1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/madvise.c 4 * 5 * Copyright (C) 1999 Linus Torvalds 6 * Copyright (C) 2002 Christoph Hellwig 7 */ 8 9 #include <linux/mman.h> 10 #include <linux/pagemap.h> 11 #include <linux/syscalls.h> 12 #include <linux/mempolicy.h> 13 #include <linux/page-isolation.h> 14 #include <linux/page_idle.h> 15 #include <linux/userfaultfd_k.h> 16 #include <linux/hugetlb.h> 17 #include <linux/falloc.h> 18 #include <linux/fadvise.h> 19 #include <linux/sched.h> 20 #include <linux/sched/mm.h> 21 #include <linux/mm_inline.h> 22 #include <linux/string.h> 23 #include <linux/uio.h> 24 #include <linux/ksm.h> 25 #include <linux/fs.h> 26 #include <linux/file.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/pagewalk.h> 30 #include <linux/swap.h> 31 #include <linux/swapops.h> 32 #include <linux/shmem_fs.h> 33 #include <linux/mmu_notifier.h> 34 35 #include <asm/tlb.h> 36 37 #include "internal.h" 38 #include "swap.h" 39 40 struct madvise_walk_private { 41 struct mmu_gather *tlb; 42 bool pageout; 43 }; 44 45 /* 46 * Any behaviour which results in changes to the vma->vm_flags needs to 47 * take mmap_lock for writing. Others, which simply traverse vmas, need 48 * to only take it for reading. 49 */ 50 static int madvise_need_mmap_write(int behavior) 51 { 52 switch (behavior) { 53 case MADV_REMOVE: 54 case MADV_WILLNEED: 55 case MADV_DONTNEED: 56 case MADV_DONTNEED_LOCKED: 57 case MADV_COLD: 58 case MADV_PAGEOUT: 59 case MADV_FREE: 60 case MADV_POPULATE_READ: 61 case MADV_POPULATE_WRITE: 62 case MADV_COLLAPSE: 63 return 0; 64 default: 65 /* be safe, default to 1. list exceptions explicitly */ 66 return 1; 67 } 68 } 69 70 #ifdef CONFIG_ANON_VMA_NAME 71 struct anon_vma_name *anon_vma_name_alloc(const char *name) 72 { 73 struct anon_vma_name *anon_name; 74 size_t count; 75 76 /* Add 1 for NUL terminator at the end of the anon_name->name */ 77 count = strlen(name) + 1; 78 anon_name = kmalloc(struct_size(anon_name, name, count), GFP_KERNEL); 79 if (anon_name) { 80 kref_init(&anon_name->kref); 81 memcpy(anon_name->name, name, count); 82 } 83 84 return anon_name; 85 } 86 87 void anon_vma_name_free(struct kref *kref) 88 { 89 struct anon_vma_name *anon_name = 90 container_of(kref, struct anon_vma_name, kref); 91 kfree(anon_name); 92 } 93 94 struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma) 95 { 96 mmap_assert_locked(vma->vm_mm); 97 98 return vma->anon_name; 99 } 100 101 /* mmap_lock should be write-locked */ 102 static int replace_anon_vma_name(struct vm_area_struct *vma, 103 struct anon_vma_name *anon_name) 104 { 105 struct anon_vma_name *orig_name = anon_vma_name(vma); 106 107 if (!anon_name) { 108 vma->anon_name = NULL; 109 anon_vma_name_put(orig_name); 110 return 0; 111 } 112 113 if (anon_vma_name_eq(orig_name, anon_name)) 114 return 0; 115 116 vma->anon_name = anon_vma_name_reuse(anon_name); 117 anon_vma_name_put(orig_name); 118 119 return 0; 120 } 121 #else /* CONFIG_ANON_VMA_NAME */ 122 static int replace_anon_vma_name(struct vm_area_struct *vma, 123 struct anon_vma_name *anon_name) 124 { 125 if (anon_name) 126 return -EINVAL; 127 128 return 0; 129 } 130 #endif /* CONFIG_ANON_VMA_NAME */ 131 /* 132 * Update the vm_flags on region of a vma, splitting it or merging it as 133 * necessary. Must be called with mmap_lock held for writing; 134 * Caller should ensure anon_name stability by raising its refcount even when 135 * anon_name belongs to a valid vma because this function might free that vma. 136 */ 137 static int madvise_update_vma(struct vm_area_struct *vma, 138 struct vm_area_struct **prev, unsigned long start, 139 unsigned long end, unsigned long new_flags, 140 struct anon_vma_name *anon_name) 141 { 142 struct mm_struct *mm = vma->vm_mm; 143 int error; 144 pgoff_t pgoff; 145 VMA_ITERATOR(vmi, mm, start); 146 147 if (new_flags == vma->vm_flags && anon_vma_name_eq(anon_vma_name(vma), anon_name)) { 148 *prev = vma; 149 return 0; 150 } 151 152 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT); 153 *prev = vma_merge(&vmi, mm, *prev, start, end, new_flags, 154 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma), 155 vma->vm_userfaultfd_ctx, anon_name); 156 if (*prev) { 157 vma = *prev; 158 goto success; 159 } 160 161 *prev = vma; 162 163 if (start != vma->vm_start) { 164 error = split_vma(&vmi, vma, start, 1); 165 if (error) 166 return error; 167 } 168 169 if (end != vma->vm_end) { 170 error = split_vma(&vmi, vma, end, 0); 171 if (error) 172 return error; 173 } 174 175 success: 176 /* 177 * vm_flags is protected by the mmap_lock held in write mode. 178 */ 179 vm_flags_reset(vma, new_flags); 180 if (!vma->vm_file || vma_is_anon_shmem(vma)) { 181 error = replace_anon_vma_name(vma, anon_name); 182 if (error) 183 return error; 184 } 185 186 return 0; 187 } 188 189 #ifdef CONFIG_SWAP 190 static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start, 191 unsigned long end, struct mm_walk *walk) 192 { 193 struct vm_area_struct *vma = walk->private; 194 unsigned long index; 195 struct swap_iocb *splug = NULL; 196 197 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 198 return 0; 199 200 for (index = start; index != end; index += PAGE_SIZE) { 201 pte_t pte; 202 swp_entry_t entry; 203 struct page *page; 204 spinlock_t *ptl; 205 pte_t *ptep; 206 207 ptep = pte_offset_map_lock(vma->vm_mm, pmd, index, &ptl); 208 pte = *ptep; 209 pte_unmap_unlock(ptep, ptl); 210 211 if (!is_swap_pte(pte)) 212 continue; 213 entry = pte_to_swp_entry(pte); 214 if (unlikely(non_swap_entry(entry))) 215 continue; 216 217 page = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE, 218 vma, index, false, &splug); 219 if (page) 220 put_page(page); 221 } 222 swap_read_unplug(splug); 223 cond_resched(); 224 225 return 0; 226 } 227 228 static const struct mm_walk_ops swapin_walk_ops = { 229 .pmd_entry = swapin_walk_pmd_entry, 230 }; 231 232 static void force_shm_swapin_readahead(struct vm_area_struct *vma, 233 unsigned long start, unsigned long end, 234 struct address_space *mapping) 235 { 236 XA_STATE(xas, &mapping->i_pages, linear_page_index(vma, start)); 237 pgoff_t end_index = linear_page_index(vma, end + PAGE_SIZE - 1); 238 struct page *page; 239 struct swap_iocb *splug = NULL; 240 241 rcu_read_lock(); 242 xas_for_each(&xas, page, end_index) { 243 swp_entry_t swap; 244 245 if (!xa_is_value(page)) 246 continue; 247 swap = radix_to_swp_entry(page); 248 /* There might be swapin error entries in shmem mapping. */ 249 if (non_swap_entry(swap)) 250 continue; 251 xas_pause(&xas); 252 rcu_read_unlock(); 253 254 page = read_swap_cache_async(swap, GFP_HIGHUSER_MOVABLE, 255 NULL, 0, false, &splug); 256 if (page) 257 put_page(page); 258 259 rcu_read_lock(); 260 } 261 rcu_read_unlock(); 262 swap_read_unplug(splug); 263 264 lru_add_drain(); /* Push any new pages onto the LRU now */ 265 } 266 #endif /* CONFIG_SWAP */ 267 268 /* 269 * Schedule all required I/O operations. Do not wait for completion. 270 */ 271 static long madvise_willneed(struct vm_area_struct *vma, 272 struct vm_area_struct **prev, 273 unsigned long start, unsigned long end) 274 { 275 struct mm_struct *mm = vma->vm_mm; 276 struct file *file = vma->vm_file; 277 loff_t offset; 278 279 *prev = vma; 280 #ifdef CONFIG_SWAP 281 if (!file) { 282 walk_page_range(vma->vm_mm, start, end, &swapin_walk_ops, vma); 283 lru_add_drain(); /* Push any new pages onto the LRU now */ 284 return 0; 285 } 286 287 if (shmem_mapping(file->f_mapping)) { 288 force_shm_swapin_readahead(vma, start, end, 289 file->f_mapping); 290 return 0; 291 } 292 #else 293 if (!file) 294 return -EBADF; 295 #endif 296 297 if (IS_DAX(file_inode(file))) { 298 /* no bad return value, but ignore advice */ 299 return 0; 300 } 301 302 /* 303 * Filesystem's fadvise may need to take various locks. We need to 304 * explicitly grab a reference because the vma (and hence the 305 * vma's reference to the file) can go away as soon as we drop 306 * mmap_lock. 307 */ 308 *prev = NULL; /* tell sys_madvise we drop mmap_lock */ 309 get_file(file); 310 offset = (loff_t)(start - vma->vm_start) 311 + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 312 mmap_read_unlock(mm); 313 vfs_fadvise(file, offset, end - start, POSIX_FADV_WILLNEED); 314 fput(file); 315 mmap_read_lock(mm); 316 return 0; 317 } 318 319 static inline bool can_do_file_pageout(struct vm_area_struct *vma) 320 { 321 if (!vma->vm_file) 322 return false; 323 /* 324 * paging out pagecache only for non-anonymous mappings that correspond 325 * to the files the calling process could (if tried) open for writing; 326 * otherwise we'd be including shared non-exclusive mappings, which 327 * opens a side channel. 328 */ 329 return inode_owner_or_capable(&nop_mnt_idmap, 330 file_inode(vma->vm_file)) || 331 file_permission(vma->vm_file, MAY_WRITE) == 0; 332 } 333 334 static int madvise_cold_or_pageout_pte_range(pmd_t *pmd, 335 unsigned long addr, unsigned long end, 336 struct mm_walk *walk) 337 { 338 struct madvise_walk_private *private = walk->private; 339 struct mmu_gather *tlb = private->tlb; 340 bool pageout = private->pageout; 341 struct mm_struct *mm = tlb->mm; 342 struct vm_area_struct *vma = walk->vma; 343 pte_t *orig_pte, *pte, ptent; 344 spinlock_t *ptl; 345 struct folio *folio = NULL; 346 LIST_HEAD(folio_list); 347 bool pageout_anon_only_filter; 348 349 if (fatal_signal_pending(current)) 350 return -EINTR; 351 352 pageout_anon_only_filter = pageout && !vma_is_anonymous(vma) && 353 !can_do_file_pageout(vma); 354 355 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 356 if (pmd_trans_huge(*pmd)) { 357 pmd_t orig_pmd; 358 unsigned long next = pmd_addr_end(addr, end); 359 360 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 361 ptl = pmd_trans_huge_lock(pmd, vma); 362 if (!ptl) 363 return 0; 364 365 orig_pmd = *pmd; 366 if (is_huge_zero_pmd(orig_pmd)) 367 goto huge_unlock; 368 369 if (unlikely(!pmd_present(orig_pmd))) { 370 VM_BUG_ON(thp_migration_supported() && 371 !is_pmd_migration_entry(orig_pmd)); 372 goto huge_unlock; 373 } 374 375 folio = pfn_folio(pmd_pfn(orig_pmd)); 376 377 /* Do not interfere with other mappings of this folio */ 378 if (folio_mapcount(folio) != 1) 379 goto huge_unlock; 380 381 if (pageout_anon_only_filter && !folio_test_anon(folio)) 382 goto huge_unlock; 383 384 if (next - addr != HPAGE_PMD_SIZE) { 385 int err; 386 387 folio_get(folio); 388 spin_unlock(ptl); 389 folio_lock(folio); 390 err = split_folio(folio); 391 folio_unlock(folio); 392 folio_put(folio); 393 if (!err) 394 goto regular_folio; 395 return 0; 396 } 397 398 if (pmd_young(orig_pmd)) { 399 pmdp_invalidate(vma, addr, pmd); 400 orig_pmd = pmd_mkold(orig_pmd); 401 402 set_pmd_at(mm, addr, pmd, orig_pmd); 403 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 404 } 405 406 folio_clear_referenced(folio); 407 folio_test_clear_young(folio); 408 if (pageout) { 409 if (folio_isolate_lru(folio)) { 410 if (folio_test_unevictable(folio)) 411 folio_putback_lru(folio); 412 else 413 list_add(&folio->lru, &folio_list); 414 } 415 } else 416 folio_deactivate(folio); 417 huge_unlock: 418 spin_unlock(ptl); 419 if (pageout) 420 reclaim_pages(&folio_list); 421 return 0; 422 } 423 424 regular_folio: 425 if (pmd_trans_unstable(pmd)) 426 return 0; 427 #endif 428 tlb_change_page_size(tlb, PAGE_SIZE); 429 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 430 flush_tlb_batched_pending(mm); 431 arch_enter_lazy_mmu_mode(); 432 for (; addr < end; pte++, addr += PAGE_SIZE) { 433 ptent = *pte; 434 435 if (pte_none(ptent)) 436 continue; 437 438 if (!pte_present(ptent)) 439 continue; 440 441 folio = vm_normal_folio(vma, addr, ptent); 442 if (!folio || folio_is_zone_device(folio)) 443 continue; 444 445 /* 446 * Creating a THP page is expensive so split it only if we 447 * are sure it's worth. Split it if we are only owner. 448 */ 449 if (folio_test_large(folio)) { 450 if (folio_mapcount(folio) != 1) 451 break; 452 if (pageout_anon_only_filter && !folio_test_anon(folio)) 453 break; 454 folio_get(folio); 455 if (!folio_trylock(folio)) { 456 folio_put(folio); 457 break; 458 } 459 pte_unmap_unlock(orig_pte, ptl); 460 if (split_folio(folio)) { 461 folio_unlock(folio); 462 folio_put(folio); 463 orig_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 464 break; 465 } 466 folio_unlock(folio); 467 folio_put(folio); 468 orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 469 pte--; 470 addr -= PAGE_SIZE; 471 continue; 472 } 473 474 /* 475 * Do not interfere with other mappings of this folio and 476 * non-LRU folio. 477 */ 478 if (!folio_test_lru(folio) || folio_mapcount(folio) != 1) 479 continue; 480 481 if (pageout_anon_only_filter && !folio_test_anon(folio)) 482 continue; 483 484 VM_BUG_ON_FOLIO(folio_test_large(folio), folio); 485 486 if (pte_young(ptent)) { 487 ptent = ptep_get_and_clear_full(mm, addr, pte, 488 tlb->fullmm); 489 ptent = pte_mkold(ptent); 490 set_pte_at(mm, addr, pte, ptent); 491 tlb_remove_tlb_entry(tlb, pte, addr); 492 } 493 494 /* 495 * We are deactivating a folio for accelerating reclaiming. 496 * VM couldn't reclaim the folio unless we clear PG_young. 497 * As a side effect, it makes confuse idle-page tracking 498 * because they will miss recent referenced history. 499 */ 500 folio_clear_referenced(folio); 501 folio_test_clear_young(folio); 502 if (pageout) { 503 if (folio_isolate_lru(folio)) { 504 if (folio_test_unevictable(folio)) 505 folio_putback_lru(folio); 506 else 507 list_add(&folio->lru, &folio_list); 508 } 509 } else 510 folio_deactivate(folio); 511 } 512 513 arch_leave_lazy_mmu_mode(); 514 pte_unmap_unlock(orig_pte, ptl); 515 if (pageout) 516 reclaim_pages(&folio_list); 517 cond_resched(); 518 519 return 0; 520 } 521 522 static const struct mm_walk_ops cold_walk_ops = { 523 .pmd_entry = madvise_cold_or_pageout_pte_range, 524 }; 525 526 static void madvise_cold_page_range(struct mmu_gather *tlb, 527 struct vm_area_struct *vma, 528 unsigned long addr, unsigned long end) 529 { 530 struct madvise_walk_private walk_private = { 531 .pageout = false, 532 .tlb = tlb, 533 }; 534 535 tlb_start_vma(tlb, vma); 536 walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private); 537 tlb_end_vma(tlb, vma); 538 } 539 540 static inline bool can_madv_lru_vma(struct vm_area_struct *vma) 541 { 542 return !(vma->vm_flags & (VM_LOCKED|VM_PFNMAP|VM_HUGETLB)); 543 } 544 545 static long madvise_cold(struct vm_area_struct *vma, 546 struct vm_area_struct **prev, 547 unsigned long start_addr, unsigned long end_addr) 548 { 549 struct mm_struct *mm = vma->vm_mm; 550 struct mmu_gather tlb; 551 552 *prev = vma; 553 if (!can_madv_lru_vma(vma)) 554 return -EINVAL; 555 556 lru_add_drain(); 557 tlb_gather_mmu(&tlb, mm); 558 madvise_cold_page_range(&tlb, vma, start_addr, end_addr); 559 tlb_finish_mmu(&tlb); 560 561 return 0; 562 } 563 564 static void madvise_pageout_page_range(struct mmu_gather *tlb, 565 struct vm_area_struct *vma, 566 unsigned long addr, unsigned long end) 567 { 568 struct madvise_walk_private walk_private = { 569 .pageout = true, 570 .tlb = tlb, 571 }; 572 573 tlb_start_vma(tlb, vma); 574 walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private); 575 tlb_end_vma(tlb, vma); 576 } 577 578 static long madvise_pageout(struct vm_area_struct *vma, 579 struct vm_area_struct **prev, 580 unsigned long start_addr, unsigned long end_addr) 581 { 582 struct mm_struct *mm = vma->vm_mm; 583 struct mmu_gather tlb; 584 585 *prev = vma; 586 if (!can_madv_lru_vma(vma)) 587 return -EINVAL; 588 589 /* 590 * If the VMA belongs to a private file mapping, there can be private 591 * dirty pages which can be paged out if even this process is neither 592 * owner nor write capable of the file. We allow private file mappings 593 * further to pageout dirty anon pages. 594 */ 595 if (!vma_is_anonymous(vma) && (!can_do_file_pageout(vma) && 596 (vma->vm_flags & VM_MAYSHARE))) 597 return 0; 598 599 lru_add_drain(); 600 tlb_gather_mmu(&tlb, mm); 601 madvise_pageout_page_range(&tlb, vma, start_addr, end_addr); 602 tlb_finish_mmu(&tlb); 603 604 return 0; 605 } 606 607 static int madvise_free_pte_range(pmd_t *pmd, unsigned long addr, 608 unsigned long end, struct mm_walk *walk) 609 610 { 611 struct mmu_gather *tlb = walk->private; 612 struct mm_struct *mm = tlb->mm; 613 struct vm_area_struct *vma = walk->vma; 614 spinlock_t *ptl; 615 pte_t *orig_pte, *pte, ptent; 616 struct folio *folio; 617 int nr_swap = 0; 618 unsigned long next; 619 620 next = pmd_addr_end(addr, end); 621 if (pmd_trans_huge(*pmd)) 622 if (madvise_free_huge_pmd(tlb, vma, pmd, addr, next)) 623 goto next; 624 625 if (pmd_trans_unstable(pmd)) 626 return 0; 627 628 tlb_change_page_size(tlb, PAGE_SIZE); 629 orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 630 flush_tlb_batched_pending(mm); 631 arch_enter_lazy_mmu_mode(); 632 for (; addr != end; pte++, addr += PAGE_SIZE) { 633 ptent = *pte; 634 635 if (pte_none(ptent)) 636 continue; 637 /* 638 * If the pte has swp_entry, just clear page table to 639 * prevent swap-in which is more expensive rather than 640 * (page allocation + zeroing). 641 */ 642 if (!pte_present(ptent)) { 643 swp_entry_t entry; 644 645 entry = pte_to_swp_entry(ptent); 646 if (!non_swap_entry(entry)) { 647 nr_swap--; 648 free_swap_and_cache(entry); 649 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 650 } else if (is_hwpoison_entry(entry) || 651 is_swapin_error_entry(entry)) { 652 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 653 } 654 continue; 655 } 656 657 folio = vm_normal_folio(vma, addr, ptent); 658 if (!folio || folio_is_zone_device(folio)) 659 continue; 660 661 /* 662 * If pmd isn't transhuge but the folio is large and 663 * is owned by only this process, split it and 664 * deactivate all pages. 665 */ 666 if (folio_test_large(folio)) { 667 if (folio_mapcount(folio) != 1) 668 goto out; 669 folio_get(folio); 670 if (!folio_trylock(folio)) { 671 folio_put(folio); 672 goto out; 673 } 674 pte_unmap_unlock(orig_pte, ptl); 675 if (split_folio(folio)) { 676 folio_unlock(folio); 677 folio_put(folio); 678 orig_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 679 goto out; 680 } 681 folio_unlock(folio); 682 folio_put(folio); 683 orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 684 pte--; 685 addr -= PAGE_SIZE; 686 continue; 687 } 688 689 if (folio_test_swapcache(folio) || folio_test_dirty(folio)) { 690 if (!folio_trylock(folio)) 691 continue; 692 /* 693 * If folio is shared with others, we mustn't clear 694 * the folio's dirty flag. 695 */ 696 if (folio_mapcount(folio) != 1) { 697 folio_unlock(folio); 698 continue; 699 } 700 701 if (folio_test_swapcache(folio) && 702 !folio_free_swap(folio)) { 703 folio_unlock(folio); 704 continue; 705 } 706 707 folio_clear_dirty(folio); 708 folio_unlock(folio); 709 } 710 711 if (pte_young(ptent) || pte_dirty(ptent)) { 712 /* 713 * Some of architecture(ex, PPC) don't update TLB 714 * with set_pte_at and tlb_remove_tlb_entry so for 715 * the portability, remap the pte with old|clean 716 * after pte clearing. 717 */ 718 ptent = ptep_get_and_clear_full(mm, addr, pte, 719 tlb->fullmm); 720 721 ptent = pte_mkold(ptent); 722 ptent = pte_mkclean(ptent); 723 set_pte_at(mm, addr, pte, ptent); 724 tlb_remove_tlb_entry(tlb, pte, addr); 725 } 726 folio_mark_lazyfree(folio); 727 } 728 out: 729 if (nr_swap) { 730 if (current->mm == mm) 731 sync_mm_rss(mm); 732 733 add_mm_counter(mm, MM_SWAPENTS, nr_swap); 734 } 735 arch_leave_lazy_mmu_mode(); 736 pte_unmap_unlock(orig_pte, ptl); 737 cond_resched(); 738 next: 739 return 0; 740 } 741 742 static const struct mm_walk_ops madvise_free_walk_ops = { 743 .pmd_entry = madvise_free_pte_range, 744 }; 745 746 static int madvise_free_single_vma(struct vm_area_struct *vma, 747 unsigned long start_addr, unsigned long end_addr) 748 { 749 struct mm_struct *mm = vma->vm_mm; 750 struct mmu_notifier_range range; 751 struct mmu_gather tlb; 752 753 /* MADV_FREE works for only anon vma at the moment */ 754 if (!vma_is_anonymous(vma)) 755 return -EINVAL; 756 757 range.start = max(vma->vm_start, start_addr); 758 if (range.start >= vma->vm_end) 759 return -EINVAL; 760 range.end = min(vma->vm_end, end_addr); 761 if (range.end <= vma->vm_start) 762 return -EINVAL; 763 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 764 range.start, range.end); 765 766 lru_add_drain(); 767 tlb_gather_mmu(&tlb, mm); 768 update_hiwater_rss(mm); 769 770 mmu_notifier_invalidate_range_start(&range); 771 tlb_start_vma(&tlb, vma); 772 walk_page_range(vma->vm_mm, range.start, range.end, 773 &madvise_free_walk_ops, &tlb); 774 tlb_end_vma(&tlb, vma); 775 mmu_notifier_invalidate_range_end(&range); 776 tlb_finish_mmu(&tlb); 777 778 return 0; 779 } 780 781 /* 782 * Application no longer needs these pages. If the pages are dirty, 783 * it's OK to just throw them away. The app will be more careful about 784 * data it wants to keep. Be sure to free swap resources too. The 785 * zap_page_range_single call sets things up for shrink_active_list to actually 786 * free these pages later if no one else has touched them in the meantime, 787 * although we could add these pages to a global reuse list for 788 * shrink_active_list to pick up before reclaiming other pages. 789 * 790 * NB: This interface discards data rather than pushes it out to swap, 791 * as some implementations do. This has performance implications for 792 * applications like large transactional databases which want to discard 793 * pages in anonymous maps after committing to backing store the data 794 * that was kept in them. There is no reason to write this data out to 795 * the swap area if the application is discarding it. 796 * 797 * An interface that causes the system to free clean pages and flush 798 * dirty pages is already available as msync(MS_INVALIDATE). 799 */ 800 static long madvise_dontneed_single_vma(struct vm_area_struct *vma, 801 unsigned long start, unsigned long end) 802 { 803 zap_page_range_single(vma, start, end - start, NULL); 804 return 0; 805 } 806 807 static bool madvise_dontneed_free_valid_vma(struct vm_area_struct *vma, 808 unsigned long start, 809 unsigned long *end, 810 int behavior) 811 { 812 if (!is_vm_hugetlb_page(vma)) { 813 unsigned int forbidden = VM_PFNMAP; 814 815 if (behavior != MADV_DONTNEED_LOCKED) 816 forbidden |= VM_LOCKED; 817 818 return !(vma->vm_flags & forbidden); 819 } 820 821 if (behavior != MADV_DONTNEED && behavior != MADV_DONTNEED_LOCKED) 822 return false; 823 if (start & ~huge_page_mask(hstate_vma(vma))) 824 return false; 825 826 /* 827 * Madvise callers expect the length to be rounded up to PAGE_SIZE 828 * boundaries, and may be unaware that this VMA uses huge pages. 829 * Avoid unexpected data loss by rounding down the number of 830 * huge pages freed. 831 */ 832 *end = ALIGN_DOWN(*end, huge_page_size(hstate_vma(vma))); 833 834 return true; 835 } 836 837 static long madvise_dontneed_free(struct vm_area_struct *vma, 838 struct vm_area_struct **prev, 839 unsigned long start, unsigned long end, 840 int behavior) 841 { 842 struct mm_struct *mm = vma->vm_mm; 843 844 *prev = vma; 845 if (!madvise_dontneed_free_valid_vma(vma, start, &end, behavior)) 846 return -EINVAL; 847 848 if (start == end) 849 return 0; 850 851 if (!userfaultfd_remove(vma, start, end)) { 852 *prev = NULL; /* mmap_lock has been dropped, prev is stale */ 853 854 mmap_read_lock(mm); 855 vma = vma_lookup(mm, start); 856 if (!vma) 857 return -ENOMEM; 858 /* 859 * Potential end adjustment for hugetlb vma is OK as 860 * the check below keeps end within vma. 861 */ 862 if (!madvise_dontneed_free_valid_vma(vma, start, &end, 863 behavior)) 864 return -EINVAL; 865 if (end > vma->vm_end) { 866 /* 867 * Don't fail if end > vma->vm_end. If the old 868 * vma was split while the mmap_lock was 869 * released the effect of the concurrent 870 * operation may not cause madvise() to 871 * have an undefined result. There may be an 872 * adjacent next vma that we'll walk 873 * next. userfaultfd_remove() will generate an 874 * UFFD_EVENT_REMOVE repetition on the 875 * end-vma->vm_end range, but the manager can 876 * handle a repetition fine. 877 */ 878 end = vma->vm_end; 879 } 880 VM_WARN_ON(start >= end); 881 } 882 883 if (behavior == MADV_DONTNEED || behavior == MADV_DONTNEED_LOCKED) 884 return madvise_dontneed_single_vma(vma, start, end); 885 else if (behavior == MADV_FREE) 886 return madvise_free_single_vma(vma, start, end); 887 else 888 return -EINVAL; 889 } 890 891 static long madvise_populate(struct vm_area_struct *vma, 892 struct vm_area_struct **prev, 893 unsigned long start, unsigned long end, 894 int behavior) 895 { 896 const bool write = behavior == MADV_POPULATE_WRITE; 897 struct mm_struct *mm = vma->vm_mm; 898 unsigned long tmp_end; 899 int locked = 1; 900 long pages; 901 902 *prev = vma; 903 904 while (start < end) { 905 /* 906 * We might have temporarily dropped the lock. For example, 907 * our VMA might have been split. 908 */ 909 if (!vma || start >= vma->vm_end) { 910 vma = vma_lookup(mm, start); 911 if (!vma) 912 return -ENOMEM; 913 } 914 915 tmp_end = min_t(unsigned long, end, vma->vm_end); 916 /* Populate (prefault) page tables readable/writable. */ 917 pages = faultin_vma_page_range(vma, start, tmp_end, write, 918 &locked); 919 if (!locked) { 920 mmap_read_lock(mm); 921 locked = 1; 922 *prev = NULL; 923 vma = NULL; 924 } 925 if (pages < 0) { 926 switch (pages) { 927 case -EINTR: 928 return -EINTR; 929 case -EINVAL: /* Incompatible mappings / permissions. */ 930 return -EINVAL; 931 case -EHWPOISON: 932 return -EHWPOISON; 933 case -EFAULT: /* VM_FAULT_SIGBUS or VM_FAULT_SIGSEGV */ 934 return -EFAULT; 935 default: 936 pr_warn_once("%s: unhandled return value: %ld\n", 937 __func__, pages); 938 fallthrough; 939 case -ENOMEM: 940 return -ENOMEM; 941 } 942 } 943 start += pages * PAGE_SIZE; 944 } 945 return 0; 946 } 947 948 /* 949 * Application wants to free up the pages and associated backing store. 950 * This is effectively punching a hole into the middle of a file. 951 */ 952 static long madvise_remove(struct vm_area_struct *vma, 953 struct vm_area_struct **prev, 954 unsigned long start, unsigned long end) 955 { 956 loff_t offset; 957 int error; 958 struct file *f; 959 struct mm_struct *mm = vma->vm_mm; 960 961 *prev = NULL; /* tell sys_madvise we drop mmap_lock */ 962 963 if (vma->vm_flags & VM_LOCKED) 964 return -EINVAL; 965 966 f = vma->vm_file; 967 968 if (!f || !f->f_mapping || !f->f_mapping->host) { 969 return -EINVAL; 970 } 971 972 if ((vma->vm_flags & (VM_SHARED|VM_WRITE)) != (VM_SHARED|VM_WRITE)) 973 return -EACCES; 974 975 offset = (loff_t)(start - vma->vm_start) 976 + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 977 978 /* 979 * Filesystem's fallocate may need to take i_rwsem. We need to 980 * explicitly grab a reference because the vma (and hence the 981 * vma's reference to the file) can go away as soon as we drop 982 * mmap_lock. 983 */ 984 get_file(f); 985 if (userfaultfd_remove(vma, start, end)) { 986 /* mmap_lock was not released by userfaultfd_remove() */ 987 mmap_read_unlock(mm); 988 } 989 error = vfs_fallocate(f, 990 FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 991 offset, end - start); 992 fput(f); 993 mmap_read_lock(mm); 994 return error; 995 } 996 997 /* 998 * Apply an madvise behavior to a region of a vma. madvise_update_vma 999 * will handle splitting a vm area into separate areas, each area with its own 1000 * behavior. 1001 */ 1002 static int madvise_vma_behavior(struct vm_area_struct *vma, 1003 struct vm_area_struct **prev, 1004 unsigned long start, unsigned long end, 1005 unsigned long behavior) 1006 { 1007 int error; 1008 struct anon_vma_name *anon_name; 1009 unsigned long new_flags = vma->vm_flags; 1010 1011 switch (behavior) { 1012 case MADV_REMOVE: 1013 return madvise_remove(vma, prev, start, end); 1014 case MADV_WILLNEED: 1015 return madvise_willneed(vma, prev, start, end); 1016 case MADV_COLD: 1017 return madvise_cold(vma, prev, start, end); 1018 case MADV_PAGEOUT: 1019 return madvise_pageout(vma, prev, start, end); 1020 case MADV_FREE: 1021 case MADV_DONTNEED: 1022 case MADV_DONTNEED_LOCKED: 1023 return madvise_dontneed_free(vma, prev, start, end, behavior); 1024 case MADV_POPULATE_READ: 1025 case MADV_POPULATE_WRITE: 1026 return madvise_populate(vma, prev, start, end, behavior); 1027 case MADV_NORMAL: 1028 new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ; 1029 break; 1030 case MADV_SEQUENTIAL: 1031 new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ; 1032 break; 1033 case MADV_RANDOM: 1034 new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ; 1035 break; 1036 case MADV_DONTFORK: 1037 new_flags |= VM_DONTCOPY; 1038 break; 1039 case MADV_DOFORK: 1040 if (vma->vm_flags & VM_IO) 1041 return -EINVAL; 1042 new_flags &= ~VM_DONTCOPY; 1043 break; 1044 case MADV_WIPEONFORK: 1045 /* MADV_WIPEONFORK is only supported on anonymous memory. */ 1046 if (vma->vm_file || vma->vm_flags & VM_SHARED) 1047 return -EINVAL; 1048 new_flags |= VM_WIPEONFORK; 1049 break; 1050 case MADV_KEEPONFORK: 1051 new_flags &= ~VM_WIPEONFORK; 1052 break; 1053 case MADV_DONTDUMP: 1054 new_flags |= VM_DONTDUMP; 1055 break; 1056 case MADV_DODUMP: 1057 if (!is_vm_hugetlb_page(vma) && new_flags & VM_SPECIAL) 1058 return -EINVAL; 1059 new_flags &= ~VM_DONTDUMP; 1060 break; 1061 case MADV_MERGEABLE: 1062 case MADV_UNMERGEABLE: 1063 error = ksm_madvise(vma, start, end, behavior, &new_flags); 1064 if (error) 1065 goto out; 1066 break; 1067 case MADV_HUGEPAGE: 1068 case MADV_NOHUGEPAGE: 1069 error = hugepage_madvise(vma, &new_flags, behavior); 1070 if (error) 1071 goto out; 1072 break; 1073 case MADV_COLLAPSE: 1074 return madvise_collapse(vma, prev, start, end); 1075 } 1076 1077 anon_name = anon_vma_name(vma); 1078 anon_vma_name_get(anon_name); 1079 error = madvise_update_vma(vma, prev, start, end, new_flags, 1080 anon_name); 1081 anon_vma_name_put(anon_name); 1082 1083 out: 1084 /* 1085 * madvise() returns EAGAIN if kernel resources, such as 1086 * slab, are temporarily unavailable. 1087 */ 1088 if (error == -ENOMEM) 1089 error = -EAGAIN; 1090 return error; 1091 } 1092 1093 #ifdef CONFIG_MEMORY_FAILURE 1094 /* 1095 * Error injection support for memory error handling. 1096 */ 1097 static int madvise_inject_error(int behavior, 1098 unsigned long start, unsigned long end) 1099 { 1100 unsigned long size; 1101 1102 if (!capable(CAP_SYS_ADMIN)) 1103 return -EPERM; 1104 1105 1106 for (; start < end; start += size) { 1107 unsigned long pfn; 1108 struct page *page; 1109 int ret; 1110 1111 ret = get_user_pages_fast(start, 1, 0, &page); 1112 if (ret != 1) 1113 return ret; 1114 pfn = page_to_pfn(page); 1115 1116 /* 1117 * When soft offlining hugepages, after migrating the page 1118 * we dissolve it, therefore in the second loop "page" will 1119 * no longer be a compound page. 1120 */ 1121 size = page_size(compound_head(page)); 1122 1123 if (behavior == MADV_SOFT_OFFLINE) { 1124 pr_info("Soft offlining pfn %#lx at process virtual address %#lx\n", 1125 pfn, start); 1126 ret = soft_offline_page(pfn, MF_COUNT_INCREASED); 1127 } else { 1128 pr_info("Injecting memory failure for pfn %#lx at process virtual address %#lx\n", 1129 pfn, start); 1130 ret = memory_failure(pfn, MF_COUNT_INCREASED | MF_SW_SIMULATED); 1131 if (ret == -EOPNOTSUPP) 1132 ret = 0; 1133 } 1134 1135 if (ret) 1136 return ret; 1137 } 1138 1139 return 0; 1140 } 1141 #endif 1142 1143 static bool 1144 madvise_behavior_valid(int behavior) 1145 { 1146 switch (behavior) { 1147 case MADV_DOFORK: 1148 case MADV_DONTFORK: 1149 case MADV_NORMAL: 1150 case MADV_SEQUENTIAL: 1151 case MADV_RANDOM: 1152 case MADV_REMOVE: 1153 case MADV_WILLNEED: 1154 case MADV_DONTNEED: 1155 case MADV_DONTNEED_LOCKED: 1156 case MADV_FREE: 1157 case MADV_COLD: 1158 case MADV_PAGEOUT: 1159 case MADV_POPULATE_READ: 1160 case MADV_POPULATE_WRITE: 1161 #ifdef CONFIG_KSM 1162 case MADV_MERGEABLE: 1163 case MADV_UNMERGEABLE: 1164 #endif 1165 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1166 case MADV_HUGEPAGE: 1167 case MADV_NOHUGEPAGE: 1168 case MADV_COLLAPSE: 1169 #endif 1170 case MADV_DONTDUMP: 1171 case MADV_DODUMP: 1172 case MADV_WIPEONFORK: 1173 case MADV_KEEPONFORK: 1174 #ifdef CONFIG_MEMORY_FAILURE 1175 case MADV_SOFT_OFFLINE: 1176 case MADV_HWPOISON: 1177 #endif 1178 return true; 1179 1180 default: 1181 return false; 1182 } 1183 } 1184 1185 static bool process_madvise_behavior_valid(int behavior) 1186 { 1187 switch (behavior) { 1188 case MADV_COLD: 1189 case MADV_PAGEOUT: 1190 case MADV_WILLNEED: 1191 case MADV_COLLAPSE: 1192 return true; 1193 default: 1194 return false; 1195 } 1196 } 1197 1198 /* 1199 * Walk the vmas in range [start,end), and call the visit function on each one. 1200 * The visit function will get start and end parameters that cover the overlap 1201 * between the current vma and the original range. Any unmapped regions in the 1202 * original range will result in this function returning -ENOMEM while still 1203 * calling the visit function on all of the existing vmas in the range. 1204 * Must be called with the mmap_lock held for reading or writing. 1205 */ 1206 static 1207 int madvise_walk_vmas(struct mm_struct *mm, unsigned long start, 1208 unsigned long end, unsigned long arg, 1209 int (*visit)(struct vm_area_struct *vma, 1210 struct vm_area_struct **prev, unsigned long start, 1211 unsigned long end, unsigned long arg)) 1212 { 1213 struct vm_area_struct *vma; 1214 struct vm_area_struct *prev; 1215 unsigned long tmp; 1216 int unmapped_error = 0; 1217 1218 /* 1219 * If the interval [start,end) covers some unmapped address 1220 * ranges, just ignore them, but return -ENOMEM at the end. 1221 * - different from the way of handling in mlock etc. 1222 */ 1223 vma = find_vma_prev(mm, start, &prev); 1224 if (vma && start > vma->vm_start) 1225 prev = vma; 1226 1227 for (;;) { 1228 int error; 1229 1230 /* Still start < end. */ 1231 if (!vma) 1232 return -ENOMEM; 1233 1234 /* Here start < (end|vma->vm_end). */ 1235 if (start < vma->vm_start) { 1236 unmapped_error = -ENOMEM; 1237 start = vma->vm_start; 1238 if (start >= end) 1239 break; 1240 } 1241 1242 /* Here vma->vm_start <= start < (end|vma->vm_end) */ 1243 tmp = vma->vm_end; 1244 if (end < tmp) 1245 tmp = end; 1246 1247 /* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */ 1248 error = visit(vma, &prev, start, tmp, arg); 1249 if (error) 1250 return error; 1251 start = tmp; 1252 if (prev && start < prev->vm_end) 1253 start = prev->vm_end; 1254 if (start >= end) 1255 break; 1256 if (prev) 1257 vma = find_vma(mm, prev->vm_end); 1258 else /* madvise_remove dropped mmap_lock */ 1259 vma = find_vma(mm, start); 1260 } 1261 1262 return unmapped_error; 1263 } 1264 1265 #ifdef CONFIG_ANON_VMA_NAME 1266 static int madvise_vma_anon_name(struct vm_area_struct *vma, 1267 struct vm_area_struct **prev, 1268 unsigned long start, unsigned long end, 1269 unsigned long anon_name) 1270 { 1271 int error; 1272 1273 /* Only anonymous mappings can be named */ 1274 if (vma->vm_file && !vma_is_anon_shmem(vma)) 1275 return -EBADF; 1276 1277 error = madvise_update_vma(vma, prev, start, end, vma->vm_flags, 1278 (struct anon_vma_name *)anon_name); 1279 1280 /* 1281 * madvise() returns EAGAIN if kernel resources, such as 1282 * slab, are temporarily unavailable. 1283 */ 1284 if (error == -ENOMEM) 1285 error = -EAGAIN; 1286 return error; 1287 } 1288 1289 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 1290 unsigned long len_in, struct anon_vma_name *anon_name) 1291 { 1292 unsigned long end; 1293 unsigned long len; 1294 1295 if (start & ~PAGE_MASK) 1296 return -EINVAL; 1297 len = (len_in + ~PAGE_MASK) & PAGE_MASK; 1298 1299 /* Check to see whether len was rounded up from small -ve to zero */ 1300 if (len_in && !len) 1301 return -EINVAL; 1302 1303 end = start + len; 1304 if (end < start) 1305 return -EINVAL; 1306 1307 if (end == start) 1308 return 0; 1309 1310 return madvise_walk_vmas(mm, start, end, (unsigned long)anon_name, 1311 madvise_vma_anon_name); 1312 } 1313 #endif /* CONFIG_ANON_VMA_NAME */ 1314 /* 1315 * The madvise(2) system call. 1316 * 1317 * Applications can use madvise() to advise the kernel how it should 1318 * handle paging I/O in this VM area. The idea is to help the kernel 1319 * use appropriate read-ahead and caching techniques. The information 1320 * provided is advisory only, and can be safely disregarded by the 1321 * kernel without affecting the correct operation of the application. 1322 * 1323 * behavior values: 1324 * MADV_NORMAL - the default behavior is to read clusters. This 1325 * results in some read-ahead and read-behind. 1326 * MADV_RANDOM - the system should read the minimum amount of data 1327 * on any access, since it is unlikely that the appli- 1328 * cation will need more than what it asks for. 1329 * MADV_SEQUENTIAL - pages in the given range will probably be accessed 1330 * once, so they can be aggressively read ahead, and 1331 * can be freed soon after they are accessed. 1332 * MADV_WILLNEED - the application is notifying the system to read 1333 * some pages ahead. 1334 * MADV_DONTNEED - the application is finished with the given range, 1335 * so the kernel can free resources associated with it. 1336 * MADV_FREE - the application marks pages in the given range as lazy free, 1337 * where actual purges are postponed until memory pressure happens. 1338 * MADV_REMOVE - the application wants to free up the given range of 1339 * pages and associated backing store. 1340 * MADV_DONTFORK - omit this area from child's address space when forking: 1341 * typically, to avoid COWing pages pinned by get_user_pages(). 1342 * MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking. 1343 * MADV_WIPEONFORK - present the child process with zero-filled memory in this 1344 * range after a fork. 1345 * MADV_KEEPONFORK - undo the effect of MADV_WIPEONFORK 1346 * MADV_HWPOISON - trigger memory error handler as if the given memory range 1347 * were corrupted by unrecoverable hardware memory failure. 1348 * MADV_SOFT_OFFLINE - try to soft-offline the given range of memory. 1349 * MADV_MERGEABLE - the application recommends that KSM try to merge pages in 1350 * this area with pages of identical content from other such areas. 1351 * MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others. 1352 * MADV_HUGEPAGE - the application wants to back the given range by transparent 1353 * huge pages in the future. Existing pages might be coalesced and 1354 * new pages might be allocated as THP. 1355 * MADV_NOHUGEPAGE - mark the given range as not worth being backed by 1356 * transparent huge pages so the existing pages will not be 1357 * coalesced into THP and new pages will not be allocated as THP. 1358 * MADV_COLLAPSE - synchronously coalesce pages into new THP. 1359 * MADV_DONTDUMP - the application wants to prevent pages in the given range 1360 * from being included in its core dump. 1361 * MADV_DODUMP - cancel MADV_DONTDUMP: no longer exclude from core dump. 1362 * MADV_COLD - the application is not expected to use this memory soon, 1363 * deactivate pages in this range so that they can be reclaimed 1364 * easily if memory pressure happens. 1365 * MADV_PAGEOUT - the application is not expected to use this memory soon, 1366 * page out the pages in this range immediately. 1367 * MADV_POPULATE_READ - populate (prefault) page tables readable by 1368 * triggering read faults if required 1369 * MADV_POPULATE_WRITE - populate (prefault) page tables writable by 1370 * triggering write faults if required 1371 * 1372 * return values: 1373 * zero - success 1374 * -EINVAL - start + len < 0, start is not page-aligned, 1375 * "behavior" is not a valid value, or application 1376 * is attempting to release locked or shared pages, 1377 * or the specified address range includes file, Huge TLB, 1378 * MAP_SHARED or VMPFNMAP range. 1379 * -ENOMEM - addresses in the specified range are not currently 1380 * mapped, or are outside the AS of the process. 1381 * -EIO - an I/O error occurred while paging in data. 1382 * -EBADF - map exists, but area maps something that isn't a file. 1383 * -EAGAIN - a kernel resource was temporarily unavailable. 1384 */ 1385 int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior) 1386 { 1387 unsigned long end; 1388 int error; 1389 int write; 1390 size_t len; 1391 struct blk_plug plug; 1392 1393 if (!madvise_behavior_valid(behavior)) 1394 return -EINVAL; 1395 1396 if (!PAGE_ALIGNED(start)) 1397 return -EINVAL; 1398 len = PAGE_ALIGN(len_in); 1399 1400 /* Check to see whether len was rounded up from small -ve to zero */ 1401 if (len_in && !len) 1402 return -EINVAL; 1403 1404 end = start + len; 1405 if (end < start) 1406 return -EINVAL; 1407 1408 if (end == start) 1409 return 0; 1410 1411 #ifdef CONFIG_MEMORY_FAILURE 1412 if (behavior == MADV_HWPOISON || behavior == MADV_SOFT_OFFLINE) 1413 return madvise_inject_error(behavior, start, start + len_in); 1414 #endif 1415 1416 write = madvise_need_mmap_write(behavior); 1417 if (write) { 1418 if (mmap_write_lock_killable(mm)) 1419 return -EINTR; 1420 } else { 1421 mmap_read_lock(mm); 1422 } 1423 1424 start = untagged_addr_remote(mm, start); 1425 end = start + len; 1426 1427 blk_start_plug(&plug); 1428 error = madvise_walk_vmas(mm, start, end, behavior, 1429 madvise_vma_behavior); 1430 blk_finish_plug(&plug); 1431 if (write) 1432 mmap_write_unlock(mm); 1433 else 1434 mmap_read_unlock(mm); 1435 1436 return error; 1437 } 1438 1439 SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior) 1440 { 1441 return do_madvise(current->mm, start, len_in, behavior); 1442 } 1443 1444 SYSCALL_DEFINE5(process_madvise, int, pidfd, const struct iovec __user *, vec, 1445 size_t, vlen, int, behavior, unsigned int, flags) 1446 { 1447 ssize_t ret; 1448 struct iovec iovstack[UIO_FASTIOV]; 1449 struct iovec *iov = iovstack; 1450 struct iov_iter iter; 1451 struct task_struct *task; 1452 struct mm_struct *mm; 1453 size_t total_len; 1454 unsigned int f_flags; 1455 1456 if (flags != 0) { 1457 ret = -EINVAL; 1458 goto out; 1459 } 1460 1461 ret = import_iovec(ITER_DEST, vec, vlen, ARRAY_SIZE(iovstack), &iov, &iter); 1462 if (ret < 0) 1463 goto out; 1464 1465 task = pidfd_get_task(pidfd, &f_flags); 1466 if (IS_ERR(task)) { 1467 ret = PTR_ERR(task); 1468 goto free_iov; 1469 } 1470 1471 if (!process_madvise_behavior_valid(behavior)) { 1472 ret = -EINVAL; 1473 goto release_task; 1474 } 1475 1476 /* Require PTRACE_MODE_READ to avoid leaking ASLR metadata. */ 1477 mm = mm_access(task, PTRACE_MODE_READ_FSCREDS); 1478 if (IS_ERR_OR_NULL(mm)) { 1479 ret = IS_ERR(mm) ? PTR_ERR(mm) : -ESRCH; 1480 goto release_task; 1481 } 1482 1483 /* 1484 * Require CAP_SYS_NICE for influencing process performance. Note that 1485 * only non-destructive hints are currently supported. 1486 */ 1487 if (!capable(CAP_SYS_NICE)) { 1488 ret = -EPERM; 1489 goto release_mm; 1490 } 1491 1492 total_len = iov_iter_count(&iter); 1493 1494 while (iov_iter_count(&iter)) { 1495 ret = do_madvise(mm, (unsigned long)iter_iov_addr(&iter), 1496 iter_iov_len(&iter), behavior); 1497 if (ret < 0) 1498 break; 1499 iov_iter_advance(&iter, iter_iov_len(&iter)); 1500 } 1501 1502 ret = (total_len - iov_iter_count(&iter)) ? : ret; 1503 1504 release_mm: 1505 mmput(mm); 1506 release_task: 1507 put_task_struct(task); 1508 free_iov: 1509 kfree(iov); 1510 out: 1511 return ret; 1512 } 1513