xref: /openbmc/linux/mm/madvise.c (revision 9760ebff)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *	linux/mm/madvise.c
4  *
5  * Copyright (C) 1999  Linus Torvalds
6  * Copyright (C) 2002  Christoph Hellwig
7  */
8 
9 #include <linux/mman.h>
10 #include <linux/pagemap.h>
11 #include <linux/syscalls.h>
12 #include <linux/mempolicy.h>
13 #include <linux/page-isolation.h>
14 #include <linux/page_idle.h>
15 #include <linux/userfaultfd_k.h>
16 #include <linux/hugetlb.h>
17 #include <linux/falloc.h>
18 #include <linux/fadvise.h>
19 #include <linux/sched.h>
20 #include <linux/sched/mm.h>
21 #include <linux/mm_inline.h>
22 #include <linux/string.h>
23 #include <linux/uio.h>
24 #include <linux/ksm.h>
25 #include <linux/fs.h>
26 #include <linux/file.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagewalk.h>
30 #include <linux/swap.h>
31 #include <linux/swapops.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/mmu_notifier.h>
34 
35 #include <asm/tlb.h>
36 
37 #include "internal.h"
38 #include "swap.h"
39 
40 struct madvise_walk_private {
41 	struct mmu_gather *tlb;
42 	bool pageout;
43 };
44 
45 /*
46  * Any behaviour which results in changes to the vma->vm_flags needs to
47  * take mmap_lock for writing. Others, which simply traverse vmas, need
48  * to only take it for reading.
49  */
50 static int madvise_need_mmap_write(int behavior)
51 {
52 	switch (behavior) {
53 	case MADV_REMOVE:
54 	case MADV_WILLNEED:
55 	case MADV_DONTNEED:
56 	case MADV_DONTNEED_LOCKED:
57 	case MADV_COLD:
58 	case MADV_PAGEOUT:
59 	case MADV_FREE:
60 	case MADV_POPULATE_READ:
61 	case MADV_POPULATE_WRITE:
62 	case MADV_COLLAPSE:
63 		return 0;
64 	default:
65 		/* be safe, default to 1. list exceptions explicitly */
66 		return 1;
67 	}
68 }
69 
70 #ifdef CONFIG_ANON_VMA_NAME
71 struct anon_vma_name *anon_vma_name_alloc(const char *name)
72 {
73 	struct anon_vma_name *anon_name;
74 	size_t count;
75 
76 	/* Add 1 for NUL terminator at the end of the anon_name->name */
77 	count = strlen(name) + 1;
78 	anon_name = kmalloc(struct_size(anon_name, name, count), GFP_KERNEL);
79 	if (anon_name) {
80 		kref_init(&anon_name->kref);
81 		memcpy(anon_name->name, name, count);
82 	}
83 
84 	return anon_name;
85 }
86 
87 void anon_vma_name_free(struct kref *kref)
88 {
89 	struct anon_vma_name *anon_name =
90 			container_of(kref, struct anon_vma_name, kref);
91 	kfree(anon_name);
92 }
93 
94 struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma)
95 {
96 	mmap_assert_locked(vma->vm_mm);
97 
98 	return vma->anon_name;
99 }
100 
101 /* mmap_lock should be write-locked */
102 static int replace_anon_vma_name(struct vm_area_struct *vma,
103 				 struct anon_vma_name *anon_name)
104 {
105 	struct anon_vma_name *orig_name = anon_vma_name(vma);
106 
107 	if (!anon_name) {
108 		vma->anon_name = NULL;
109 		anon_vma_name_put(orig_name);
110 		return 0;
111 	}
112 
113 	if (anon_vma_name_eq(orig_name, anon_name))
114 		return 0;
115 
116 	vma->anon_name = anon_vma_name_reuse(anon_name);
117 	anon_vma_name_put(orig_name);
118 
119 	return 0;
120 }
121 #else /* CONFIG_ANON_VMA_NAME */
122 static int replace_anon_vma_name(struct vm_area_struct *vma,
123 				 struct anon_vma_name *anon_name)
124 {
125 	if (anon_name)
126 		return -EINVAL;
127 
128 	return 0;
129 }
130 #endif /* CONFIG_ANON_VMA_NAME */
131 /*
132  * Update the vm_flags on region of a vma, splitting it or merging it as
133  * necessary.  Must be called with mmap_lock held for writing;
134  * Caller should ensure anon_name stability by raising its refcount even when
135  * anon_name belongs to a valid vma because this function might free that vma.
136  */
137 static int madvise_update_vma(struct vm_area_struct *vma,
138 			      struct vm_area_struct **prev, unsigned long start,
139 			      unsigned long end, unsigned long new_flags,
140 			      struct anon_vma_name *anon_name)
141 {
142 	struct mm_struct *mm = vma->vm_mm;
143 	int error;
144 	pgoff_t pgoff;
145 	VMA_ITERATOR(vmi, mm, 0);
146 
147 	if (new_flags == vma->vm_flags && anon_vma_name_eq(anon_vma_name(vma), anon_name)) {
148 		*prev = vma;
149 		return 0;
150 	}
151 
152 	pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
153 	*prev = vma_merge(&vmi, mm, *prev, start, end, new_flags,
154 			  vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
155 			  vma->vm_userfaultfd_ctx, anon_name);
156 	if (*prev) {
157 		vma = *prev;
158 		goto success;
159 	}
160 
161 	*prev = vma;
162 
163 	if (start != vma->vm_start) {
164 		if (unlikely(mm->map_count >= sysctl_max_map_count))
165 			return -ENOMEM;
166 		error = __split_vma(&vmi, vma, start, 1);
167 		if (error)
168 			return error;
169 	}
170 
171 	if (end != vma->vm_end) {
172 		if (unlikely(mm->map_count >= sysctl_max_map_count))
173 			return -ENOMEM;
174 		error = __split_vma(&vmi, vma, end, 0);
175 		if (error)
176 			return error;
177 	}
178 
179 success:
180 	/*
181 	 * vm_flags is protected by the mmap_lock held in write mode.
182 	 */
183 	vma->vm_flags = new_flags;
184 	if (!vma->vm_file || vma_is_anon_shmem(vma)) {
185 		error = replace_anon_vma_name(vma, anon_name);
186 		if (error)
187 			return error;
188 	}
189 
190 	return 0;
191 }
192 
193 #ifdef CONFIG_SWAP
194 static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start,
195 	unsigned long end, struct mm_walk *walk)
196 {
197 	struct vm_area_struct *vma = walk->private;
198 	unsigned long index;
199 	struct swap_iocb *splug = NULL;
200 
201 	if (pmd_none_or_trans_huge_or_clear_bad(pmd))
202 		return 0;
203 
204 	for (index = start; index != end; index += PAGE_SIZE) {
205 		pte_t pte;
206 		swp_entry_t entry;
207 		struct page *page;
208 		spinlock_t *ptl;
209 		pte_t *ptep;
210 
211 		ptep = pte_offset_map_lock(vma->vm_mm, pmd, index, &ptl);
212 		pte = *ptep;
213 		pte_unmap_unlock(ptep, ptl);
214 
215 		if (!is_swap_pte(pte))
216 			continue;
217 		entry = pte_to_swp_entry(pte);
218 		if (unlikely(non_swap_entry(entry)))
219 			continue;
220 
221 		page = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE,
222 					     vma, index, false, &splug);
223 		if (page)
224 			put_page(page);
225 	}
226 	swap_read_unplug(splug);
227 	cond_resched();
228 
229 	return 0;
230 }
231 
232 static const struct mm_walk_ops swapin_walk_ops = {
233 	.pmd_entry		= swapin_walk_pmd_entry,
234 };
235 
236 static void force_shm_swapin_readahead(struct vm_area_struct *vma,
237 		unsigned long start, unsigned long end,
238 		struct address_space *mapping)
239 {
240 	XA_STATE(xas, &mapping->i_pages, linear_page_index(vma, start));
241 	pgoff_t end_index = linear_page_index(vma, end + PAGE_SIZE - 1);
242 	struct page *page;
243 	struct swap_iocb *splug = NULL;
244 
245 	rcu_read_lock();
246 	xas_for_each(&xas, page, end_index) {
247 		swp_entry_t swap;
248 
249 		if (!xa_is_value(page))
250 			continue;
251 		swap = radix_to_swp_entry(page);
252 		/* There might be swapin error entries in shmem mapping. */
253 		if (non_swap_entry(swap))
254 			continue;
255 		xas_pause(&xas);
256 		rcu_read_unlock();
257 
258 		page = read_swap_cache_async(swap, GFP_HIGHUSER_MOVABLE,
259 					     NULL, 0, false, &splug);
260 		if (page)
261 			put_page(page);
262 
263 		rcu_read_lock();
264 	}
265 	rcu_read_unlock();
266 	swap_read_unplug(splug);
267 
268 	lru_add_drain();	/* Push any new pages onto the LRU now */
269 }
270 #endif		/* CONFIG_SWAP */
271 
272 /*
273  * Schedule all required I/O operations.  Do not wait for completion.
274  */
275 static long madvise_willneed(struct vm_area_struct *vma,
276 			     struct vm_area_struct **prev,
277 			     unsigned long start, unsigned long end)
278 {
279 	struct mm_struct *mm = vma->vm_mm;
280 	struct file *file = vma->vm_file;
281 	loff_t offset;
282 
283 	*prev = vma;
284 #ifdef CONFIG_SWAP
285 	if (!file) {
286 		walk_page_range(vma->vm_mm, start, end, &swapin_walk_ops, vma);
287 		lru_add_drain(); /* Push any new pages onto the LRU now */
288 		return 0;
289 	}
290 
291 	if (shmem_mapping(file->f_mapping)) {
292 		force_shm_swapin_readahead(vma, start, end,
293 					file->f_mapping);
294 		return 0;
295 	}
296 #else
297 	if (!file)
298 		return -EBADF;
299 #endif
300 
301 	if (IS_DAX(file_inode(file))) {
302 		/* no bad return value, but ignore advice */
303 		return 0;
304 	}
305 
306 	/*
307 	 * Filesystem's fadvise may need to take various locks.  We need to
308 	 * explicitly grab a reference because the vma (and hence the
309 	 * vma's reference to the file) can go away as soon as we drop
310 	 * mmap_lock.
311 	 */
312 	*prev = NULL;	/* tell sys_madvise we drop mmap_lock */
313 	get_file(file);
314 	offset = (loff_t)(start - vma->vm_start)
315 			+ ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
316 	mmap_read_unlock(mm);
317 	vfs_fadvise(file, offset, end - start, POSIX_FADV_WILLNEED);
318 	fput(file);
319 	mmap_read_lock(mm);
320 	return 0;
321 }
322 
323 static inline bool can_do_file_pageout(struct vm_area_struct *vma)
324 {
325 	if (!vma->vm_file)
326 		return false;
327 	/*
328 	 * paging out pagecache only for non-anonymous mappings that correspond
329 	 * to the files the calling process could (if tried) open for writing;
330 	 * otherwise we'd be including shared non-exclusive mappings, which
331 	 * opens a side channel.
332 	 */
333 	return inode_owner_or_capable(&init_user_ns,
334 				      file_inode(vma->vm_file)) ||
335 	       file_permission(vma->vm_file, MAY_WRITE) == 0;
336 }
337 
338 static int madvise_cold_or_pageout_pte_range(pmd_t *pmd,
339 				unsigned long addr, unsigned long end,
340 				struct mm_walk *walk)
341 {
342 	struct madvise_walk_private *private = walk->private;
343 	struct mmu_gather *tlb = private->tlb;
344 	bool pageout = private->pageout;
345 	struct mm_struct *mm = tlb->mm;
346 	struct vm_area_struct *vma = walk->vma;
347 	pte_t *orig_pte, *pte, ptent;
348 	spinlock_t *ptl;
349 	struct folio *folio = NULL;
350 	LIST_HEAD(folio_list);
351 	bool pageout_anon_only_filter;
352 
353 	if (fatal_signal_pending(current))
354 		return -EINTR;
355 
356 	pageout_anon_only_filter = pageout && !vma_is_anonymous(vma) &&
357 					!can_do_file_pageout(vma);
358 
359 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
360 	if (pmd_trans_huge(*pmd)) {
361 		pmd_t orig_pmd;
362 		unsigned long next = pmd_addr_end(addr, end);
363 
364 		tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
365 		ptl = pmd_trans_huge_lock(pmd, vma);
366 		if (!ptl)
367 			return 0;
368 
369 		orig_pmd = *pmd;
370 		if (is_huge_zero_pmd(orig_pmd))
371 			goto huge_unlock;
372 
373 		if (unlikely(!pmd_present(orig_pmd))) {
374 			VM_BUG_ON(thp_migration_supported() &&
375 					!is_pmd_migration_entry(orig_pmd));
376 			goto huge_unlock;
377 		}
378 
379 		folio = pfn_folio(pmd_pfn(orig_pmd));
380 
381 		/* Do not interfere with other mappings of this folio */
382 		if (folio_mapcount(folio) != 1)
383 			goto huge_unlock;
384 
385 		if (pageout_anon_only_filter && !folio_test_anon(folio))
386 			goto huge_unlock;
387 
388 		if (next - addr != HPAGE_PMD_SIZE) {
389 			int err;
390 
391 			folio_get(folio);
392 			spin_unlock(ptl);
393 			folio_lock(folio);
394 			err = split_folio(folio);
395 			folio_unlock(folio);
396 			folio_put(folio);
397 			if (!err)
398 				goto regular_folio;
399 			return 0;
400 		}
401 
402 		if (pmd_young(orig_pmd)) {
403 			pmdp_invalidate(vma, addr, pmd);
404 			orig_pmd = pmd_mkold(orig_pmd);
405 
406 			set_pmd_at(mm, addr, pmd, orig_pmd);
407 			tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
408 		}
409 
410 		folio_clear_referenced(folio);
411 		folio_test_clear_young(folio);
412 		if (pageout) {
413 			if (!folio_isolate_lru(folio)) {
414 				if (folio_test_unevictable(folio))
415 					folio_putback_lru(folio);
416 				else
417 					list_add(&folio->lru, &folio_list);
418 			}
419 		} else
420 			folio_deactivate(folio);
421 huge_unlock:
422 		spin_unlock(ptl);
423 		if (pageout)
424 			reclaim_pages(&folio_list);
425 		return 0;
426 	}
427 
428 regular_folio:
429 	if (pmd_trans_unstable(pmd))
430 		return 0;
431 #endif
432 	tlb_change_page_size(tlb, PAGE_SIZE);
433 	orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
434 	flush_tlb_batched_pending(mm);
435 	arch_enter_lazy_mmu_mode();
436 	for (; addr < end; pte++, addr += PAGE_SIZE) {
437 		ptent = *pte;
438 
439 		if (pte_none(ptent))
440 			continue;
441 
442 		if (!pte_present(ptent))
443 			continue;
444 
445 		folio = vm_normal_folio(vma, addr, ptent);
446 		if (!folio || folio_is_zone_device(folio))
447 			continue;
448 
449 		/*
450 		 * Creating a THP page is expensive so split it only if we
451 		 * are sure it's worth. Split it if we are only owner.
452 		 */
453 		if (folio_test_large(folio)) {
454 			if (folio_mapcount(folio) != 1)
455 				break;
456 			if (pageout_anon_only_filter && !folio_test_anon(folio))
457 				break;
458 			folio_get(folio);
459 			if (!folio_trylock(folio)) {
460 				folio_put(folio);
461 				break;
462 			}
463 			pte_unmap_unlock(orig_pte, ptl);
464 			if (split_folio(folio)) {
465 				folio_unlock(folio);
466 				folio_put(folio);
467 				orig_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
468 				break;
469 			}
470 			folio_unlock(folio);
471 			folio_put(folio);
472 			orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
473 			pte--;
474 			addr -= PAGE_SIZE;
475 			continue;
476 		}
477 
478 		/*
479 		 * Do not interfere with other mappings of this folio and
480 		 * non-LRU folio.
481 		 */
482 		if (!folio_test_lru(folio) || folio_mapcount(folio) != 1)
483 			continue;
484 
485 		if (pageout_anon_only_filter && !folio_test_anon(folio))
486 			continue;
487 
488 		VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
489 
490 		if (pte_young(ptent)) {
491 			ptent = ptep_get_and_clear_full(mm, addr, pte,
492 							tlb->fullmm);
493 			ptent = pte_mkold(ptent);
494 			set_pte_at(mm, addr, pte, ptent);
495 			tlb_remove_tlb_entry(tlb, pte, addr);
496 		}
497 
498 		/*
499 		 * We are deactivating a folio for accelerating reclaiming.
500 		 * VM couldn't reclaim the folio unless we clear PG_young.
501 		 * As a side effect, it makes confuse idle-page tracking
502 		 * because they will miss recent referenced history.
503 		 */
504 		folio_clear_referenced(folio);
505 		folio_test_clear_young(folio);
506 		if (pageout) {
507 			if (!folio_isolate_lru(folio)) {
508 				if (folio_test_unevictable(folio))
509 					folio_putback_lru(folio);
510 				else
511 					list_add(&folio->lru, &folio_list);
512 			}
513 		} else
514 			folio_deactivate(folio);
515 	}
516 
517 	arch_leave_lazy_mmu_mode();
518 	pte_unmap_unlock(orig_pte, ptl);
519 	if (pageout)
520 		reclaim_pages(&folio_list);
521 	cond_resched();
522 
523 	return 0;
524 }
525 
526 static const struct mm_walk_ops cold_walk_ops = {
527 	.pmd_entry = madvise_cold_or_pageout_pte_range,
528 };
529 
530 static void madvise_cold_page_range(struct mmu_gather *tlb,
531 			     struct vm_area_struct *vma,
532 			     unsigned long addr, unsigned long end)
533 {
534 	struct madvise_walk_private walk_private = {
535 		.pageout = false,
536 		.tlb = tlb,
537 	};
538 
539 	tlb_start_vma(tlb, vma);
540 	walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
541 	tlb_end_vma(tlb, vma);
542 }
543 
544 static inline bool can_madv_lru_vma(struct vm_area_struct *vma)
545 {
546 	return !(vma->vm_flags & (VM_LOCKED|VM_PFNMAP|VM_HUGETLB));
547 }
548 
549 static long madvise_cold(struct vm_area_struct *vma,
550 			struct vm_area_struct **prev,
551 			unsigned long start_addr, unsigned long end_addr)
552 {
553 	struct mm_struct *mm = vma->vm_mm;
554 	struct mmu_gather tlb;
555 
556 	*prev = vma;
557 	if (!can_madv_lru_vma(vma))
558 		return -EINVAL;
559 
560 	lru_add_drain();
561 	tlb_gather_mmu(&tlb, mm);
562 	madvise_cold_page_range(&tlb, vma, start_addr, end_addr);
563 	tlb_finish_mmu(&tlb);
564 
565 	return 0;
566 }
567 
568 static void madvise_pageout_page_range(struct mmu_gather *tlb,
569 			     struct vm_area_struct *vma,
570 			     unsigned long addr, unsigned long end)
571 {
572 	struct madvise_walk_private walk_private = {
573 		.pageout = true,
574 		.tlb = tlb,
575 	};
576 
577 	tlb_start_vma(tlb, vma);
578 	walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
579 	tlb_end_vma(tlb, vma);
580 }
581 
582 static long madvise_pageout(struct vm_area_struct *vma,
583 			struct vm_area_struct **prev,
584 			unsigned long start_addr, unsigned long end_addr)
585 {
586 	struct mm_struct *mm = vma->vm_mm;
587 	struct mmu_gather tlb;
588 
589 	*prev = vma;
590 	if (!can_madv_lru_vma(vma))
591 		return -EINVAL;
592 
593 	/*
594 	 * If the VMA belongs to a private file mapping, there can be private
595 	 * dirty pages which can be paged out if even this process is neither
596 	 * owner nor write capable of the file. We allow private file mappings
597 	 * further to pageout dirty anon pages.
598 	 */
599 	if (!vma_is_anonymous(vma) && (!can_do_file_pageout(vma) &&
600 				(vma->vm_flags & VM_MAYSHARE)))
601 		return 0;
602 
603 	lru_add_drain();
604 	tlb_gather_mmu(&tlb, mm);
605 	madvise_pageout_page_range(&tlb, vma, start_addr, end_addr);
606 	tlb_finish_mmu(&tlb);
607 
608 	return 0;
609 }
610 
611 static int madvise_free_pte_range(pmd_t *pmd, unsigned long addr,
612 				unsigned long end, struct mm_walk *walk)
613 
614 {
615 	struct mmu_gather *tlb = walk->private;
616 	struct mm_struct *mm = tlb->mm;
617 	struct vm_area_struct *vma = walk->vma;
618 	spinlock_t *ptl;
619 	pte_t *orig_pte, *pte, ptent;
620 	struct folio *folio;
621 	int nr_swap = 0;
622 	unsigned long next;
623 
624 	next = pmd_addr_end(addr, end);
625 	if (pmd_trans_huge(*pmd))
626 		if (madvise_free_huge_pmd(tlb, vma, pmd, addr, next))
627 			goto next;
628 
629 	if (pmd_trans_unstable(pmd))
630 		return 0;
631 
632 	tlb_change_page_size(tlb, PAGE_SIZE);
633 	orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
634 	flush_tlb_batched_pending(mm);
635 	arch_enter_lazy_mmu_mode();
636 	for (; addr != end; pte++, addr += PAGE_SIZE) {
637 		ptent = *pte;
638 
639 		if (pte_none(ptent))
640 			continue;
641 		/*
642 		 * If the pte has swp_entry, just clear page table to
643 		 * prevent swap-in which is more expensive rather than
644 		 * (page allocation + zeroing).
645 		 */
646 		if (!pte_present(ptent)) {
647 			swp_entry_t entry;
648 
649 			entry = pte_to_swp_entry(ptent);
650 			if (!non_swap_entry(entry)) {
651 				nr_swap--;
652 				free_swap_and_cache(entry);
653 				pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
654 			} else if (is_hwpoison_entry(entry) ||
655 				   is_swapin_error_entry(entry)) {
656 				pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
657 			}
658 			continue;
659 		}
660 
661 		folio = vm_normal_folio(vma, addr, ptent);
662 		if (!folio || folio_is_zone_device(folio))
663 			continue;
664 
665 		/*
666 		 * If pmd isn't transhuge but the folio is large and
667 		 * is owned by only this process, split it and
668 		 * deactivate all pages.
669 		 */
670 		if (folio_test_large(folio)) {
671 			if (folio_mapcount(folio) != 1)
672 				goto out;
673 			folio_get(folio);
674 			if (!folio_trylock(folio)) {
675 				folio_put(folio);
676 				goto out;
677 			}
678 			pte_unmap_unlock(orig_pte, ptl);
679 			if (split_folio(folio)) {
680 				folio_unlock(folio);
681 				folio_put(folio);
682 				orig_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
683 				goto out;
684 			}
685 			folio_unlock(folio);
686 			folio_put(folio);
687 			orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
688 			pte--;
689 			addr -= PAGE_SIZE;
690 			continue;
691 		}
692 
693 		if (folio_test_swapcache(folio) || folio_test_dirty(folio)) {
694 			if (!folio_trylock(folio))
695 				continue;
696 			/*
697 			 * If folio is shared with others, we mustn't clear
698 			 * the folio's dirty flag.
699 			 */
700 			if (folio_mapcount(folio) != 1) {
701 				folio_unlock(folio);
702 				continue;
703 			}
704 
705 			if (folio_test_swapcache(folio) &&
706 			    !folio_free_swap(folio)) {
707 				folio_unlock(folio);
708 				continue;
709 			}
710 
711 			folio_clear_dirty(folio);
712 			folio_unlock(folio);
713 		}
714 
715 		if (pte_young(ptent) || pte_dirty(ptent)) {
716 			/*
717 			 * Some of architecture(ex, PPC) don't update TLB
718 			 * with set_pte_at and tlb_remove_tlb_entry so for
719 			 * the portability, remap the pte with old|clean
720 			 * after pte clearing.
721 			 */
722 			ptent = ptep_get_and_clear_full(mm, addr, pte,
723 							tlb->fullmm);
724 
725 			ptent = pte_mkold(ptent);
726 			ptent = pte_mkclean(ptent);
727 			set_pte_at(mm, addr, pte, ptent);
728 			tlb_remove_tlb_entry(tlb, pte, addr);
729 		}
730 		folio_mark_lazyfree(folio);
731 	}
732 out:
733 	if (nr_swap) {
734 		if (current->mm == mm)
735 			sync_mm_rss(mm);
736 
737 		add_mm_counter(mm, MM_SWAPENTS, nr_swap);
738 	}
739 	arch_leave_lazy_mmu_mode();
740 	pte_unmap_unlock(orig_pte, ptl);
741 	cond_resched();
742 next:
743 	return 0;
744 }
745 
746 static const struct mm_walk_ops madvise_free_walk_ops = {
747 	.pmd_entry		= madvise_free_pte_range,
748 };
749 
750 static int madvise_free_single_vma(struct vm_area_struct *vma,
751 			unsigned long start_addr, unsigned long end_addr)
752 {
753 	struct mm_struct *mm = vma->vm_mm;
754 	struct mmu_notifier_range range;
755 	struct mmu_gather tlb;
756 
757 	/* MADV_FREE works for only anon vma at the moment */
758 	if (!vma_is_anonymous(vma))
759 		return -EINVAL;
760 
761 	range.start = max(vma->vm_start, start_addr);
762 	if (range.start >= vma->vm_end)
763 		return -EINVAL;
764 	range.end = min(vma->vm_end, end_addr);
765 	if (range.end <= vma->vm_start)
766 		return -EINVAL;
767 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
768 				range.start, range.end);
769 
770 	lru_add_drain();
771 	tlb_gather_mmu(&tlb, mm);
772 	update_hiwater_rss(mm);
773 
774 	mmu_notifier_invalidate_range_start(&range);
775 	tlb_start_vma(&tlb, vma);
776 	walk_page_range(vma->vm_mm, range.start, range.end,
777 			&madvise_free_walk_ops, &tlb);
778 	tlb_end_vma(&tlb, vma);
779 	mmu_notifier_invalidate_range_end(&range);
780 	tlb_finish_mmu(&tlb);
781 
782 	return 0;
783 }
784 
785 /*
786  * Application no longer needs these pages.  If the pages are dirty,
787  * it's OK to just throw them away.  The app will be more careful about
788  * data it wants to keep.  Be sure to free swap resources too.  The
789  * zap_page_range_single call sets things up for shrink_active_list to actually
790  * free these pages later if no one else has touched them in the meantime,
791  * although we could add these pages to a global reuse list for
792  * shrink_active_list to pick up before reclaiming other pages.
793  *
794  * NB: This interface discards data rather than pushes it out to swap,
795  * as some implementations do.  This has performance implications for
796  * applications like large transactional databases which want to discard
797  * pages in anonymous maps after committing to backing store the data
798  * that was kept in them.  There is no reason to write this data out to
799  * the swap area if the application is discarding it.
800  *
801  * An interface that causes the system to free clean pages and flush
802  * dirty pages is already available as msync(MS_INVALIDATE).
803  */
804 static long madvise_dontneed_single_vma(struct vm_area_struct *vma,
805 					unsigned long start, unsigned long end)
806 {
807 	zap_page_range_single(vma, start, end - start, NULL);
808 	return 0;
809 }
810 
811 static bool madvise_dontneed_free_valid_vma(struct vm_area_struct *vma,
812 					    unsigned long start,
813 					    unsigned long *end,
814 					    int behavior)
815 {
816 	if (!is_vm_hugetlb_page(vma)) {
817 		unsigned int forbidden = VM_PFNMAP;
818 
819 		if (behavior != MADV_DONTNEED_LOCKED)
820 			forbidden |= VM_LOCKED;
821 
822 		return !(vma->vm_flags & forbidden);
823 	}
824 
825 	if (behavior != MADV_DONTNEED && behavior != MADV_DONTNEED_LOCKED)
826 		return false;
827 	if (start & ~huge_page_mask(hstate_vma(vma)))
828 		return false;
829 
830 	/*
831 	 * Madvise callers expect the length to be rounded up to PAGE_SIZE
832 	 * boundaries, and may be unaware that this VMA uses huge pages.
833 	 * Avoid unexpected data loss by rounding down the number of
834 	 * huge pages freed.
835 	 */
836 	*end = ALIGN_DOWN(*end, huge_page_size(hstate_vma(vma)));
837 
838 	return true;
839 }
840 
841 static long madvise_dontneed_free(struct vm_area_struct *vma,
842 				  struct vm_area_struct **prev,
843 				  unsigned long start, unsigned long end,
844 				  int behavior)
845 {
846 	struct mm_struct *mm = vma->vm_mm;
847 
848 	*prev = vma;
849 	if (!madvise_dontneed_free_valid_vma(vma, start, &end, behavior))
850 		return -EINVAL;
851 
852 	if (start == end)
853 		return 0;
854 
855 	if (!userfaultfd_remove(vma, start, end)) {
856 		*prev = NULL; /* mmap_lock has been dropped, prev is stale */
857 
858 		mmap_read_lock(mm);
859 		vma = find_vma(mm, start);
860 		if (!vma)
861 			return -ENOMEM;
862 		if (start < vma->vm_start) {
863 			/*
864 			 * This "vma" under revalidation is the one
865 			 * with the lowest vma->vm_start where start
866 			 * is also < vma->vm_end. If start <
867 			 * vma->vm_start it means an hole materialized
868 			 * in the user address space within the
869 			 * virtual range passed to MADV_DONTNEED
870 			 * or MADV_FREE.
871 			 */
872 			return -ENOMEM;
873 		}
874 		/*
875 		 * Potential end adjustment for hugetlb vma is OK as
876 		 * the check below keeps end within vma.
877 		 */
878 		if (!madvise_dontneed_free_valid_vma(vma, start, &end,
879 						     behavior))
880 			return -EINVAL;
881 		if (end > vma->vm_end) {
882 			/*
883 			 * Don't fail if end > vma->vm_end. If the old
884 			 * vma was split while the mmap_lock was
885 			 * released the effect of the concurrent
886 			 * operation may not cause madvise() to
887 			 * have an undefined result. There may be an
888 			 * adjacent next vma that we'll walk
889 			 * next. userfaultfd_remove() will generate an
890 			 * UFFD_EVENT_REMOVE repetition on the
891 			 * end-vma->vm_end range, but the manager can
892 			 * handle a repetition fine.
893 			 */
894 			end = vma->vm_end;
895 		}
896 		VM_WARN_ON(start >= end);
897 	}
898 
899 	if (behavior == MADV_DONTNEED || behavior == MADV_DONTNEED_LOCKED)
900 		return madvise_dontneed_single_vma(vma, start, end);
901 	else if (behavior == MADV_FREE)
902 		return madvise_free_single_vma(vma, start, end);
903 	else
904 		return -EINVAL;
905 }
906 
907 static long madvise_populate(struct vm_area_struct *vma,
908 			     struct vm_area_struct **prev,
909 			     unsigned long start, unsigned long end,
910 			     int behavior)
911 {
912 	const bool write = behavior == MADV_POPULATE_WRITE;
913 	struct mm_struct *mm = vma->vm_mm;
914 	unsigned long tmp_end;
915 	int locked = 1;
916 	long pages;
917 
918 	*prev = vma;
919 
920 	while (start < end) {
921 		/*
922 		 * We might have temporarily dropped the lock. For example,
923 		 * our VMA might have been split.
924 		 */
925 		if (!vma || start >= vma->vm_end) {
926 			vma = vma_lookup(mm, start);
927 			if (!vma)
928 				return -ENOMEM;
929 		}
930 
931 		tmp_end = min_t(unsigned long, end, vma->vm_end);
932 		/* Populate (prefault) page tables readable/writable. */
933 		pages = faultin_vma_page_range(vma, start, tmp_end, write,
934 					       &locked);
935 		if (!locked) {
936 			mmap_read_lock(mm);
937 			locked = 1;
938 			*prev = NULL;
939 			vma = NULL;
940 		}
941 		if (pages < 0) {
942 			switch (pages) {
943 			case -EINTR:
944 				return -EINTR;
945 			case -EINVAL: /* Incompatible mappings / permissions. */
946 				return -EINVAL;
947 			case -EHWPOISON:
948 				return -EHWPOISON;
949 			case -EFAULT: /* VM_FAULT_SIGBUS or VM_FAULT_SIGSEGV */
950 				return -EFAULT;
951 			default:
952 				pr_warn_once("%s: unhandled return value: %ld\n",
953 					     __func__, pages);
954 				fallthrough;
955 			case -ENOMEM:
956 				return -ENOMEM;
957 			}
958 		}
959 		start += pages * PAGE_SIZE;
960 	}
961 	return 0;
962 }
963 
964 /*
965  * Application wants to free up the pages and associated backing store.
966  * This is effectively punching a hole into the middle of a file.
967  */
968 static long madvise_remove(struct vm_area_struct *vma,
969 				struct vm_area_struct **prev,
970 				unsigned long start, unsigned long end)
971 {
972 	loff_t offset;
973 	int error;
974 	struct file *f;
975 	struct mm_struct *mm = vma->vm_mm;
976 
977 	*prev = NULL;	/* tell sys_madvise we drop mmap_lock */
978 
979 	if (vma->vm_flags & VM_LOCKED)
980 		return -EINVAL;
981 
982 	f = vma->vm_file;
983 
984 	if (!f || !f->f_mapping || !f->f_mapping->host) {
985 			return -EINVAL;
986 	}
987 
988 	if ((vma->vm_flags & (VM_SHARED|VM_WRITE)) != (VM_SHARED|VM_WRITE))
989 		return -EACCES;
990 
991 	offset = (loff_t)(start - vma->vm_start)
992 			+ ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
993 
994 	/*
995 	 * Filesystem's fallocate may need to take i_rwsem.  We need to
996 	 * explicitly grab a reference because the vma (and hence the
997 	 * vma's reference to the file) can go away as soon as we drop
998 	 * mmap_lock.
999 	 */
1000 	get_file(f);
1001 	if (userfaultfd_remove(vma, start, end)) {
1002 		/* mmap_lock was not released by userfaultfd_remove() */
1003 		mmap_read_unlock(mm);
1004 	}
1005 	error = vfs_fallocate(f,
1006 				FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
1007 				offset, end - start);
1008 	fput(f);
1009 	mmap_read_lock(mm);
1010 	return error;
1011 }
1012 
1013 /*
1014  * Apply an madvise behavior to a region of a vma.  madvise_update_vma
1015  * will handle splitting a vm area into separate areas, each area with its own
1016  * behavior.
1017  */
1018 static int madvise_vma_behavior(struct vm_area_struct *vma,
1019 				struct vm_area_struct **prev,
1020 				unsigned long start, unsigned long end,
1021 				unsigned long behavior)
1022 {
1023 	int error;
1024 	struct anon_vma_name *anon_name;
1025 	unsigned long new_flags = vma->vm_flags;
1026 
1027 	switch (behavior) {
1028 	case MADV_REMOVE:
1029 		return madvise_remove(vma, prev, start, end);
1030 	case MADV_WILLNEED:
1031 		return madvise_willneed(vma, prev, start, end);
1032 	case MADV_COLD:
1033 		return madvise_cold(vma, prev, start, end);
1034 	case MADV_PAGEOUT:
1035 		return madvise_pageout(vma, prev, start, end);
1036 	case MADV_FREE:
1037 	case MADV_DONTNEED:
1038 	case MADV_DONTNEED_LOCKED:
1039 		return madvise_dontneed_free(vma, prev, start, end, behavior);
1040 	case MADV_POPULATE_READ:
1041 	case MADV_POPULATE_WRITE:
1042 		return madvise_populate(vma, prev, start, end, behavior);
1043 	case MADV_NORMAL:
1044 		new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ;
1045 		break;
1046 	case MADV_SEQUENTIAL:
1047 		new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ;
1048 		break;
1049 	case MADV_RANDOM:
1050 		new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ;
1051 		break;
1052 	case MADV_DONTFORK:
1053 		new_flags |= VM_DONTCOPY;
1054 		break;
1055 	case MADV_DOFORK:
1056 		if (vma->vm_flags & VM_IO)
1057 			return -EINVAL;
1058 		new_flags &= ~VM_DONTCOPY;
1059 		break;
1060 	case MADV_WIPEONFORK:
1061 		/* MADV_WIPEONFORK is only supported on anonymous memory. */
1062 		if (vma->vm_file || vma->vm_flags & VM_SHARED)
1063 			return -EINVAL;
1064 		new_flags |= VM_WIPEONFORK;
1065 		break;
1066 	case MADV_KEEPONFORK:
1067 		new_flags &= ~VM_WIPEONFORK;
1068 		break;
1069 	case MADV_DONTDUMP:
1070 		new_flags |= VM_DONTDUMP;
1071 		break;
1072 	case MADV_DODUMP:
1073 		if (!is_vm_hugetlb_page(vma) && new_flags & VM_SPECIAL)
1074 			return -EINVAL;
1075 		new_flags &= ~VM_DONTDUMP;
1076 		break;
1077 	case MADV_MERGEABLE:
1078 	case MADV_UNMERGEABLE:
1079 		error = ksm_madvise(vma, start, end, behavior, &new_flags);
1080 		if (error)
1081 			goto out;
1082 		break;
1083 	case MADV_HUGEPAGE:
1084 	case MADV_NOHUGEPAGE:
1085 		error = hugepage_madvise(vma, &new_flags, behavior);
1086 		if (error)
1087 			goto out;
1088 		break;
1089 	case MADV_COLLAPSE:
1090 		return madvise_collapse(vma, prev, start, end);
1091 	}
1092 
1093 	anon_name = anon_vma_name(vma);
1094 	anon_vma_name_get(anon_name);
1095 	error = madvise_update_vma(vma, prev, start, end, new_flags,
1096 				   anon_name);
1097 	anon_vma_name_put(anon_name);
1098 
1099 out:
1100 	/*
1101 	 * madvise() returns EAGAIN if kernel resources, such as
1102 	 * slab, are temporarily unavailable.
1103 	 */
1104 	if (error == -ENOMEM)
1105 		error = -EAGAIN;
1106 	return error;
1107 }
1108 
1109 #ifdef CONFIG_MEMORY_FAILURE
1110 /*
1111  * Error injection support for memory error handling.
1112  */
1113 static int madvise_inject_error(int behavior,
1114 		unsigned long start, unsigned long end)
1115 {
1116 	unsigned long size;
1117 
1118 	if (!capable(CAP_SYS_ADMIN))
1119 		return -EPERM;
1120 
1121 
1122 	for (; start < end; start += size) {
1123 		unsigned long pfn;
1124 		struct page *page;
1125 		int ret;
1126 
1127 		ret = get_user_pages_fast(start, 1, 0, &page);
1128 		if (ret != 1)
1129 			return ret;
1130 		pfn = page_to_pfn(page);
1131 
1132 		/*
1133 		 * When soft offlining hugepages, after migrating the page
1134 		 * we dissolve it, therefore in the second loop "page" will
1135 		 * no longer be a compound page.
1136 		 */
1137 		size = page_size(compound_head(page));
1138 
1139 		if (behavior == MADV_SOFT_OFFLINE) {
1140 			pr_info("Soft offlining pfn %#lx at process virtual address %#lx\n",
1141 				 pfn, start);
1142 			ret = soft_offline_page(pfn, MF_COUNT_INCREASED);
1143 		} else {
1144 			pr_info("Injecting memory failure for pfn %#lx at process virtual address %#lx\n",
1145 				 pfn, start);
1146 			ret = memory_failure(pfn, MF_COUNT_INCREASED | MF_SW_SIMULATED);
1147 			if (ret == -EOPNOTSUPP)
1148 				ret = 0;
1149 		}
1150 
1151 		if (ret)
1152 			return ret;
1153 	}
1154 
1155 	return 0;
1156 }
1157 #endif
1158 
1159 static bool
1160 madvise_behavior_valid(int behavior)
1161 {
1162 	switch (behavior) {
1163 	case MADV_DOFORK:
1164 	case MADV_DONTFORK:
1165 	case MADV_NORMAL:
1166 	case MADV_SEQUENTIAL:
1167 	case MADV_RANDOM:
1168 	case MADV_REMOVE:
1169 	case MADV_WILLNEED:
1170 	case MADV_DONTNEED:
1171 	case MADV_DONTNEED_LOCKED:
1172 	case MADV_FREE:
1173 	case MADV_COLD:
1174 	case MADV_PAGEOUT:
1175 	case MADV_POPULATE_READ:
1176 	case MADV_POPULATE_WRITE:
1177 #ifdef CONFIG_KSM
1178 	case MADV_MERGEABLE:
1179 	case MADV_UNMERGEABLE:
1180 #endif
1181 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1182 	case MADV_HUGEPAGE:
1183 	case MADV_NOHUGEPAGE:
1184 	case MADV_COLLAPSE:
1185 #endif
1186 	case MADV_DONTDUMP:
1187 	case MADV_DODUMP:
1188 	case MADV_WIPEONFORK:
1189 	case MADV_KEEPONFORK:
1190 #ifdef CONFIG_MEMORY_FAILURE
1191 	case MADV_SOFT_OFFLINE:
1192 	case MADV_HWPOISON:
1193 #endif
1194 		return true;
1195 
1196 	default:
1197 		return false;
1198 	}
1199 }
1200 
1201 static bool process_madvise_behavior_valid(int behavior)
1202 {
1203 	switch (behavior) {
1204 	case MADV_COLD:
1205 	case MADV_PAGEOUT:
1206 	case MADV_WILLNEED:
1207 	case MADV_COLLAPSE:
1208 		return true;
1209 	default:
1210 		return false;
1211 	}
1212 }
1213 
1214 /*
1215  * Walk the vmas in range [start,end), and call the visit function on each one.
1216  * The visit function will get start and end parameters that cover the overlap
1217  * between the current vma and the original range.  Any unmapped regions in the
1218  * original range will result in this function returning -ENOMEM while still
1219  * calling the visit function on all of the existing vmas in the range.
1220  * Must be called with the mmap_lock held for reading or writing.
1221  */
1222 static
1223 int madvise_walk_vmas(struct mm_struct *mm, unsigned long start,
1224 		      unsigned long end, unsigned long arg,
1225 		      int (*visit)(struct vm_area_struct *vma,
1226 				   struct vm_area_struct **prev, unsigned long start,
1227 				   unsigned long end, unsigned long arg))
1228 {
1229 	struct vm_area_struct *vma;
1230 	struct vm_area_struct *prev;
1231 	unsigned long tmp;
1232 	int unmapped_error = 0;
1233 
1234 	/*
1235 	 * If the interval [start,end) covers some unmapped address
1236 	 * ranges, just ignore them, but return -ENOMEM at the end.
1237 	 * - different from the way of handling in mlock etc.
1238 	 */
1239 	vma = find_vma_prev(mm, start, &prev);
1240 	if (vma && start > vma->vm_start)
1241 		prev = vma;
1242 
1243 	for (;;) {
1244 		int error;
1245 
1246 		/* Still start < end. */
1247 		if (!vma)
1248 			return -ENOMEM;
1249 
1250 		/* Here start < (end|vma->vm_end). */
1251 		if (start < vma->vm_start) {
1252 			unmapped_error = -ENOMEM;
1253 			start = vma->vm_start;
1254 			if (start >= end)
1255 				break;
1256 		}
1257 
1258 		/* Here vma->vm_start <= start < (end|vma->vm_end) */
1259 		tmp = vma->vm_end;
1260 		if (end < tmp)
1261 			tmp = end;
1262 
1263 		/* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */
1264 		error = visit(vma, &prev, start, tmp, arg);
1265 		if (error)
1266 			return error;
1267 		start = tmp;
1268 		if (prev && start < prev->vm_end)
1269 			start = prev->vm_end;
1270 		if (start >= end)
1271 			break;
1272 		if (prev)
1273 			vma = find_vma(mm, prev->vm_end);
1274 		else	/* madvise_remove dropped mmap_lock */
1275 			vma = find_vma(mm, start);
1276 	}
1277 
1278 	return unmapped_error;
1279 }
1280 
1281 #ifdef CONFIG_ANON_VMA_NAME
1282 static int madvise_vma_anon_name(struct vm_area_struct *vma,
1283 				 struct vm_area_struct **prev,
1284 				 unsigned long start, unsigned long end,
1285 				 unsigned long anon_name)
1286 {
1287 	int error;
1288 
1289 	/* Only anonymous mappings can be named */
1290 	if (vma->vm_file && !vma_is_anon_shmem(vma))
1291 		return -EBADF;
1292 
1293 	error = madvise_update_vma(vma, prev, start, end, vma->vm_flags,
1294 				   (struct anon_vma_name *)anon_name);
1295 
1296 	/*
1297 	 * madvise() returns EAGAIN if kernel resources, such as
1298 	 * slab, are temporarily unavailable.
1299 	 */
1300 	if (error == -ENOMEM)
1301 		error = -EAGAIN;
1302 	return error;
1303 }
1304 
1305 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
1306 			  unsigned long len_in, struct anon_vma_name *anon_name)
1307 {
1308 	unsigned long end;
1309 	unsigned long len;
1310 
1311 	if (start & ~PAGE_MASK)
1312 		return -EINVAL;
1313 	len = (len_in + ~PAGE_MASK) & PAGE_MASK;
1314 
1315 	/* Check to see whether len was rounded up from small -ve to zero */
1316 	if (len_in && !len)
1317 		return -EINVAL;
1318 
1319 	end = start + len;
1320 	if (end < start)
1321 		return -EINVAL;
1322 
1323 	if (end == start)
1324 		return 0;
1325 
1326 	return madvise_walk_vmas(mm, start, end, (unsigned long)anon_name,
1327 				 madvise_vma_anon_name);
1328 }
1329 #endif /* CONFIG_ANON_VMA_NAME */
1330 /*
1331  * The madvise(2) system call.
1332  *
1333  * Applications can use madvise() to advise the kernel how it should
1334  * handle paging I/O in this VM area.  The idea is to help the kernel
1335  * use appropriate read-ahead and caching techniques.  The information
1336  * provided is advisory only, and can be safely disregarded by the
1337  * kernel without affecting the correct operation of the application.
1338  *
1339  * behavior values:
1340  *  MADV_NORMAL - the default behavior is to read clusters.  This
1341  *		results in some read-ahead and read-behind.
1342  *  MADV_RANDOM - the system should read the minimum amount of data
1343  *		on any access, since it is unlikely that the appli-
1344  *		cation will need more than what it asks for.
1345  *  MADV_SEQUENTIAL - pages in the given range will probably be accessed
1346  *		once, so they can be aggressively read ahead, and
1347  *		can be freed soon after they are accessed.
1348  *  MADV_WILLNEED - the application is notifying the system to read
1349  *		some pages ahead.
1350  *  MADV_DONTNEED - the application is finished with the given range,
1351  *		so the kernel can free resources associated with it.
1352  *  MADV_FREE - the application marks pages in the given range as lazy free,
1353  *		where actual purges are postponed until memory pressure happens.
1354  *  MADV_REMOVE - the application wants to free up the given range of
1355  *		pages and associated backing store.
1356  *  MADV_DONTFORK - omit this area from child's address space when forking:
1357  *		typically, to avoid COWing pages pinned by get_user_pages().
1358  *  MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking.
1359  *  MADV_WIPEONFORK - present the child process with zero-filled memory in this
1360  *              range after a fork.
1361  *  MADV_KEEPONFORK - undo the effect of MADV_WIPEONFORK
1362  *  MADV_HWPOISON - trigger memory error handler as if the given memory range
1363  *		were corrupted by unrecoverable hardware memory failure.
1364  *  MADV_SOFT_OFFLINE - try to soft-offline the given range of memory.
1365  *  MADV_MERGEABLE - the application recommends that KSM try to merge pages in
1366  *		this area with pages of identical content from other such areas.
1367  *  MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others.
1368  *  MADV_HUGEPAGE - the application wants to back the given range by transparent
1369  *		huge pages in the future. Existing pages might be coalesced and
1370  *		new pages might be allocated as THP.
1371  *  MADV_NOHUGEPAGE - mark the given range as not worth being backed by
1372  *		transparent huge pages so the existing pages will not be
1373  *		coalesced into THP and new pages will not be allocated as THP.
1374  *  MADV_COLLAPSE - synchronously coalesce pages into new THP.
1375  *  MADV_DONTDUMP - the application wants to prevent pages in the given range
1376  *		from being included in its core dump.
1377  *  MADV_DODUMP - cancel MADV_DONTDUMP: no longer exclude from core dump.
1378  *  MADV_COLD - the application is not expected to use this memory soon,
1379  *		deactivate pages in this range so that they can be reclaimed
1380  *		easily if memory pressure happens.
1381  *  MADV_PAGEOUT - the application is not expected to use this memory soon,
1382  *		page out the pages in this range immediately.
1383  *  MADV_POPULATE_READ - populate (prefault) page tables readable by
1384  *		triggering read faults if required
1385  *  MADV_POPULATE_WRITE - populate (prefault) page tables writable by
1386  *		triggering write faults if required
1387  *
1388  * return values:
1389  *  zero    - success
1390  *  -EINVAL - start + len < 0, start is not page-aligned,
1391  *		"behavior" is not a valid value, or application
1392  *		is attempting to release locked or shared pages,
1393  *		or the specified address range includes file, Huge TLB,
1394  *		MAP_SHARED or VMPFNMAP range.
1395  *  -ENOMEM - addresses in the specified range are not currently
1396  *		mapped, or are outside the AS of the process.
1397  *  -EIO    - an I/O error occurred while paging in data.
1398  *  -EBADF  - map exists, but area maps something that isn't a file.
1399  *  -EAGAIN - a kernel resource was temporarily unavailable.
1400  */
1401 int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior)
1402 {
1403 	unsigned long end;
1404 	int error;
1405 	int write;
1406 	size_t len;
1407 	struct blk_plug plug;
1408 
1409 	start = untagged_addr(start);
1410 
1411 	if (!madvise_behavior_valid(behavior))
1412 		return -EINVAL;
1413 
1414 	if (!PAGE_ALIGNED(start))
1415 		return -EINVAL;
1416 	len = PAGE_ALIGN(len_in);
1417 
1418 	/* Check to see whether len was rounded up from small -ve to zero */
1419 	if (len_in && !len)
1420 		return -EINVAL;
1421 
1422 	end = start + len;
1423 	if (end < start)
1424 		return -EINVAL;
1425 
1426 	if (end == start)
1427 		return 0;
1428 
1429 #ifdef CONFIG_MEMORY_FAILURE
1430 	if (behavior == MADV_HWPOISON || behavior == MADV_SOFT_OFFLINE)
1431 		return madvise_inject_error(behavior, start, start + len_in);
1432 #endif
1433 
1434 	write = madvise_need_mmap_write(behavior);
1435 	if (write) {
1436 		if (mmap_write_lock_killable(mm))
1437 			return -EINTR;
1438 	} else {
1439 		mmap_read_lock(mm);
1440 	}
1441 
1442 	blk_start_plug(&plug);
1443 	error = madvise_walk_vmas(mm, start, end, behavior,
1444 			madvise_vma_behavior);
1445 	blk_finish_plug(&plug);
1446 	if (write)
1447 		mmap_write_unlock(mm);
1448 	else
1449 		mmap_read_unlock(mm);
1450 
1451 	return error;
1452 }
1453 
1454 SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior)
1455 {
1456 	return do_madvise(current->mm, start, len_in, behavior);
1457 }
1458 
1459 SYSCALL_DEFINE5(process_madvise, int, pidfd, const struct iovec __user *, vec,
1460 		size_t, vlen, int, behavior, unsigned int, flags)
1461 {
1462 	ssize_t ret;
1463 	struct iovec iovstack[UIO_FASTIOV], iovec;
1464 	struct iovec *iov = iovstack;
1465 	struct iov_iter iter;
1466 	struct task_struct *task;
1467 	struct mm_struct *mm;
1468 	size_t total_len;
1469 	unsigned int f_flags;
1470 
1471 	if (flags != 0) {
1472 		ret = -EINVAL;
1473 		goto out;
1474 	}
1475 
1476 	ret = import_iovec(ITER_DEST, vec, vlen, ARRAY_SIZE(iovstack), &iov, &iter);
1477 	if (ret < 0)
1478 		goto out;
1479 
1480 	task = pidfd_get_task(pidfd, &f_flags);
1481 	if (IS_ERR(task)) {
1482 		ret = PTR_ERR(task);
1483 		goto free_iov;
1484 	}
1485 
1486 	if (!process_madvise_behavior_valid(behavior)) {
1487 		ret = -EINVAL;
1488 		goto release_task;
1489 	}
1490 
1491 	/* Require PTRACE_MODE_READ to avoid leaking ASLR metadata. */
1492 	mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1493 	if (IS_ERR_OR_NULL(mm)) {
1494 		ret = IS_ERR(mm) ? PTR_ERR(mm) : -ESRCH;
1495 		goto release_task;
1496 	}
1497 
1498 	/*
1499 	 * Require CAP_SYS_NICE for influencing process performance. Note that
1500 	 * only non-destructive hints are currently supported.
1501 	 */
1502 	if (!capable(CAP_SYS_NICE)) {
1503 		ret = -EPERM;
1504 		goto release_mm;
1505 	}
1506 
1507 	total_len = iov_iter_count(&iter);
1508 
1509 	while (iov_iter_count(&iter)) {
1510 		iovec = iov_iter_iovec(&iter);
1511 		ret = do_madvise(mm, (unsigned long)iovec.iov_base,
1512 					iovec.iov_len, behavior);
1513 		if (ret < 0)
1514 			break;
1515 		iov_iter_advance(&iter, iovec.iov_len);
1516 	}
1517 
1518 	ret = (total_len - iov_iter_count(&iter)) ? : ret;
1519 
1520 release_mm:
1521 	mmput(mm);
1522 release_task:
1523 	put_task_struct(task);
1524 free_iov:
1525 	kfree(iov);
1526 out:
1527 	return ret;
1528 }
1529