1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/madvise.c 4 * 5 * Copyright (C) 1999 Linus Torvalds 6 * Copyright (C) 2002 Christoph Hellwig 7 */ 8 9 #include <linux/mman.h> 10 #include <linux/pagemap.h> 11 #include <linux/syscalls.h> 12 #include <linux/mempolicy.h> 13 #include <linux/page-isolation.h> 14 #include <linux/userfaultfd_k.h> 15 #include <linux/hugetlb.h> 16 #include <linux/falloc.h> 17 #include <linux/fadvise.h> 18 #include <linux/sched.h> 19 #include <linux/ksm.h> 20 #include <linux/fs.h> 21 #include <linux/file.h> 22 #include <linux/blkdev.h> 23 #include <linux/backing-dev.h> 24 #include <linux/swap.h> 25 #include <linux/swapops.h> 26 #include <linux/shmem_fs.h> 27 #include <linux/mmu_notifier.h> 28 29 #include <asm/tlb.h> 30 31 #include "internal.h" 32 33 /* 34 * Any behaviour which results in changes to the vma->vm_flags needs to 35 * take mmap_sem for writing. Others, which simply traverse vmas, need 36 * to only take it for reading. 37 */ 38 static int madvise_need_mmap_write(int behavior) 39 { 40 switch (behavior) { 41 case MADV_REMOVE: 42 case MADV_WILLNEED: 43 case MADV_DONTNEED: 44 case MADV_FREE: 45 return 0; 46 default: 47 /* be safe, default to 1. list exceptions explicitly */ 48 return 1; 49 } 50 } 51 52 /* 53 * We can potentially split a vm area into separate 54 * areas, each area with its own behavior. 55 */ 56 static long madvise_behavior(struct vm_area_struct *vma, 57 struct vm_area_struct **prev, 58 unsigned long start, unsigned long end, int behavior) 59 { 60 struct mm_struct *mm = vma->vm_mm; 61 int error = 0; 62 pgoff_t pgoff; 63 unsigned long new_flags = vma->vm_flags; 64 65 switch (behavior) { 66 case MADV_NORMAL: 67 new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ; 68 break; 69 case MADV_SEQUENTIAL: 70 new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ; 71 break; 72 case MADV_RANDOM: 73 new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ; 74 break; 75 case MADV_DONTFORK: 76 new_flags |= VM_DONTCOPY; 77 break; 78 case MADV_DOFORK: 79 if (vma->vm_flags & VM_IO) { 80 error = -EINVAL; 81 goto out; 82 } 83 new_flags &= ~VM_DONTCOPY; 84 break; 85 case MADV_WIPEONFORK: 86 /* MADV_WIPEONFORK is only supported on anonymous memory. */ 87 if (vma->vm_file || vma->vm_flags & VM_SHARED) { 88 error = -EINVAL; 89 goto out; 90 } 91 new_flags |= VM_WIPEONFORK; 92 break; 93 case MADV_KEEPONFORK: 94 new_flags &= ~VM_WIPEONFORK; 95 break; 96 case MADV_DONTDUMP: 97 new_flags |= VM_DONTDUMP; 98 break; 99 case MADV_DODUMP: 100 if (!is_vm_hugetlb_page(vma) && new_flags & VM_SPECIAL) { 101 error = -EINVAL; 102 goto out; 103 } 104 new_flags &= ~VM_DONTDUMP; 105 break; 106 case MADV_MERGEABLE: 107 case MADV_UNMERGEABLE: 108 error = ksm_madvise(vma, start, end, behavior, &new_flags); 109 if (error) { 110 /* 111 * madvise() returns EAGAIN if kernel resources, such as 112 * slab, are temporarily unavailable. 113 */ 114 if (error == -ENOMEM) 115 error = -EAGAIN; 116 goto out; 117 } 118 break; 119 case MADV_HUGEPAGE: 120 case MADV_NOHUGEPAGE: 121 error = hugepage_madvise(vma, &new_flags, behavior); 122 if (error) { 123 /* 124 * madvise() returns EAGAIN if kernel resources, such as 125 * slab, are temporarily unavailable. 126 */ 127 if (error == -ENOMEM) 128 error = -EAGAIN; 129 goto out; 130 } 131 break; 132 } 133 134 if (new_flags == vma->vm_flags) { 135 *prev = vma; 136 goto out; 137 } 138 139 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT); 140 *prev = vma_merge(mm, *prev, start, end, new_flags, vma->anon_vma, 141 vma->vm_file, pgoff, vma_policy(vma), 142 vma->vm_userfaultfd_ctx); 143 if (*prev) { 144 vma = *prev; 145 goto success; 146 } 147 148 *prev = vma; 149 150 if (start != vma->vm_start) { 151 if (unlikely(mm->map_count >= sysctl_max_map_count)) { 152 error = -ENOMEM; 153 goto out; 154 } 155 error = __split_vma(mm, vma, start, 1); 156 if (error) { 157 /* 158 * madvise() returns EAGAIN if kernel resources, such as 159 * slab, are temporarily unavailable. 160 */ 161 if (error == -ENOMEM) 162 error = -EAGAIN; 163 goto out; 164 } 165 } 166 167 if (end != vma->vm_end) { 168 if (unlikely(mm->map_count >= sysctl_max_map_count)) { 169 error = -ENOMEM; 170 goto out; 171 } 172 error = __split_vma(mm, vma, end, 0); 173 if (error) { 174 /* 175 * madvise() returns EAGAIN if kernel resources, such as 176 * slab, are temporarily unavailable. 177 */ 178 if (error == -ENOMEM) 179 error = -EAGAIN; 180 goto out; 181 } 182 } 183 184 success: 185 /* 186 * vm_flags is protected by the mmap_sem held in write mode. 187 */ 188 vma->vm_flags = new_flags; 189 out: 190 return error; 191 } 192 193 #ifdef CONFIG_SWAP 194 static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start, 195 unsigned long end, struct mm_walk *walk) 196 { 197 pte_t *orig_pte; 198 struct vm_area_struct *vma = walk->private; 199 unsigned long index; 200 201 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 202 return 0; 203 204 for (index = start; index != end; index += PAGE_SIZE) { 205 pte_t pte; 206 swp_entry_t entry; 207 struct page *page; 208 spinlock_t *ptl; 209 210 orig_pte = pte_offset_map_lock(vma->vm_mm, pmd, start, &ptl); 211 pte = *(orig_pte + ((index - start) / PAGE_SIZE)); 212 pte_unmap_unlock(orig_pte, ptl); 213 214 if (pte_present(pte) || pte_none(pte)) 215 continue; 216 entry = pte_to_swp_entry(pte); 217 if (unlikely(non_swap_entry(entry))) 218 continue; 219 220 page = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE, 221 vma, index, false); 222 if (page) 223 put_page(page); 224 } 225 226 return 0; 227 } 228 229 static void force_swapin_readahead(struct vm_area_struct *vma, 230 unsigned long start, unsigned long end) 231 { 232 struct mm_walk walk = { 233 .mm = vma->vm_mm, 234 .pmd_entry = swapin_walk_pmd_entry, 235 .private = vma, 236 }; 237 238 walk_page_range(start, end, &walk); 239 240 lru_add_drain(); /* Push any new pages onto the LRU now */ 241 } 242 243 static void force_shm_swapin_readahead(struct vm_area_struct *vma, 244 unsigned long start, unsigned long end, 245 struct address_space *mapping) 246 { 247 pgoff_t index; 248 struct page *page; 249 swp_entry_t swap; 250 251 for (; start < end; start += PAGE_SIZE) { 252 index = ((start - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 253 254 page = find_get_entry(mapping, index); 255 if (!xa_is_value(page)) { 256 if (page) 257 put_page(page); 258 continue; 259 } 260 swap = radix_to_swp_entry(page); 261 page = read_swap_cache_async(swap, GFP_HIGHUSER_MOVABLE, 262 NULL, 0, false); 263 if (page) 264 put_page(page); 265 } 266 267 lru_add_drain(); /* Push any new pages onto the LRU now */ 268 } 269 #endif /* CONFIG_SWAP */ 270 271 /* 272 * Schedule all required I/O operations. Do not wait for completion. 273 */ 274 static long madvise_willneed(struct vm_area_struct *vma, 275 struct vm_area_struct **prev, 276 unsigned long start, unsigned long end) 277 { 278 struct file *file = vma->vm_file; 279 loff_t offset; 280 281 *prev = vma; 282 #ifdef CONFIG_SWAP 283 if (!file) { 284 force_swapin_readahead(vma, start, end); 285 return 0; 286 } 287 288 if (shmem_mapping(file->f_mapping)) { 289 force_shm_swapin_readahead(vma, start, end, 290 file->f_mapping); 291 return 0; 292 } 293 #else 294 if (!file) 295 return -EBADF; 296 #endif 297 298 if (IS_DAX(file_inode(file))) { 299 /* no bad return value, but ignore advice */ 300 return 0; 301 } 302 303 /* 304 * Filesystem's fadvise may need to take various locks. We need to 305 * explicitly grab a reference because the vma (and hence the 306 * vma's reference to the file) can go away as soon as we drop 307 * mmap_sem. 308 */ 309 *prev = NULL; /* tell sys_madvise we drop mmap_sem */ 310 get_file(file); 311 up_read(¤t->mm->mmap_sem); 312 offset = (loff_t)(start - vma->vm_start) 313 + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 314 vfs_fadvise(file, offset, end - start, POSIX_FADV_WILLNEED); 315 fput(file); 316 down_read(¤t->mm->mmap_sem); 317 return 0; 318 } 319 320 static int madvise_free_pte_range(pmd_t *pmd, unsigned long addr, 321 unsigned long end, struct mm_walk *walk) 322 323 { 324 struct mmu_gather *tlb = walk->private; 325 struct mm_struct *mm = tlb->mm; 326 struct vm_area_struct *vma = walk->vma; 327 spinlock_t *ptl; 328 pte_t *orig_pte, *pte, ptent; 329 struct page *page; 330 int nr_swap = 0; 331 unsigned long next; 332 333 next = pmd_addr_end(addr, end); 334 if (pmd_trans_huge(*pmd)) 335 if (madvise_free_huge_pmd(tlb, vma, pmd, addr, next)) 336 goto next; 337 338 if (pmd_trans_unstable(pmd)) 339 return 0; 340 341 tlb_change_page_size(tlb, PAGE_SIZE); 342 orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 343 flush_tlb_batched_pending(mm); 344 arch_enter_lazy_mmu_mode(); 345 for (; addr != end; pte++, addr += PAGE_SIZE) { 346 ptent = *pte; 347 348 if (pte_none(ptent)) 349 continue; 350 /* 351 * If the pte has swp_entry, just clear page table to 352 * prevent swap-in which is more expensive rather than 353 * (page allocation + zeroing). 354 */ 355 if (!pte_present(ptent)) { 356 swp_entry_t entry; 357 358 entry = pte_to_swp_entry(ptent); 359 if (non_swap_entry(entry)) 360 continue; 361 nr_swap--; 362 free_swap_and_cache(entry); 363 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 364 continue; 365 } 366 367 page = vm_normal_page(vma, addr, ptent); 368 if (!page) 369 continue; 370 371 /* 372 * If pmd isn't transhuge but the page is THP and 373 * is owned by only this process, split it and 374 * deactivate all pages. 375 */ 376 if (PageTransCompound(page)) { 377 if (page_mapcount(page) != 1) 378 goto out; 379 get_page(page); 380 if (!trylock_page(page)) { 381 put_page(page); 382 goto out; 383 } 384 pte_unmap_unlock(orig_pte, ptl); 385 if (split_huge_page(page)) { 386 unlock_page(page); 387 put_page(page); 388 pte_offset_map_lock(mm, pmd, addr, &ptl); 389 goto out; 390 } 391 unlock_page(page); 392 put_page(page); 393 pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 394 pte--; 395 addr -= PAGE_SIZE; 396 continue; 397 } 398 399 VM_BUG_ON_PAGE(PageTransCompound(page), page); 400 401 if (PageSwapCache(page) || PageDirty(page)) { 402 if (!trylock_page(page)) 403 continue; 404 /* 405 * If page is shared with others, we couldn't clear 406 * PG_dirty of the page. 407 */ 408 if (page_mapcount(page) != 1) { 409 unlock_page(page); 410 continue; 411 } 412 413 if (PageSwapCache(page) && !try_to_free_swap(page)) { 414 unlock_page(page); 415 continue; 416 } 417 418 ClearPageDirty(page); 419 unlock_page(page); 420 } 421 422 if (pte_young(ptent) || pte_dirty(ptent)) { 423 /* 424 * Some of architecture(ex, PPC) don't update TLB 425 * with set_pte_at and tlb_remove_tlb_entry so for 426 * the portability, remap the pte with old|clean 427 * after pte clearing. 428 */ 429 ptent = ptep_get_and_clear_full(mm, addr, pte, 430 tlb->fullmm); 431 432 ptent = pte_mkold(ptent); 433 ptent = pte_mkclean(ptent); 434 set_pte_at(mm, addr, pte, ptent); 435 tlb_remove_tlb_entry(tlb, pte, addr); 436 } 437 mark_page_lazyfree(page); 438 } 439 out: 440 if (nr_swap) { 441 if (current->mm == mm) 442 sync_mm_rss(mm); 443 444 add_mm_counter(mm, MM_SWAPENTS, nr_swap); 445 } 446 arch_leave_lazy_mmu_mode(); 447 pte_unmap_unlock(orig_pte, ptl); 448 cond_resched(); 449 next: 450 return 0; 451 } 452 453 static void madvise_free_page_range(struct mmu_gather *tlb, 454 struct vm_area_struct *vma, 455 unsigned long addr, unsigned long end) 456 { 457 struct mm_walk free_walk = { 458 .pmd_entry = madvise_free_pte_range, 459 .mm = vma->vm_mm, 460 .private = tlb, 461 }; 462 463 tlb_start_vma(tlb, vma); 464 walk_page_range(addr, end, &free_walk); 465 tlb_end_vma(tlb, vma); 466 } 467 468 static int madvise_free_single_vma(struct vm_area_struct *vma, 469 unsigned long start_addr, unsigned long end_addr) 470 { 471 struct mm_struct *mm = vma->vm_mm; 472 struct mmu_notifier_range range; 473 struct mmu_gather tlb; 474 475 /* MADV_FREE works for only anon vma at the moment */ 476 if (!vma_is_anonymous(vma)) 477 return -EINVAL; 478 479 range.start = max(vma->vm_start, start_addr); 480 if (range.start >= vma->vm_end) 481 return -EINVAL; 482 range.end = min(vma->vm_end, end_addr); 483 if (range.end <= vma->vm_start) 484 return -EINVAL; 485 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, 486 range.start, range.end); 487 488 lru_add_drain(); 489 tlb_gather_mmu(&tlb, mm, range.start, range.end); 490 update_hiwater_rss(mm); 491 492 mmu_notifier_invalidate_range_start(&range); 493 madvise_free_page_range(&tlb, vma, range.start, range.end); 494 mmu_notifier_invalidate_range_end(&range); 495 tlb_finish_mmu(&tlb, range.start, range.end); 496 497 return 0; 498 } 499 500 /* 501 * Application no longer needs these pages. If the pages are dirty, 502 * it's OK to just throw them away. The app will be more careful about 503 * data it wants to keep. Be sure to free swap resources too. The 504 * zap_page_range call sets things up for shrink_active_list to actually free 505 * these pages later if no one else has touched them in the meantime, 506 * although we could add these pages to a global reuse list for 507 * shrink_active_list to pick up before reclaiming other pages. 508 * 509 * NB: This interface discards data rather than pushes it out to swap, 510 * as some implementations do. This has performance implications for 511 * applications like large transactional databases which want to discard 512 * pages in anonymous maps after committing to backing store the data 513 * that was kept in them. There is no reason to write this data out to 514 * the swap area if the application is discarding it. 515 * 516 * An interface that causes the system to free clean pages and flush 517 * dirty pages is already available as msync(MS_INVALIDATE). 518 */ 519 static long madvise_dontneed_single_vma(struct vm_area_struct *vma, 520 unsigned long start, unsigned long end) 521 { 522 zap_page_range(vma, start, end - start); 523 return 0; 524 } 525 526 static long madvise_dontneed_free(struct vm_area_struct *vma, 527 struct vm_area_struct **prev, 528 unsigned long start, unsigned long end, 529 int behavior) 530 { 531 *prev = vma; 532 if (!can_madv_dontneed_vma(vma)) 533 return -EINVAL; 534 535 if (!userfaultfd_remove(vma, start, end)) { 536 *prev = NULL; /* mmap_sem has been dropped, prev is stale */ 537 538 down_read(¤t->mm->mmap_sem); 539 vma = find_vma(current->mm, start); 540 if (!vma) 541 return -ENOMEM; 542 if (start < vma->vm_start) { 543 /* 544 * This "vma" under revalidation is the one 545 * with the lowest vma->vm_start where start 546 * is also < vma->vm_end. If start < 547 * vma->vm_start it means an hole materialized 548 * in the user address space within the 549 * virtual range passed to MADV_DONTNEED 550 * or MADV_FREE. 551 */ 552 return -ENOMEM; 553 } 554 if (!can_madv_dontneed_vma(vma)) 555 return -EINVAL; 556 if (end > vma->vm_end) { 557 /* 558 * Don't fail if end > vma->vm_end. If the old 559 * vma was splitted while the mmap_sem was 560 * released the effect of the concurrent 561 * operation may not cause madvise() to 562 * have an undefined result. There may be an 563 * adjacent next vma that we'll walk 564 * next. userfaultfd_remove() will generate an 565 * UFFD_EVENT_REMOVE repetition on the 566 * end-vma->vm_end range, but the manager can 567 * handle a repetition fine. 568 */ 569 end = vma->vm_end; 570 } 571 VM_WARN_ON(start >= end); 572 } 573 574 if (behavior == MADV_DONTNEED) 575 return madvise_dontneed_single_vma(vma, start, end); 576 else if (behavior == MADV_FREE) 577 return madvise_free_single_vma(vma, start, end); 578 else 579 return -EINVAL; 580 } 581 582 /* 583 * Application wants to free up the pages and associated backing store. 584 * This is effectively punching a hole into the middle of a file. 585 */ 586 static long madvise_remove(struct vm_area_struct *vma, 587 struct vm_area_struct **prev, 588 unsigned long start, unsigned long end) 589 { 590 loff_t offset; 591 int error; 592 struct file *f; 593 594 *prev = NULL; /* tell sys_madvise we drop mmap_sem */ 595 596 if (vma->vm_flags & VM_LOCKED) 597 return -EINVAL; 598 599 f = vma->vm_file; 600 601 if (!f || !f->f_mapping || !f->f_mapping->host) { 602 return -EINVAL; 603 } 604 605 if ((vma->vm_flags & (VM_SHARED|VM_WRITE)) != (VM_SHARED|VM_WRITE)) 606 return -EACCES; 607 608 offset = (loff_t)(start - vma->vm_start) 609 + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 610 611 /* 612 * Filesystem's fallocate may need to take i_mutex. We need to 613 * explicitly grab a reference because the vma (and hence the 614 * vma's reference to the file) can go away as soon as we drop 615 * mmap_sem. 616 */ 617 get_file(f); 618 if (userfaultfd_remove(vma, start, end)) { 619 /* mmap_sem was not released by userfaultfd_remove() */ 620 up_read(¤t->mm->mmap_sem); 621 } 622 error = vfs_fallocate(f, 623 FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 624 offset, end - start); 625 fput(f); 626 down_read(¤t->mm->mmap_sem); 627 return error; 628 } 629 630 #ifdef CONFIG_MEMORY_FAILURE 631 /* 632 * Error injection support for memory error handling. 633 */ 634 static int madvise_inject_error(int behavior, 635 unsigned long start, unsigned long end) 636 { 637 struct page *page; 638 struct zone *zone; 639 unsigned int order; 640 641 if (!capable(CAP_SYS_ADMIN)) 642 return -EPERM; 643 644 645 for (; start < end; start += PAGE_SIZE << order) { 646 unsigned long pfn; 647 int ret; 648 649 ret = get_user_pages_fast(start, 1, 0, &page); 650 if (ret != 1) 651 return ret; 652 pfn = page_to_pfn(page); 653 654 /* 655 * When soft offlining hugepages, after migrating the page 656 * we dissolve it, therefore in the second loop "page" will 657 * no longer be a compound page, and order will be 0. 658 */ 659 order = compound_order(compound_head(page)); 660 661 if (PageHWPoison(page)) { 662 put_page(page); 663 continue; 664 } 665 666 if (behavior == MADV_SOFT_OFFLINE) { 667 pr_info("Soft offlining pfn %#lx at process virtual address %#lx\n", 668 pfn, start); 669 670 ret = soft_offline_page(page, MF_COUNT_INCREASED); 671 if (ret) 672 return ret; 673 continue; 674 } 675 676 pr_info("Injecting memory failure for pfn %#lx at process virtual address %#lx\n", 677 pfn, start); 678 679 /* 680 * Drop the page reference taken by get_user_pages_fast(). In 681 * the absence of MF_COUNT_INCREASED the memory_failure() 682 * routine is responsible for pinning the page to prevent it 683 * from being released back to the page allocator. 684 */ 685 put_page(page); 686 ret = memory_failure(pfn, 0); 687 if (ret) 688 return ret; 689 } 690 691 /* Ensure that all poisoned pages are removed from per-cpu lists */ 692 for_each_populated_zone(zone) 693 drain_all_pages(zone); 694 695 return 0; 696 } 697 #endif 698 699 static long 700 madvise_vma(struct vm_area_struct *vma, struct vm_area_struct **prev, 701 unsigned long start, unsigned long end, int behavior) 702 { 703 switch (behavior) { 704 case MADV_REMOVE: 705 return madvise_remove(vma, prev, start, end); 706 case MADV_WILLNEED: 707 return madvise_willneed(vma, prev, start, end); 708 case MADV_FREE: 709 case MADV_DONTNEED: 710 return madvise_dontneed_free(vma, prev, start, end, behavior); 711 default: 712 return madvise_behavior(vma, prev, start, end, behavior); 713 } 714 } 715 716 static bool 717 madvise_behavior_valid(int behavior) 718 { 719 switch (behavior) { 720 case MADV_DOFORK: 721 case MADV_DONTFORK: 722 case MADV_NORMAL: 723 case MADV_SEQUENTIAL: 724 case MADV_RANDOM: 725 case MADV_REMOVE: 726 case MADV_WILLNEED: 727 case MADV_DONTNEED: 728 case MADV_FREE: 729 #ifdef CONFIG_KSM 730 case MADV_MERGEABLE: 731 case MADV_UNMERGEABLE: 732 #endif 733 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 734 case MADV_HUGEPAGE: 735 case MADV_NOHUGEPAGE: 736 #endif 737 case MADV_DONTDUMP: 738 case MADV_DODUMP: 739 case MADV_WIPEONFORK: 740 case MADV_KEEPONFORK: 741 #ifdef CONFIG_MEMORY_FAILURE 742 case MADV_SOFT_OFFLINE: 743 case MADV_HWPOISON: 744 #endif 745 return true; 746 747 default: 748 return false; 749 } 750 } 751 752 /* 753 * The madvise(2) system call. 754 * 755 * Applications can use madvise() to advise the kernel how it should 756 * handle paging I/O in this VM area. The idea is to help the kernel 757 * use appropriate read-ahead and caching techniques. The information 758 * provided is advisory only, and can be safely disregarded by the 759 * kernel without affecting the correct operation of the application. 760 * 761 * behavior values: 762 * MADV_NORMAL - the default behavior is to read clusters. This 763 * results in some read-ahead and read-behind. 764 * MADV_RANDOM - the system should read the minimum amount of data 765 * on any access, since it is unlikely that the appli- 766 * cation will need more than what it asks for. 767 * MADV_SEQUENTIAL - pages in the given range will probably be accessed 768 * once, so they can be aggressively read ahead, and 769 * can be freed soon after they are accessed. 770 * MADV_WILLNEED - the application is notifying the system to read 771 * some pages ahead. 772 * MADV_DONTNEED - the application is finished with the given range, 773 * so the kernel can free resources associated with it. 774 * MADV_FREE - the application marks pages in the given range as lazy free, 775 * where actual purges are postponed until memory pressure happens. 776 * MADV_REMOVE - the application wants to free up the given range of 777 * pages and associated backing store. 778 * MADV_DONTFORK - omit this area from child's address space when forking: 779 * typically, to avoid COWing pages pinned by get_user_pages(). 780 * MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking. 781 * MADV_WIPEONFORK - present the child process with zero-filled memory in this 782 * range after a fork. 783 * MADV_KEEPONFORK - undo the effect of MADV_WIPEONFORK 784 * MADV_HWPOISON - trigger memory error handler as if the given memory range 785 * were corrupted by unrecoverable hardware memory failure. 786 * MADV_SOFT_OFFLINE - try to soft-offline the given range of memory. 787 * MADV_MERGEABLE - the application recommends that KSM try to merge pages in 788 * this area with pages of identical content from other such areas. 789 * MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others. 790 * MADV_HUGEPAGE - the application wants to back the given range by transparent 791 * huge pages in the future. Existing pages might be coalesced and 792 * new pages might be allocated as THP. 793 * MADV_NOHUGEPAGE - mark the given range as not worth being backed by 794 * transparent huge pages so the existing pages will not be 795 * coalesced into THP and new pages will not be allocated as THP. 796 * MADV_DONTDUMP - the application wants to prevent pages in the given range 797 * from being included in its core dump. 798 * MADV_DODUMP - cancel MADV_DONTDUMP: no longer exclude from core dump. 799 * 800 * return values: 801 * zero - success 802 * -EINVAL - start + len < 0, start is not page-aligned, 803 * "behavior" is not a valid value, or application 804 * is attempting to release locked or shared pages, 805 * or the specified address range includes file, Huge TLB, 806 * MAP_SHARED or VMPFNMAP range. 807 * -ENOMEM - addresses in the specified range are not currently 808 * mapped, or are outside the AS of the process. 809 * -EIO - an I/O error occurred while paging in data. 810 * -EBADF - map exists, but area maps something that isn't a file. 811 * -EAGAIN - a kernel resource was temporarily unavailable. 812 */ 813 SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior) 814 { 815 unsigned long end, tmp; 816 struct vm_area_struct *vma, *prev; 817 int unmapped_error = 0; 818 int error = -EINVAL; 819 int write; 820 size_t len; 821 struct blk_plug plug; 822 823 if (!madvise_behavior_valid(behavior)) 824 return error; 825 826 if (start & ~PAGE_MASK) 827 return error; 828 len = (len_in + ~PAGE_MASK) & PAGE_MASK; 829 830 /* Check to see whether len was rounded up from small -ve to zero */ 831 if (len_in && !len) 832 return error; 833 834 end = start + len; 835 if (end < start) 836 return error; 837 838 error = 0; 839 if (end == start) 840 return error; 841 842 #ifdef CONFIG_MEMORY_FAILURE 843 if (behavior == MADV_HWPOISON || behavior == MADV_SOFT_OFFLINE) 844 return madvise_inject_error(behavior, start, start + len_in); 845 #endif 846 847 write = madvise_need_mmap_write(behavior); 848 if (write) { 849 if (down_write_killable(¤t->mm->mmap_sem)) 850 return -EINTR; 851 } else { 852 down_read(¤t->mm->mmap_sem); 853 } 854 855 /* 856 * If the interval [start,end) covers some unmapped address 857 * ranges, just ignore them, but return -ENOMEM at the end. 858 * - different from the way of handling in mlock etc. 859 */ 860 vma = find_vma_prev(current->mm, start, &prev); 861 if (vma && start > vma->vm_start) 862 prev = vma; 863 864 blk_start_plug(&plug); 865 for (;;) { 866 /* Still start < end. */ 867 error = -ENOMEM; 868 if (!vma) 869 goto out; 870 871 /* Here start < (end|vma->vm_end). */ 872 if (start < vma->vm_start) { 873 unmapped_error = -ENOMEM; 874 start = vma->vm_start; 875 if (start >= end) 876 goto out; 877 } 878 879 /* Here vma->vm_start <= start < (end|vma->vm_end) */ 880 tmp = vma->vm_end; 881 if (end < tmp) 882 tmp = end; 883 884 /* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */ 885 error = madvise_vma(vma, &prev, start, tmp, behavior); 886 if (error) 887 goto out; 888 start = tmp; 889 if (prev && start < prev->vm_end) 890 start = prev->vm_end; 891 error = unmapped_error; 892 if (start >= end) 893 goto out; 894 if (prev) 895 vma = prev->vm_next; 896 else /* madvise_remove dropped mmap_sem */ 897 vma = find_vma(current->mm, start); 898 } 899 out: 900 blk_finish_plug(&plug); 901 if (write) 902 up_write(¤t->mm->mmap_sem); 903 else 904 up_read(¤t->mm->mmap_sem); 905 906 return error; 907 } 908