worth being backed by 1028 * transparent huge pages so the existing pages will not be 1029 * coalesced into THP and new pages will not be allocated as THP. 1030 * MADV_DONTDUMP - the application wants to prevent pages in the given range 1031 * from being included in its core dump. 1032 * MADV_DODUMP - cancel MADV_DONTDUMP: no longer exclude from core dump. 1033 * 1034 * return values: 1035 * zero - success 1036 * -EINVAL - start + len < 0, start is not page-aligned, 1037 * "behavior" is not a valid value, or application 1038 * is attempting to release locked or shared pages, 1039 * or the specified address range includes file, Huge TLB, 1040 * MAP_SHARED or VMPFNMAP range. 1041 * -ENOMEM - addresses in the specified range are not currently 1042 * mapped, or are outside the AS of the process. 1043 * -EIO - an I/O error occurred while paging in data. 1044 * -EBADF - map exists, but area maps something that isn't a file. 1045 * -EAGAIN - a kernel resource was temporarily unavailable. 1046 */ 1047 SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior) 1048 { 1049 unsigned long end, tmp; 1050 struct vm_area_struct *vma, *prev; 1051 int unmapped_error = 0; 1052 int error = -EINVAL; 1053 int write; 1054 size_t len; 1055 struct blk_plug plug; 1056 1057 start = untagged_addr(start); 1058 1059 if (!madvise_behavior_valid(behavior)) 1060 return error; 1061 1062 if (!PAGE_ALIGNED(start)) 1063 return error; 1064 len = PAGE_ALIGN(len_in); 1065 1066 /* Check to see whether len was rounded up from small -ve to zero */ 1067 if (len_in && !len) 1068 return error; 1069 1070 end = start + len; 1071 if (end < start) 1072 return error; 1073 1074 error = 0; 1075 if (end == start) 1076 return error; 1077 1078 #ifdef CONFIG_MEMORY_FAILURE 1079 if (behavior == MADV_HWPOISON || behavior == MADV_SOFT_OFFLINE) 1080 return madvise_inject_error(behavior, start, start + len_in); 1081 #endif 1082 1083 write = madvise_need_mmap_write(behavior); 1084 if (write) { 1085 if (down_write_killable(¤t->mm->mmap_sem)) 1086 return -EINTR; 1087 } else { 1088 down_read(¤t->mm->mmap_sem); 1089 } 1090 1091 /* 1092 * If the interval [start,end) covers some unmapped address 1093 * ranges, just ignore them, but return -ENOMEM at the end. 1094 * - different from the way of handling in mlock etc. 1095 */ 1096 vma = find_vma_prev(current->mm, start, &prev); 1097 if (vma && start > vma->vm_start) 1098 prev = vma; 1099 1100 blk_start_plug(&plug); 1101 for (;;) { 1102 /* Still start < end. */ 1103 error = -ENOMEM; 1104 if (!vma) 1105 goto out; 1106 1107 /* Here start < (end|vma->vm_end). */ 1108 if (start < vma->vm_start) { 1109 unmapped_error = -ENOMEM; 1110 start = vma->vm_start; 1111 if (start >= end) 1112 goto out; 1113 } 1114 1115 /* Here vma->vm_start <= start < (end|vma->vm_end) */ 1116 tmp = vma->vm_end; 1117 if (end < tmp) 1118 tmp = end; 1119 1120 /* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */ 1121 error = madvise_vma(vma, &prev, start, tmp, behavior); 1122 if (error) 1123 goto out; 1124 start = tmp; 1125 if (prev && start < prev->vm_end) 1126 start = prev->vm_end; 1127 error = unmapped_error; 1128 if (start >= end) 1129 goto out; 1130 if (prev) 1131 vma = prev->vm_next; 1132 else /* madvise_remove dropped mmap_sem */ 1133 vma = find_vma(current->mm, start); 1134 } 1135 out: 1136 blk_finish_plug(&plug); 1137 if (write) 1138 up_write(¤t->mm->mmap_sem); 1139 else 1140 up_read(¤t->mm->mmap_sem); 1141 1142 return error; 1143 } 1144