1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/madvise.c 4 * 5 * Copyright (C) 1999 Linus Torvalds 6 * Copyright (C) 2002 Christoph Hellwig 7 */ 8 9 #include <linux/mman.h> 10 #include <linux/pagemap.h> 11 #include <linux/syscalls.h> 12 #include <linux/mempolicy.h> 13 #include <linux/page-isolation.h> 14 #include <linux/page_idle.h> 15 #include <linux/userfaultfd_k.h> 16 #include <linux/hugetlb.h> 17 #include <linux/falloc.h> 18 #include <linux/fadvise.h> 19 #include <linux/sched.h> 20 #include <linux/ksm.h> 21 #include <linux/fs.h> 22 #include <linux/file.h> 23 #include <linux/blkdev.h> 24 #include <linux/backing-dev.h> 25 #include <linux/pagewalk.h> 26 #include <linux/swap.h> 27 #include <linux/swapops.h> 28 #include <linux/shmem_fs.h> 29 #include <linux/mmu_notifier.h> 30 31 #include <asm/tlb.h> 32 33 #include "internal.h" 34 35 struct madvise_walk_private { 36 struct mmu_gather *tlb; 37 bool pageout; 38 }; 39 40 /* 41 * Any behaviour which results in changes to the vma->vm_flags needs to 42 * take mmap_sem for writing. Others, which simply traverse vmas, need 43 * to only take it for reading. 44 */ 45 static int madvise_need_mmap_write(int behavior) 46 { 47 switch (behavior) { 48 case MADV_REMOVE: 49 case MADV_WILLNEED: 50 case MADV_DONTNEED: 51 case MADV_COLD: 52 case MADV_PAGEOUT: 53 case MADV_FREE: 54 return 0; 55 default: 56 /* be safe, default to 1. list exceptions explicitly */ 57 return 1; 58 } 59 } 60 61 /* 62 * We can potentially split a vm area into separate 63 * areas, each area with its own behavior. 64 */ 65 static long madvise_behavior(struct vm_area_struct *vma, 66 struct vm_area_struct **prev, 67 unsigned long start, unsigned long end, int behavior) 68 { 69 struct mm_struct *mm = vma->vm_mm; 70 int error = 0; 71 pgoff_t pgoff; 72 unsigned long new_flags = vma->vm_flags; 73 74 switch (behavior) { 75 case MADV_NORMAL: 76 new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ; 77 break; 78 case MADV_SEQUENTIAL: 79 new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ; 80 break; 81 case MADV_RANDOM: 82 new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ; 83 break; 84 case MADV_DONTFORK: 85 new_flags |= VM_DONTCOPY; 86 break; 87 case MADV_DOFORK: 88 if (vma->vm_flags & VM_IO) { 89 error = -EINVAL; 90 goto out; 91 } 92 new_flags &= ~VM_DONTCOPY; 93 break; 94 case MADV_WIPEONFORK: 95 /* MADV_WIPEONFORK is only supported on anonymous memory. */ 96 if (vma->vm_file || vma->vm_flags & VM_SHARED) { 97 error = -EINVAL; 98 goto out; 99 } 100 new_flags |= VM_WIPEONFORK; 101 break; 102 case MADV_KEEPONFORK: 103 new_flags &= ~VM_WIPEONFORK; 104 break; 105 case MADV_DONTDUMP: 106 new_flags |= VM_DONTDUMP; 107 break; 108 case MADV_DODUMP: 109 if (!is_vm_hugetlb_page(vma) && new_flags & VM_SPECIAL) { 110 error = -EINVAL; 111 goto out; 112 } 113 new_flags &= ~VM_DONTDUMP; 114 break; 115 case MADV_MERGEABLE: 116 case MADV_UNMERGEABLE: 117 error = ksm_madvise(vma, start, end, behavior, &new_flags); 118 if (error) 119 goto out_convert_errno; 120 break; 121 case MADV_HUGEPAGE: 122 case MADV_NOHUGEPAGE: 123 error = hugepage_madvise(vma, &new_flags, behavior); 124 if (error) 125 goto out_convert_errno; 126 break; 127 } 128 129 if (new_flags == vma->vm_flags) { 130 *prev = vma; 131 goto out; 132 } 133 134 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT); 135 *prev = vma_merge(mm, *prev, start, end, new_flags, vma->anon_vma, 136 vma->vm_file, pgoff, vma_policy(vma), 137 vma->vm_userfaultfd_ctx); 138 if (*prev) { 139 vma = *prev; 140 goto success; 141 } 142 143 *prev = vma; 144 145 if (start != vma->vm_start) { 146 if (unlikely(mm->map_count >= sysctl_max_map_count)) { 147 error = -ENOMEM; 148 goto out; 149 } 150 error = __split_vma(mm, vma, start, 1); 151 if (error) 152 goto out_convert_errno; 153 } 154 155 if (end != vma->vm_end) { 156 if (unlikely(mm->map_count >= sysctl_max_map_count)) { 157 error = -ENOMEM; 158 goto out; 159 } 160 error = __split_vma(mm, vma, end, 0); 161 if (error) 162 goto out_convert_errno; 163 } 164 165 success: 166 /* 167 * vm_flags is protected by the mmap_sem held in write mode. 168 */ 169 vma->vm_flags = new_flags; 170 171 out_convert_errno: 172 /* 173 * madvise() returns EAGAIN if kernel resources, such as 174 * slab, are temporarily unavailable. 175 */ 176 if (error == -ENOMEM) 177 error = -EAGAIN; 178 out: 179 return error; 180 } 181 182 #ifdef CONFIG_SWAP 183 static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start, 184 unsigned long end, struct mm_walk *walk) 185 { 186 pte_t *orig_pte; 187 struct vm_area_struct *vma = walk->private; 188 unsigned long index; 189 190 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 191 return 0; 192 193 for (index = start; index != end; index += PAGE_SIZE) { 194 pte_t pte; 195 swp_entry_t entry; 196 struct page *page; 197 spinlock_t *ptl; 198 199 orig_pte = pte_offset_map_lock(vma->vm_mm, pmd, start, &ptl); 200 pte = *(orig_pte + ((index - start) / PAGE_SIZE)); 201 pte_unmap_unlock(orig_pte, ptl); 202 203 if (pte_present(pte) || pte_none(pte)) 204 continue; 205 entry = pte_to_swp_entry(pte); 206 if (unlikely(non_swap_entry(entry))) 207 continue; 208 209 page = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE, 210 vma, index, false); 211 if (page) 212 put_page(page); 213 } 214 215 return 0; 216 } 217 218 static const struct mm_walk_ops swapin_walk_ops = { 219 .pmd_entry = swapin_walk_pmd_entry, 220 }; 221 222 static void force_shm_swapin_readahead(struct vm_area_struct *vma, 223 unsigned long start, unsigned long end, 224 struct address_space *mapping) 225 { 226 pgoff_t index; 227 struct page *page; 228 swp_entry_t swap; 229 230 for (; start < end; start += PAGE_SIZE) { 231 index = ((start - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 232 233 page = find_get_entry(mapping, index); 234 if (!xa_is_value(page)) { 235 if (page) 236 put_page(page); 237 continue; 238 } 239 swap = radix_to_swp_entry(page); 240 page = read_swap_cache_async(swap, GFP_HIGHUSER_MOVABLE, 241 NULL, 0, false); 242 if (page) 243 put_page(page); 244 } 245 246 lru_add_drain(); /* Push any new pages onto the LRU now */ 247 } 248 #endif /* CONFIG_SWAP */ 249 250 /* 251 * Schedule all required I/O operations. Do not wait for completion. 252 */ 253 static long madvise_willneed(struct vm_area_struct *vma, 254 struct vm_area_struct **prev, 255 unsigned long start, unsigned long end) 256 { 257 struct file *file = vma->vm_file; 258 loff_t offset; 259 260 *prev = vma; 261 #ifdef CONFIG_SWAP 262 if (!file) { 263 walk_page_range(vma->vm_mm, start, end, &swapin_walk_ops, vma); 264 lru_add_drain(); /* Push any new pages onto the LRU now */ 265 return 0; 266 } 267 268 if (shmem_mapping(file->f_mapping)) { 269 force_shm_swapin_readahead(vma, start, end, 270 file->f_mapping); 271 return 0; 272 } 273 #else 274 if (!file) 275 return -EBADF; 276 #endif 277 278 if (IS_DAX(file_inode(file))) { 279 /* no bad return value, but ignore advice */ 280 return 0; 281 } 282 283 /* 284 * Filesystem's fadvise may need to take various locks. We need to 285 * explicitly grab a reference because the vma (and hence the 286 * vma's reference to the file) can go away as soon as we drop 287 * mmap_sem. 288 */ 289 *prev = NULL; /* tell sys_madvise we drop mmap_sem */ 290 get_file(file); 291 up_read(¤t->mm->mmap_sem); 292 offset = (loff_t)(start - vma->vm_start) 293 + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 294 vfs_fadvise(file, offset, end - start, POSIX_FADV_WILLNEED); 295 fput(file); 296 down_read(¤t->mm->mmap_sem); 297 return 0; 298 } 299 300 static int madvise_cold_or_pageout_pte_range(pmd_t *pmd, 301 unsigned long addr, unsigned long end, 302 struct mm_walk *walk) 303 { 304 struct madvise_walk_private *private = walk->private; 305 struct mmu_gather *tlb = private->tlb; 306 bool pageout = private->pageout; 307 struct mm_struct *mm = tlb->mm; 308 struct vm_area_struct *vma = walk->vma; 309 pte_t *orig_pte, *pte, ptent; 310 spinlock_t *ptl; 311 struct page *page = NULL; 312 LIST_HEAD(page_list); 313 314 if (fatal_signal_pending(current)) 315 return -EINTR; 316 317 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 318 if (pmd_trans_huge(*pmd)) { 319 pmd_t orig_pmd; 320 unsigned long next = pmd_addr_end(addr, end); 321 322 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 323 ptl = pmd_trans_huge_lock(pmd, vma); 324 if (!ptl) 325 return 0; 326 327 orig_pmd = *pmd; 328 if (is_huge_zero_pmd(orig_pmd)) 329 goto huge_unlock; 330 331 if (unlikely(!pmd_present(orig_pmd))) { 332 VM_BUG_ON(thp_migration_supported() && 333 !is_pmd_migration_entry(orig_pmd)); 334 goto huge_unlock; 335 } 336 337 page = pmd_page(orig_pmd); 338 339 /* Do not interfere with other mappings of this page */ 340 if (page_mapcount(page) != 1) 341 goto huge_unlock; 342 343 if (next - addr != HPAGE_PMD_SIZE) { 344 int err; 345 346 get_page(page); 347 spin_unlock(ptl); 348 lock_page(page); 349 err = split_huge_page(page); 350 unlock_page(page); 351 put_page(page); 352 if (!err) 353 goto regular_page; 354 return 0; 355 } 356 357 if (pmd_young(orig_pmd)) { 358 pmdp_invalidate(vma, addr, pmd); 359 orig_pmd = pmd_mkold(orig_pmd); 360 361 set_pmd_at(mm, addr, pmd, orig_pmd); 362 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 363 } 364 365 ClearPageReferenced(page); 366 test_and_clear_page_young(page); 367 if (pageout) { 368 if (!isolate_lru_page(page)) { 369 if (PageUnevictable(page)) 370 putback_lru_page(page); 371 else 372 list_add(&page->lru, &page_list); 373 } 374 } else 375 deactivate_page(page); 376 huge_unlock: 377 spin_unlock(ptl); 378 if (pageout) 379 reclaim_pages(&page_list); 380 return 0; 381 } 382 383 if (pmd_trans_unstable(pmd)) 384 return 0; 385 regular_page: 386 #endif 387 tlb_change_page_size(tlb, PAGE_SIZE); 388 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 389 flush_tlb_batched_pending(mm); 390 arch_enter_lazy_mmu_mode(); 391 for (; addr < end; pte++, addr += PAGE_SIZE) { 392 ptent = *pte; 393 394 if (pte_none(ptent)) 395 continue; 396 397 if (!pte_present(ptent)) 398 continue; 399 400 page = vm_normal_page(vma, addr, ptent); 401 if (!page) 402 continue; 403 404 /* 405 * Creating a THP page is expensive so split it only if we 406 * are sure it's worth. Split it if we are only owner. 407 */ 408 if (PageTransCompound(page)) { 409 if (page_mapcount(page) != 1) 410 break; 411 get_page(page); 412 if (!trylock_page(page)) { 413 put_page(page); 414 break; 415 } 416 pte_unmap_unlock(orig_pte, ptl); 417 if (split_huge_page(page)) { 418 unlock_page(page); 419 put_page(page); 420 pte_offset_map_lock(mm, pmd, addr, &ptl); 421 break; 422 } 423 unlock_page(page); 424 put_page(page); 425 pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 426 pte--; 427 addr -= PAGE_SIZE; 428 continue; 429 } 430 431 /* Do not interfere with other mappings of this page */ 432 if (page_mapcount(page) != 1) 433 continue; 434 435 VM_BUG_ON_PAGE(PageTransCompound(page), page); 436 437 if (pte_young(ptent)) { 438 ptent = ptep_get_and_clear_full(mm, addr, pte, 439 tlb->fullmm); 440 ptent = pte_mkold(ptent); 441 set_pte_at(mm, addr, pte, ptent); 442 tlb_remove_tlb_entry(tlb, pte, addr); 443 } 444 445 /* 446 * We are deactivating a page for accelerating reclaiming. 447 * VM couldn't reclaim the page unless we clear PG_young. 448 * As a side effect, it makes confuse idle-page tracking 449 * because they will miss recent referenced history. 450 */ 451 ClearPageReferenced(page); 452 test_and_clear_page_young(page); 453 if (pageout) { 454 if (!isolate_lru_page(page)) { 455 if (PageUnevictable(page)) 456 putback_lru_page(page); 457 else 458 list_add(&page->lru, &page_list); 459 } 460 } else 461 deactivate_page(page); 462 } 463 464 arch_leave_lazy_mmu_mode(); 465 pte_unmap_unlock(orig_pte, ptl); 466 if (pageout) 467 reclaim_pages(&page_list); 468 cond_resched(); 469 470 return 0; 471 } 472 473 static const struct mm_walk_ops cold_walk_ops = { 474 .pmd_entry = madvise_cold_or_pageout_pte_range, 475 }; 476 477 static void madvise_cold_page_range(struct mmu_gather *tlb, 478 struct vm_area_struct *vma, 479 unsigned long addr, unsigned long end) 480 { 481 struct madvise_walk_private walk_private = { 482 .pageout = false, 483 .tlb = tlb, 484 }; 485 486 tlb_start_vma(tlb, vma); 487 walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private); 488 tlb_end_vma(tlb, vma); 489 } 490 491 static long madvise_cold(struct vm_area_struct *vma, 492 struct vm_area_struct **prev, 493 unsigned long start_addr, unsigned long end_addr) 494 { 495 struct mm_struct *mm = vma->vm_mm; 496 struct mmu_gather tlb; 497 498 *prev = vma; 499 if (!can_madv_lru_vma(vma)) 500 return -EINVAL; 501 502 lru_add_drain(); 503 tlb_gather_mmu(&tlb, mm, start_addr, end_addr); 504 madvise_cold_page_range(&tlb, vma, start_addr, end_addr); 505 tlb_finish_mmu(&tlb, start_addr, end_addr); 506 507 return 0; 508 } 509 510 static void madvise_pageout_page_range(struct mmu_gather *tlb, 511 struct vm_area_struct *vma, 512 unsigned long addr, unsigned long end) 513 { 514 struct madvise_walk_private walk_private = { 515 .pageout = true, 516 .tlb = tlb, 517 }; 518 519 tlb_start_vma(tlb, vma); 520 walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private); 521 tlb_end_vma(tlb, vma); 522 } 523 524 static inline bool can_do_pageout(struct vm_area_struct *vma) 525 { 526 if (vma_is_anonymous(vma)) 527 return true; 528 if (!vma->vm_file) 529 return false; 530 /* 531 * paging out pagecache only for non-anonymous mappings that correspond 532 * to the files the calling process could (if tried) open for writing; 533 * otherwise we'd be including shared non-exclusive mappings, which 534 * opens a side channel. 535 */ 536 return inode_owner_or_capable(file_inode(vma->vm_file)) || 537 inode_permission(file_inode(vma->vm_file), MAY_WRITE) == 0; 538 } 539 540 static long madvise_pageout(struct vm_area_struct *vma, 541 struct vm_area_struct **prev, 542 unsigned long start_addr, unsigned long end_addr) 543 { 544 struct mm_struct *mm = vma->vm_mm; 545 struct mmu_gather tlb; 546 547 *prev = vma; 548 if (!can_madv_lru_vma(vma)) 549 return -EINVAL; 550 551 if (!can_do_pageout(vma)) 552 return 0; 553 554 lru_add_drain(); 555 tlb_gather_mmu(&tlb, mm, start_addr, end_addr); 556 madvise_pageout_page_range(&tlb, vma, start_addr, end_addr); 557 tlb_finish_mmu(&tlb, start_addr, end_addr); 558 559 return 0; 560 } 561 562 static int madvise_free_pte_range(pmd_t *pmd, unsigned long addr, 563 unsigned long end, struct mm_walk *walk) 564 565 { 566 struct mmu_gather *tlb = walk->private; 567 struct mm_struct *mm = tlb->mm; 568 struct vm_area_struct *vma = walk->vma; 569 spinlock_t *ptl; 570 pte_t *orig_pte, *pte, ptent; 571 struct page *page; 572 int nr_swap = 0; 573 unsigned long next; 574 575 next = pmd_addr_end(addr, end); 576 if (pmd_trans_huge(*pmd)) 577 if (madvise_free_huge_pmd(tlb, vma, pmd, addr, next)) 578 goto next; 579 580 if (pmd_trans_unstable(pmd)) 581 return 0; 582 583 tlb_change_page_size(tlb, PAGE_SIZE); 584 orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 585 flush_tlb_batched_pending(mm); 586 arch_enter_lazy_mmu_mode(); 587 for (; addr != end; pte++, addr += PAGE_SIZE) { 588 ptent = *pte; 589 590 if (pte_none(ptent)) 591 continue; 592 /* 593 * If the pte has swp_entry, just clear page table to 594 * prevent swap-in which is more expensive rather than 595 * (page allocation + zeroing). 596 */ 597 if (!pte_present(ptent)) { 598 swp_entry_t entry; 599 600 entry = pte_to_swp_entry(ptent); 601 if (non_swap_entry(entry)) 602 continue; 603 nr_swap--; 604 free_swap_and_cache(entry); 605 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 606 continue; 607 } 608 609 page = vm_normal_page(vma, addr, ptent); 610 if (!page) 611 continue; 612 613 /* 614 * If pmd isn't transhuge but the page is THP and 615 * is owned by only this process, split it and 616 * deactivate all pages. 617 */ 618 if (PageTransCompound(page)) { 619 if (page_mapcount(page) != 1) 620 goto out; 621 get_page(page); 622 if (!trylock_page(page)) { 623 put_page(page); 624 goto out; 625 } 626 pte_unmap_unlock(orig_pte, ptl); 627 if (split_huge_page(page)) { 628 unlock_page(page); 629 put_page(page); 630 pte_offset_map_lock(mm, pmd, addr, &ptl); 631 goto out; 632 } 633 unlock_page(page); 634 put_page(page); 635 pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 636 pte--; 637 addr -= PAGE_SIZE; 638 continue; 639 } 640 641 VM_BUG_ON_PAGE(PageTransCompound(page), page); 642 643 if (PageSwapCache(page) || PageDirty(page)) { 644 if (!trylock_page(page)) 645 continue; 646 /* 647 * If page is shared with others, we couldn't clear 648 * PG_dirty of the page. 649 */ 650 if (page_mapcount(page) != 1) { 651 unlock_page(page); 652 continue; 653 } 654 655 if (PageSwapCache(page) && !try_to_free_swap(page)) { 656 unlock_page(page); 657 continue; 658 } 659 660 ClearPageDirty(page); 661 unlock_page(page); 662 } 663 664 if (pte_young(ptent) || pte_dirty(ptent)) { 665 /* 666 * Some of architecture(ex, PPC) don't update TLB 667 * with set_pte_at and tlb_remove_tlb_entry so for 668 * the portability, remap the pte with old|clean 669 * after pte clearing. 670 */ 671 ptent = ptep_get_and_clear_full(mm, addr, pte, 672 tlb->fullmm); 673 674 ptent = pte_mkold(ptent); 675 ptent = pte_mkclean(ptent); 676 set_pte_at(mm, addr, pte, ptent); 677 tlb_remove_tlb_entry(tlb, pte, addr); 678 } 679 mark_page_lazyfree(page); 680 } 681 out: 682 if (nr_swap) { 683 if (current->mm == mm) 684 sync_mm_rss(mm); 685 686 add_mm_counter(mm, MM_SWAPENTS, nr_swap); 687 } 688 arch_leave_lazy_mmu_mode(); 689 pte_unmap_unlock(orig_pte, ptl); 690 cond_resched(); 691 next: 692 return 0; 693 } 694 695 static const struct mm_walk_ops madvise_free_walk_ops = { 696 .pmd_entry = madvise_free_pte_range, 697 }; 698 699 static int madvise_free_single_vma(struct vm_area_struct *vma, 700 unsigned long start_addr, unsigned long end_addr) 701 { 702 struct mm_struct *mm = vma->vm_mm; 703 struct mmu_notifier_range range; 704 struct mmu_gather tlb; 705 706 /* MADV_FREE works for only anon vma at the moment */ 707 if (!vma_is_anonymous(vma)) 708 return -EINVAL; 709 710 range.start = max(vma->vm_start, start_addr); 711 if (range.start >= vma->vm_end) 712 return -EINVAL; 713 range.end = min(vma->vm_end, end_addr); 714 if (range.end <= vma->vm_start) 715 return -EINVAL; 716 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, 717 range.start, range.end); 718 719 lru_add_drain(); 720 tlb_gather_mmu(&tlb, mm, range.start, range.end); 721 update_hiwater_rss(mm); 722 723 mmu_notifier_invalidate_range_start(&range); 724 tlb_start_vma(&tlb, vma); 725 walk_page_range(vma->vm_mm, range.start, range.end, 726 &madvise_free_walk_ops, &tlb); 727 tlb_end_vma(&tlb, vma); 728 mmu_notifier_invalidate_range_end(&range); 729 tlb_finish_mmu(&tlb, range.start, range.end); 730 731 return 0; 732 } 733 734 /* 735 * Application no longer needs these pages. If the pages are dirty, 736 * it's OK to just throw them away. The app will be more careful about 737 * data it wants to keep. Be sure to free swap resources too. The 738 * zap_page_range call sets things up for shrink_active_list to actually free 739 * these pages later if no one else has touched them in the meantime, 740 * although we could add these pages to a global reuse list for 741 * shrink_active_list to pick up before reclaiming other pages. 742 * 743 * NB: This interface discards data rather than pushes it out to swap, 744 * as some implementations do. This has performance implications for 745 * applications like large transactional databases which want to discard 746 * pages in anonymous maps after committing to backing store the data 747 * that was kept in them. There is no reason to write this data out to 748 * the swap area if the application is discarding it. 749 * 750 * An interface that causes the system to free clean pages and flush 751 * dirty pages is already available as msync(MS_INVALIDATE). 752 */ 753 static long madvise_dontneed_single_vma(struct vm_area_struct *vma, 754 unsigned long start, unsigned long end) 755 { 756 zap_page_range(vma, start, end - start); 757 return 0; 758 } 759 760 static long madvise_dontneed_free(struct vm_area_struct *vma, 761 struct vm_area_struct **prev, 762 unsigned long start, unsigned long end, 763 int behavior) 764 { 765 *prev = vma; 766 if (!can_madv_lru_vma(vma)) 767 return -EINVAL; 768 769 if (!userfaultfd_remove(vma, start, end)) { 770 *prev = NULL; /* mmap_sem has been dropped, prev is stale */ 771 772 down_read(¤t->mm->mmap_sem); 773 vma = find_vma(current->mm, start); 774 if (!vma) 775 return -ENOMEM; 776 if (start < vma->vm_start) { 777 /* 778 * This "vma" under revalidation is the one 779 * with the lowest vma->vm_start where start 780 * is also < vma->vm_end. If start < 781 * vma->vm_start it means an hole materialized 782 * in the user address space within the 783 * virtual range passed to MADV_DONTNEED 784 * or MADV_FREE. 785 */ 786 return -ENOMEM; 787 } 788 if (!can_madv_lru_vma(vma)) 789 return -EINVAL; 790 if (end > vma->vm_end) { 791 /* 792 * Don't fail if end > vma->vm_end. If the old 793 * vma was splitted while the mmap_sem was 794 * released the effect of the concurrent 795 * operation may not cause madvise() to 796 * have an undefined result. There may be an 797 * adjacent next vma that we'll walk 798 * next. userfaultfd_remove() will generate an 799 * UFFD_EVENT_REMOVE repetition on the 800 * end-vma->vm_end range, but the manager can 801 * handle a repetition fine. 802 */ 803 end = vma->vm_end; 804 } 805 VM_WARN_ON(start >= end); 806 } 807 808 if (behavior == MADV_DONTNEED) 809 return madvise_dontneed_single_vma(vma, start, end); 810 else if (behavior == MADV_FREE) 811 return madvise_free_single_vma(vma, start, end); 812 else 813 return -EINVAL; 814 } 815 816 /* 817 * Application wants to free up the pages and associated backing store. 818 * This is effectively punching a hole into the middle of a file. 819 */ 820 static long madvise_remove(struct vm_area_struct *vma, 821 struct vm_area_struct **prev, 822 unsigned long start, unsigned long end) 823 { 824 loff_t offset; 825 int error; 826 struct file *f; 827 828 *prev = NULL; /* tell sys_madvise we drop mmap_sem */ 829 830 if (vma->vm_flags & VM_LOCKED) 831 return -EINVAL; 832 833 f = vma->vm_file; 834 835 if (!f || !f->f_mapping || !f->f_mapping->host) { 836 return -EINVAL; 837 } 838 839 if ((vma->vm_flags & (VM_SHARED|VM_WRITE)) != (VM_SHARED|VM_WRITE)) 840 return -EACCES; 841 842 offset = (loff_t)(start - vma->vm_start) 843 + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 844 845 /* 846 * Filesystem's fallocate may need to take i_mutex. We need to 847 * explicitly grab a reference because the vma (and hence the 848 * vma's reference to the file) can go away as soon as we drop 849 * mmap_sem. 850 */ 851 get_file(f); 852 if (userfaultfd_remove(vma, start, end)) { 853 /* mmap_sem was not released by userfaultfd_remove() */ 854 up_read(¤t->mm->mmap_sem); 855 } 856 error = vfs_fallocate(f, 857 FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 858 offset, end - start); 859 fput(f); 860 down_read(¤t->mm->mmap_sem); 861 return error; 862 } 863 864 #ifdef CONFIG_MEMORY_FAILURE 865 /* 866 * Error injection support for memory error handling. 867 */ 868 static int madvise_inject_error(int behavior, 869 unsigned long start, unsigned long end) 870 { 871 struct page *page; 872 struct zone *zone; 873 unsigned long size; 874 875 if (!capable(CAP_SYS_ADMIN)) 876 return -EPERM; 877 878 879 for (; start < end; start += size) { 880 unsigned long pfn; 881 int ret; 882 883 ret = get_user_pages_fast(start, 1, 0, &page); 884 if (ret != 1) 885 return ret; 886 pfn = page_to_pfn(page); 887 888 /* 889 * When soft offlining hugepages, after migrating the page 890 * we dissolve it, therefore in the second loop "page" will 891 * no longer be a compound page. 892 */ 893 size = page_size(compound_head(page)); 894 895 if (PageHWPoison(page)) { 896 put_page(page); 897 continue; 898 } 899 900 if (behavior == MADV_SOFT_OFFLINE) { 901 pr_info("Soft offlining pfn %#lx at process virtual address %#lx\n", 902 pfn, start); 903 904 ret = soft_offline_page(pfn, MF_COUNT_INCREASED); 905 if (ret) 906 return ret; 907 continue; 908 } 909 910 pr_info("Injecting memory failure for pfn %#lx at process virtual address %#lx\n", 911 pfn, start); 912 913 /* 914 * Drop the page reference taken by get_user_pages_fast(). In 915 * the absence of MF_COUNT_INCREASED the memory_failure() 916 * routine is responsible for pinning the page to prevent it 917 * from being released back to the page allocator. 918 */ 919 put_page(page); 920 ret = memory_failure(pfn, 0); 921 if (ret) 922 return ret; 923 } 924 925 /* Ensure that all poisoned pages are removed from per-cpu lists */ 926 for_each_populated_zone(zone) 927 drain_all_pages(zone); 928 929 return 0; 930 } 931 #endif 932 933 static long 934 madvise_vma(struct vm_area_struct *vma, struct vm_area_struct **prev, 935 unsigned long start, unsigned long end, int behavior) 936 { 937 switch (behavior) { 938 case MADV_REMOVE: 939 return madvise_remove(vma, prev, start, end); 940 case MADV_WILLNEED: 941 return madvise_willneed(vma, prev, start, end); 942 case MADV_COLD: 943 return madvise_cold(vma, prev, start, end); 944 case MADV_PAGEOUT: 945 return madvise_pageout(vma, prev, start, end); 946 case MADV_FREE: 947 case MADV_DONTNEED: 948 return madvise_dontneed_free(vma, prev, start, end, behavior); 949 default: 950 return madvise_behavior(vma, prev, start, end, behavior); 951 } 952 } 953 954 static bool 955 madvise_behavior_valid(int behavior) 956 { 957 switch (behavior) { 958 case MADV_DOFORK: 959 case MADV_DONTFORK: 960 case MADV_NORMAL: 961 case MADV_SEQUENTIAL: 962 case MADV_RANDOM: 963 case MADV_REMOVE: 964 case MADV_WILLNEED: 965 case MADV_DONTNEED: 966 case MADV_FREE: 967 case MADV_COLD: 968 case MADV_PAGEOUT: 969 #ifdef CONFIG_KSM 970 case MADV_MERGEABLE: 971 case MADV_UNMERGEABLE: 972 #endif 973 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 974 case MADV_HUGEPAGE: 975 case MADV_NOHUGEPAGE: 976 #endif 977 case MADV_DONTDUMP: 978 case MADV_DODUMP: 979 case MADV_WIPEONFORK: 980 case MADV_KEEPONFORK: 981 #ifdef CONFIG_MEMORY_FAILURE 982 case MADV_SOFT_OFFLINE: 983 case MADV_HWPOISON: 984 #endif 985 return true; 986 987 default: 988 return false; 989 } 990 } 991 992 /* 993 * The madvise(2) system call. 994 * 995 * Applications can use madvise() to advise the kernel how it should 996 * handle paging I/O in this VM area. The idea is to help the kernel 997 * use appropriate read-ahead and caching techniques. The information 998 * provided is advisory only, and can be safely disregarded by the 999 * kernel without affecting the correct operation of the application. 1000 * 1001 * behavior values: 1002 * MADV_NORMAL - the default behavior is to read clusters. This 1003 * results in some read-ahead and read-behind. 1004 * MADV_RANDOM - the system should read the minimum amount of data 1005 * on any access, since it is unlikely that the appli- 1006 * cation will need more than what it asks for. 1007 * MADV_SEQUENTIAL - pages in the given range will probably be accessed 1008 * once, so they can be aggressively read ahead, and 1009 * can be freed soon after they are accessed. 1010 * MADV_WILLNEED - the application is notifying the system to read 1011 * some pages ahead. 1012 * MADV_DONTNEED - the application is finished with the given range, 1013 * so the kernel can free resources associated with it. 1014 * MADV_FREE - the application marks pages in the given range as lazy free, 1015 * where actual purges are postponed until memory pressure happens. 1016 * MADV_REMOVE - the application wants to free up the given range of 1017 * pages and associated backing store. 1018 * MADV_DONTFORK - omit this area from child's address space when forking: 1019 * typically, to avoid COWing pages pinned by get_user_pages(). 1020 * MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking. 1021 * MADV_WIPEONFORK - present the child process with zero-filled memory in this 1022 * range after a fork. 1023 * MADV_KEEPONFORK - undo the effect of MADV_WIPEONFORK 1024 * MADV_HWPOISON - trigger memory error handler as if the given memory range 1025 * were corrupted by unrecoverable hardware memory failure. 1026 * MADV_SOFT_OFFLINE - try to soft-offline the given range of memory. 1027 * MADV_MERGEABLE - the application recommends that KSM try to merge pages in 1028 * this area with pages of identical content from other such areas. 1029 * MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others. 1030 * MADV_HUGEPAGE - the application wants to back the given range by transparent 1031 * huge pages in the future. Existing pages might be coalesced and 1032 * new pages might be allocated as THP. 1033 * MADV_NOHUGEPAGE - mark the given range as not worth being backed by 1034 * transparent huge pages so the existing pages will not be 1035 * coalesced into THP and new pages will not be allocated as THP. 1036 * MADV_DONTDUMP - the application wants to prevent pages in the given range 1037 * from being included in its core dump. 1038 * MADV_DODUMP - cancel MADV_DONTDUMP: no longer exclude from core dump. 1039 * 1040 * return values: 1041 * zero - success 1042 * -EINVAL - start + len < 0, start is not page-aligned, 1043 * "behavior" is not a valid value, or application 1044 * is attempting to release locked or shared pages, 1045 * or the specified address range includes file, Huge TLB, 1046 * MAP_SHARED or VMPFNMAP range. 1047 * -ENOMEM - addresses in the specified range are not currently 1048 * mapped, or are outside the AS of the process. 1049 * -EIO - an I/O error occurred while paging in data. 1050 * -EBADF - map exists, but area maps something that isn't a file. 1051 * -EAGAIN - a kernel resource was temporarily unavailable. 1052 */ 1053 int do_madvise(unsigned long start, size_t len_in, int behavior) 1054 { 1055 unsigned long end, tmp; 1056 struct vm_area_struct *vma, *prev; 1057 int unmapped_error = 0; 1058 int error = -EINVAL; 1059 int write; 1060 size_t len; 1061 struct blk_plug plug; 1062 1063 start = untagged_addr(start); 1064 1065 if (!madvise_behavior_valid(behavior)) 1066 return error; 1067 1068 if (!PAGE_ALIGNED(start)) 1069 return error; 1070 len = PAGE_ALIGN(len_in); 1071 1072 /* Check to see whether len was rounded up from small -ve to zero */ 1073 if (len_in && !len) 1074 return error; 1075 1076 end = start + len; 1077 if (end < start) 1078 return error; 1079 1080 error = 0; 1081 if (end == start) 1082 return error; 1083 1084 #ifdef CONFIG_MEMORY_FAILURE 1085 if (behavior == MADV_HWPOISON || behavior == MADV_SOFT_OFFLINE) 1086 return madvise_inject_error(behavior, start, start + len_in); 1087 #endif 1088 1089 write = madvise_need_mmap_write(behavior); 1090 if (write) { 1091 if (down_write_killable(¤t->mm->mmap_sem)) 1092 return -EINTR; 1093 } else { 1094 down_read(¤t->mm->mmap_sem); 1095 } 1096 1097 /* 1098 * If the interval [start,end) covers some unmapped address 1099 * ranges, just ignore them, but return -ENOMEM at the end. 1100 * - different from the way of handling in mlock etc. 1101 */ 1102 vma = find_vma_prev(current->mm, start, &prev); 1103 if (vma && start > vma->vm_start) 1104 prev = vma; 1105 1106 blk_start_plug(&plug); 1107 for (;;) { 1108 /* Still start < end. */ 1109 error = -ENOMEM; 1110 if (!vma) 1111 goto out; 1112 1113 /* Here start < (end|vma->vm_end). */ 1114 if (start < vma->vm_start) { 1115 unmapped_error = -ENOMEM; 1116 start = vma->vm_start; 1117 if (start >= end) 1118 goto out; 1119 } 1120 1121 /* Here vma->vm_start <= start < (end|vma->vm_end) */ 1122 tmp = vma->vm_end; 1123 if (end < tmp) 1124 tmp = end; 1125 1126 /* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */ 1127 error = madvise_vma(vma, &prev, start, tmp, behavior); 1128 if (error) 1129 goto out; 1130 start = tmp; 1131 if (prev && start < prev->vm_end) 1132 start = prev->vm_end; 1133 error = unmapped_error; 1134 if (start >= end) 1135 goto out; 1136 if (prev) 1137 vma = prev->vm_next; 1138 else /* madvise_remove dropped mmap_sem */ 1139 vma = find_vma(current->mm, start); 1140 } 1141 out: 1142 blk_finish_plug(&plug); 1143 if (write) 1144 up_write(¤t->mm->mmap_sem); 1145 else 1146 up_read(¤t->mm->mmap_sem); 1147 1148 return error; 1149 } 1150 1151 SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior) 1152 { 1153 return do_madvise(start, len_in, behavior); 1154 } 1155