xref: /openbmc/linux/mm/madvise.c (revision 5d7800d9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *	linux/mm/madvise.c
4  *
5  * Copyright (C) 1999  Linus Torvalds
6  * Copyright (C) 2002  Christoph Hellwig
7  */
8 
9 #include <linux/mman.h>
10 #include <linux/pagemap.h>
11 #include <linux/syscalls.h>
12 #include <linux/mempolicy.h>
13 #include <linux/page-isolation.h>
14 #include <linux/page_idle.h>
15 #include <linux/userfaultfd_k.h>
16 #include <linux/hugetlb.h>
17 #include <linux/falloc.h>
18 #include <linux/fadvise.h>
19 #include <linux/sched.h>
20 #include <linux/sched/mm.h>
21 #include <linux/mm_inline.h>
22 #include <linux/string.h>
23 #include <linux/uio.h>
24 #include <linux/ksm.h>
25 #include <linux/fs.h>
26 #include <linux/file.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagewalk.h>
30 #include <linux/swap.h>
31 #include <linux/swapops.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/mmu_notifier.h>
34 
35 #include <asm/tlb.h>
36 
37 #include "internal.h"
38 #include "swap.h"
39 
40 struct madvise_walk_private {
41 	struct mmu_gather *tlb;
42 	bool pageout;
43 };
44 
45 /*
46  * Any behaviour which results in changes to the vma->vm_flags needs to
47  * take mmap_lock for writing. Others, which simply traverse vmas, need
48  * to only take it for reading.
49  */
50 static int madvise_need_mmap_write(int behavior)
51 {
52 	switch (behavior) {
53 	case MADV_REMOVE:
54 	case MADV_WILLNEED:
55 	case MADV_DONTNEED:
56 	case MADV_DONTNEED_LOCKED:
57 	case MADV_COLD:
58 	case MADV_PAGEOUT:
59 	case MADV_FREE:
60 	case MADV_POPULATE_READ:
61 	case MADV_POPULATE_WRITE:
62 	case MADV_COLLAPSE:
63 		return 0;
64 	default:
65 		/* be safe, default to 1. list exceptions explicitly */
66 		return 1;
67 	}
68 }
69 
70 #ifdef CONFIG_ANON_VMA_NAME
71 struct anon_vma_name *anon_vma_name_alloc(const char *name)
72 {
73 	struct anon_vma_name *anon_name;
74 	size_t count;
75 
76 	/* Add 1 for NUL terminator at the end of the anon_name->name */
77 	count = strlen(name) + 1;
78 	anon_name = kmalloc(struct_size(anon_name, name, count), GFP_KERNEL);
79 	if (anon_name) {
80 		kref_init(&anon_name->kref);
81 		memcpy(anon_name->name, name, count);
82 	}
83 
84 	return anon_name;
85 }
86 
87 void anon_vma_name_free(struct kref *kref)
88 {
89 	struct anon_vma_name *anon_name =
90 			container_of(kref, struct anon_vma_name, kref);
91 	kfree(anon_name);
92 }
93 
94 struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma)
95 {
96 	mmap_assert_locked(vma->vm_mm);
97 
98 	return vma->anon_name;
99 }
100 
101 /* mmap_lock should be write-locked */
102 static int replace_anon_vma_name(struct vm_area_struct *vma,
103 				 struct anon_vma_name *anon_name)
104 {
105 	struct anon_vma_name *orig_name = anon_vma_name(vma);
106 
107 	if (!anon_name) {
108 		vma->anon_name = NULL;
109 		anon_vma_name_put(orig_name);
110 		return 0;
111 	}
112 
113 	if (anon_vma_name_eq(orig_name, anon_name))
114 		return 0;
115 
116 	vma->anon_name = anon_vma_name_reuse(anon_name);
117 	anon_vma_name_put(orig_name);
118 
119 	return 0;
120 }
121 #else /* CONFIG_ANON_VMA_NAME */
122 static int replace_anon_vma_name(struct vm_area_struct *vma,
123 				 struct anon_vma_name *anon_name)
124 {
125 	if (anon_name)
126 		return -EINVAL;
127 
128 	return 0;
129 }
130 #endif /* CONFIG_ANON_VMA_NAME */
131 /*
132  * Update the vm_flags on region of a vma, splitting it or merging it as
133  * necessary.  Must be called with mmap_lock held for writing;
134  * Caller should ensure anon_name stability by raising its refcount even when
135  * anon_name belongs to a valid vma because this function might free that vma.
136  */
137 static int madvise_update_vma(struct vm_area_struct *vma,
138 			      struct vm_area_struct **prev, unsigned long start,
139 			      unsigned long end, unsigned long new_flags,
140 			      struct anon_vma_name *anon_name)
141 {
142 	struct mm_struct *mm = vma->vm_mm;
143 	int error;
144 	pgoff_t pgoff;
145 	VMA_ITERATOR(vmi, mm, start);
146 
147 	if (new_flags == vma->vm_flags && anon_vma_name_eq(anon_vma_name(vma), anon_name)) {
148 		*prev = vma;
149 		return 0;
150 	}
151 
152 	pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
153 	*prev = vma_merge(&vmi, mm, *prev, start, end, new_flags,
154 			  vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
155 			  vma->vm_userfaultfd_ctx, anon_name);
156 	if (*prev) {
157 		vma = *prev;
158 		goto success;
159 	}
160 
161 	*prev = vma;
162 
163 	if (start != vma->vm_start) {
164 		error = split_vma(&vmi, vma, start, 1);
165 		if (error)
166 			return error;
167 	}
168 
169 	if (end != vma->vm_end) {
170 		error = split_vma(&vmi, vma, end, 0);
171 		if (error)
172 			return error;
173 	}
174 
175 success:
176 	/*
177 	 * vm_flags is protected by the mmap_lock held in write mode.
178 	 */
179 	vm_flags_reset(vma, new_flags);
180 	if (!vma->vm_file || vma_is_anon_shmem(vma)) {
181 		error = replace_anon_vma_name(vma, anon_name);
182 		if (error)
183 			return error;
184 	}
185 
186 	return 0;
187 }
188 
189 #ifdef CONFIG_SWAP
190 static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start,
191 		unsigned long end, struct mm_walk *walk)
192 {
193 	struct vm_area_struct *vma = walk->private;
194 	struct swap_iocb *splug = NULL;
195 	pte_t *ptep = NULL;
196 	spinlock_t *ptl;
197 	unsigned long addr;
198 
199 	for (addr = start; addr < end; addr += PAGE_SIZE) {
200 		pte_t pte;
201 		swp_entry_t entry;
202 		struct page *page;
203 
204 		if (!ptep++) {
205 			ptep = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
206 			if (!ptep)
207 				break;
208 		}
209 
210 		pte = ptep_get(ptep);
211 		if (!is_swap_pte(pte))
212 			continue;
213 		entry = pte_to_swp_entry(pte);
214 		if (unlikely(non_swap_entry(entry)))
215 			continue;
216 
217 		pte_unmap_unlock(ptep, ptl);
218 		ptep = NULL;
219 
220 		page = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE,
221 					     vma, addr, false, &splug);
222 		if (page)
223 			put_page(page);
224 	}
225 
226 	if (ptep)
227 		pte_unmap_unlock(ptep, ptl);
228 	swap_read_unplug(splug);
229 	cond_resched();
230 
231 	return 0;
232 }
233 
234 static const struct mm_walk_ops swapin_walk_ops = {
235 	.pmd_entry		= swapin_walk_pmd_entry,
236 };
237 
238 static void shmem_swapin_range(struct vm_area_struct *vma,
239 		unsigned long start, unsigned long end,
240 		struct address_space *mapping)
241 {
242 	XA_STATE(xas, &mapping->i_pages, linear_page_index(vma, start));
243 	pgoff_t end_index = linear_page_index(vma, end) - 1;
244 	struct page *page;
245 	struct swap_iocb *splug = NULL;
246 
247 	rcu_read_lock();
248 	xas_for_each(&xas, page, end_index) {
249 		unsigned long addr;
250 		swp_entry_t entry;
251 
252 		if (!xa_is_value(page))
253 			continue;
254 		entry = radix_to_swp_entry(page);
255 		/* There might be swapin error entries in shmem mapping. */
256 		if (non_swap_entry(entry))
257 			continue;
258 
259 		addr = vma->vm_start +
260 			((xas.xa_index - vma->vm_pgoff) << PAGE_SHIFT);
261 		xas_pause(&xas);
262 		rcu_read_unlock();
263 
264 		page = read_swap_cache_async(entry, mapping_gfp_mask(mapping),
265 					     vma, addr, false, &splug);
266 		if (page)
267 			put_page(page);
268 
269 		rcu_read_lock();
270 	}
271 	rcu_read_unlock();
272 	swap_read_unplug(splug);
273 }
274 #endif		/* CONFIG_SWAP */
275 
276 /*
277  * Schedule all required I/O operations.  Do not wait for completion.
278  */
279 static long madvise_willneed(struct vm_area_struct *vma,
280 			     struct vm_area_struct **prev,
281 			     unsigned long start, unsigned long end)
282 {
283 	struct mm_struct *mm = vma->vm_mm;
284 	struct file *file = vma->vm_file;
285 	loff_t offset;
286 
287 	*prev = vma;
288 #ifdef CONFIG_SWAP
289 	if (!file) {
290 		walk_page_range(vma->vm_mm, start, end, &swapin_walk_ops, vma);
291 		lru_add_drain(); /* Push any new pages onto the LRU now */
292 		return 0;
293 	}
294 
295 	if (shmem_mapping(file->f_mapping)) {
296 		shmem_swapin_range(vma, start, end, file->f_mapping);
297 		lru_add_drain(); /* Push any new pages onto the LRU now */
298 		return 0;
299 	}
300 #else
301 	if (!file)
302 		return -EBADF;
303 #endif
304 
305 	if (IS_DAX(file_inode(file))) {
306 		/* no bad return value, but ignore advice */
307 		return 0;
308 	}
309 
310 	/*
311 	 * Filesystem's fadvise may need to take various locks.  We need to
312 	 * explicitly grab a reference because the vma (and hence the
313 	 * vma's reference to the file) can go away as soon as we drop
314 	 * mmap_lock.
315 	 */
316 	*prev = NULL;	/* tell sys_madvise we drop mmap_lock */
317 	get_file(file);
318 	offset = (loff_t)(start - vma->vm_start)
319 			+ ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
320 	mmap_read_unlock(mm);
321 	vfs_fadvise(file, offset, end - start, POSIX_FADV_WILLNEED);
322 	fput(file);
323 	mmap_read_lock(mm);
324 	return 0;
325 }
326 
327 static inline bool can_do_file_pageout(struct vm_area_struct *vma)
328 {
329 	if (!vma->vm_file)
330 		return false;
331 	/*
332 	 * paging out pagecache only for non-anonymous mappings that correspond
333 	 * to the files the calling process could (if tried) open for writing;
334 	 * otherwise we'd be including shared non-exclusive mappings, which
335 	 * opens a side channel.
336 	 */
337 	return inode_owner_or_capable(&nop_mnt_idmap,
338 				      file_inode(vma->vm_file)) ||
339 	       file_permission(vma->vm_file, MAY_WRITE) == 0;
340 }
341 
342 static int madvise_cold_or_pageout_pte_range(pmd_t *pmd,
343 				unsigned long addr, unsigned long end,
344 				struct mm_walk *walk)
345 {
346 	struct madvise_walk_private *private = walk->private;
347 	struct mmu_gather *tlb = private->tlb;
348 	bool pageout = private->pageout;
349 	struct mm_struct *mm = tlb->mm;
350 	struct vm_area_struct *vma = walk->vma;
351 	pte_t *start_pte, *pte, ptent;
352 	spinlock_t *ptl;
353 	struct folio *folio = NULL;
354 	LIST_HEAD(folio_list);
355 	bool pageout_anon_only_filter;
356 
357 	if (fatal_signal_pending(current))
358 		return -EINTR;
359 
360 	pageout_anon_only_filter = pageout && !vma_is_anonymous(vma) &&
361 					!can_do_file_pageout(vma);
362 
363 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
364 	if (pmd_trans_huge(*pmd)) {
365 		pmd_t orig_pmd;
366 		unsigned long next = pmd_addr_end(addr, end);
367 
368 		tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
369 		ptl = pmd_trans_huge_lock(pmd, vma);
370 		if (!ptl)
371 			return 0;
372 
373 		orig_pmd = *pmd;
374 		if (is_huge_zero_pmd(orig_pmd))
375 			goto huge_unlock;
376 
377 		if (unlikely(!pmd_present(orig_pmd))) {
378 			VM_BUG_ON(thp_migration_supported() &&
379 					!is_pmd_migration_entry(orig_pmd));
380 			goto huge_unlock;
381 		}
382 
383 		folio = pfn_folio(pmd_pfn(orig_pmd));
384 
385 		/* Do not interfere with other mappings of this folio */
386 		if (folio_mapcount(folio) != 1)
387 			goto huge_unlock;
388 
389 		if (pageout_anon_only_filter && !folio_test_anon(folio))
390 			goto huge_unlock;
391 
392 		if (next - addr != HPAGE_PMD_SIZE) {
393 			int err;
394 
395 			folio_get(folio);
396 			spin_unlock(ptl);
397 			folio_lock(folio);
398 			err = split_folio(folio);
399 			folio_unlock(folio);
400 			folio_put(folio);
401 			if (!err)
402 				goto regular_folio;
403 			return 0;
404 		}
405 
406 		if (pmd_young(orig_pmd)) {
407 			pmdp_invalidate(vma, addr, pmd);
408 			orig_pmd = pmd_mkold(orig_pmd);
409 
410 			set_pmd_at(mm, addr, pmd, orig_pmd);
411 			tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
412 		}
413 
414 		folio_clear_referenced(folio);
415 		folio_test_clear_young(folio);
416 		if (folio_test_active(folio))
417 			folio_set_workingset(folio);
418 		if (pageout) {
419 			if (folio_isolate_lru(folio)) {
420 				if (folio_test_unevictable(folio))
421 					folio_putback_lru(folio);
422 				else
423 					list_add(&folio->lru, &folio_list);
424 			}
425 		} else
426 			folio_deactivate(folio);
427 huge_unlock:
428 		spin_unlock(ptl);
429 		if (pageout)
430 			reclaim_pages(&folio_list);
431 		return 0;
432 	}
433 
434 regular_folio:
435 #endif
436 	tlb_change_page_size(tlb, PAGE_SIZE);
437 	start_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
438 	if (!start_pte)
439 		return 0;
440 	flush_tlb_batched_pending(mm);
441 	arch_enter_lazy_mmu_mode();
442 	for (; addr < end; pte++, addr += PAGE_SIZE) {
443 		ptent = ptep_get(pte);
444 
445 		if (pte_none(ptent))
446 			continue;
447 
448 		if (!pte_present(ptent))
449 			continue;
450 
451 		folio = vm_normal_folio(vma, addr, ptent);
452 		if (!folio || folio_is_zone_device(folio))
453 			continue;
454 
455 		/*
456 		 * Creating a THP page is expensive so split it only if we
457 		 * are sure it's worth. Split it if we are only owner.
458 		 */
459 		if (folio_test_large(folio)) {
460 			int err;
461 
462 			if (folio_mapcount(folio) != 1)
463 				break;
464 			if (pageout_anon_only_filter && !folio_test_anon(folio))
465 				break;
466 			if (!folio_trylock(folio))
467 				break;
468 			folio_get(folio);
469 			arch_leave_lazy_mmu_mode();
470 			pte_unmap_unlock(start_pte, ptl);
471 			start_pte = NULL;
472 			err = split_folio(folio);
473 			folio_unlock(folio);
474 			folio_put(folio);
475 			if (err)
476 				break;
477 			start_pte = pte =
478 				pte_offset_map_lock(mm, pmd, addr, &ptl);
479 			if (!start_pte)
480 				break;
481 			arch_enter_lazy_mmu_mode();
482 			pte--;
483 			addr -= PAGE_SIZE;
484 			continue;
485 		}
486 
487 		/*
488 		 * Do not interfere with other mappings of this folio and
489 		 * non-LRU folio.
490 		 */
491 		if (!folio_test_lru(folio) || folio_mapcount(folio) != 1)
492 			continue;
493 
494 		if (pageout_anon_only_filter && !folio_test_anon(folio))
495 			continue;
496 
497 		VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
498 
499 		if (pte_young(ptent)) {
500 			ptent = ptep_get_and_clear_full(mm, addr, pte,
501 							tlb->fullmm);
502 			ptent = pte_mkold(ptent);
503 			set_pte_at(mm, addr, pte, ptent);
504 			tlb_remove_tlb_entry(tlb, pte, addr);
505 		}
506 
507 		/*
508 		 * We are deactivating a folio for accelerating reclaiming.
509 		 * VM couldn't reclaim the folio unless we clear PG_young.
510 		 * As a side effect, it makes confuse idle-page tracking
511 		 * because they will miss recent referenced history.
512 		 */
513 		folio_clear_referenced(folio);
514 		folio_test_clear_young(folio);
515 		if (folio_test_active(folio))
516 			folio_set_workingset(folio);
517 		if (pageout) {
518 			if (folio_isolate_lru(folio)) {
519 				if (folio_test_unevictable(folio))
520 					folio_putback_lru(folio);
521 				else
522 					list_add(&folio->lru, &folio_list);
523 			}
524 		} else
525 			folio_deactivate(folio);
526 	}
527 
528 	if (start_pte) {
529 		arch_leave_lazy_mmu_mode();
530 		pte_unmap_unlock(start_pte, ptl);
531 	}
532 	if (pageout)
533 		reclaim_pages(&folio_list);
534 	cond_resched();
535 
536 	return 0;
537 }
538 
539 static const struct mm_walk_ops cold_walk_ops = {
540 	.pmd_entry = madvise_cold_or_pageout_pte_range,
541 };
542 
543 static void madvise_cold_page_range(struct mmu_gather *tlb,
544 			     struct vm_area_struct *vma,
545 			     unsigned long addr, unsigned long end)
546 {
547 	struct madvise_walk_private walk_private = {
548 		.pageout = false,
549 		.tlb = tlb,
550 	};
551 
552 	tlb_start_vma(tlb, vma);
553 	walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
554 	tlb_end_vma(tlb, vma);
555 }
556 
557 static inline bool can_madv_lru_vma(struct vm_area_struct *vma)
558 {
559 	return !(vma->vm_flags & (VM_LOCKED|VM_PFNMAP|VM_HUGETLB));
560 }
561 
562 static long madvise_cold(struct vm_area_struct *vma,
563 			struct vm_area_struct **prev,
564 			unsigned long start_addr, unsigned long end_addr)
565 {
566 	struct mm_struct *mm = vma->vm_mm;
567 	struct mmu_gather tlb;
568 
569 	*prev = vma;
570 	if (!can_madv_lru_vma(vma))
571 		return -EINVAL;
572 
573 	lru_add_drain();
574 	tlb_gather_mmu(&tlb, mm);
575 	madvise_cold_page_range(&tlb, vma, start_addr, end_addr);
576 	tlb_finish_mmu(&tlb);
577 
578 	return 0;
579 }
580 
581 static void madvise_pageout_page_range(struct mmu_gather *tlb,
582 			     struct vm_area_struct *vma,
583 			     unsigned long addr, unsigned long end)
584 {
585 	struct madvise_walk_private walk_private = {
586 		.pageout = true,
587 		.tlb = tlb,
588 	};
589 
590 	tlb_start_vma(tlb, vma);
591 	walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
592 	tlb_end_vma(tlb, vma);
593 }
594 
595 static long madvise_pageout(struct vm_area_struct *vma,
596 			struct vm_area_struct **prev,
597 			unsigned long start_addr, unsigned long end_addr)
598 {
599 	struct mm_struct *mm = vma->vm_mm;
600 	struct mmu_gather tlb;
601 
602 	*prev = vma;
603 	if (!can_madv_lru_vma(vma))
604 		return -EINVAL;
605 
606 	/*
607 	 * If the VMA belongs to a private file mapping, there can be private
608 	 * dirty pages which can be paged out if even this process is neither
609 	 * owner nor write capable of the file. We allow private file mappings
610 	 * further to pageout dirty anon pages.
611 	 */
612 	if (!vma_is_anonymous(vma) && (!can_do_file_pageout(vma) &&
613 				(vma->vm_flags & VM_MAYSHARE)))
614 		return 0;
615 
616 	lru_add_drain();
617 	tlb_gather_mmu(&tlb, mm);
618 	madvise_pageout_page_range(&tlb, vma, start_addr, end_addr);
619 	tlb_finish_mmu(&tlb);
620 
621 	return 0;
622 }
623 
624 static int madvise_free_pte_range(pmd_t *pmd, unsigned long addr,
625 				unsigned long end, struct mm_walk *walk)
626 
627 {
628 	struct mmu_gather *tlb = walk->private;
629 	struct mm_struct *mm = tlb->mm;
630 	struct vm_area_struct *vma = walk->vma;
631 	spinlock_t *ptl;
632 	pte_t *start_pte, *pte, ptent;
633 	struct folio *folio;
634 	int nr_swap = 0;
635 	unsigned long next;
636 
637 	next = pmd_addr_end(addr, end);
638 	if (pmd_trans_huge(*pmd))
639 		if (madvise_free_huge_pmd(tlb, vma, pmd, addr, next))
640 			return 0;
641 
642 	tlb_change_page_size(tlb, PAGE_SIZE);
643 	start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
644 	if (!start_pte)
645 		return 0;
646 	flush_tlb_batched_pending(mm);
647 	arch_enter_lazy_mmu_mode();
648 	for (; addr != end; pte++, addr += PAGE_SIZE) {
649 		ptent = ptep_get(pte);
650 
651 		if (pte_none(ptent))
652 			continue;
653 		/*
654 		 * If the pte has swp_entry, just clear page table to
655 		 * prevent swap-in which is more expensive rather than
656 		 * (page allocation + zeroing).
657 		 */
658 		if (!pte_present(ptent)) {
659 			swp_entry_t entry;
660 
661 			entry = pte_to_swp_entry(ptent);
662 			if (!non_swap_entry(entry)) {
663 				nr_swap--;
664 				free_swap_and_cache(entry);
665 				pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
666 			} else if (is_hwpoison_entry(entry) ||
667 				   is_poisoned_swp_entry(entry)) {
668 				pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
669 			}
670 			continue;
671 		}
672 
673 		folio = vm_normal_folio(vma, addr, ptent);
674 		if (!folio || folio_is_zone_device(folio))
675 			continue;
676 
677 		/*
678 		 * If pmd isn't transhuge but the folio is large and
679 		 * is owned by only this process, split it and
680 		 * deactivate all pages.
681 		 */
682 		if (folio_test_large(folio)) {
683 			int err;
684 
685 			if (folio_mapcount(folio) != 1)
686 				break;
687 			if (!folio_trylock(folio))
688 				break;
689 			folio_get(folio);
690 			arch_leave_lazy_mmu_mode();
691 			pte_unmap_unlock(start_pte, ptl);
692 			start_pte = NULL;
693 			err = split_folio(folio);
694 			folio_unlock(folio);
695 			folio_put(folio);
696 			if (err)
697 				break;
698 			start_pte = pte =
699 				pte_offset_map_lock(mm, pmd, addr, &ptl);
700 			if (!start_pte)
701 				break;
702 			arch_enter_lazy_mmu_mode();
703 			pte--;
704 			addr -= PAGE_SIZE;
705 			continue;
706 		}
707 
708 		if (folio_test_swapcache(folio) || folio_test_dirty(folio)) {
709 			if (!folio_trylock(folio))
710 				continue;
711 			/*
712 			 * If folio is shared with others, we mustn't clear
713 			 * the folio's dirty flag.
714 			 */
715 			if (folio_mapcount(folio) != 1) {
716 				folio_unlock(folio);
717 				continue;
718 			}
719 
720 			if (folio_test_swapcache(folio) &&
721 			    !folio_free_swap(folio)) {
722 				folio_unlock(folio);
723 				continue;
724 			}
725 
726 			folio_clear_dirty(folio);
727 			folio_unlock(folio);
728 		}
729 
730 		if (pte_young(ptent) || pte_dirty(ptent)) {
731 			/*
732 			 * Some of architecture(ex, PPC) don't update TLB
733 			 * with set_pte_at and tlb_remove_tlb_entry so for
734 			 * the portability, remap the pte with old|clean
735 			 * after pte clearing.
736 			 */
737 			ptent = ptep_get_and_clear_full(mm, addr, pte,
738 							tlb->fullmm);
739 
740 			ptent = pte_mkold(ptent);
741 			ptent = pte_mkclean(ptent);
742 			set_pte_at(mm, addr, pte, ptent);
743 			tlb_remove_tlb_entry(tlb, pte, addr);
744 		}
745 		folio_mark_lazyfree(folio);
746 	}
747 
748 	if (nr_swap) {
749 		if (current->mm == mm)
750 			sync_mm_rss(mm);
751 		add_mm_counter(mm, MM_SWAPENTS, nr_swap);
752 	}
753 	if (start_pte) {
754 		arch_leave_lazy_mmu_mode();
755 		pte_unmap_unlock(start_pte, ptl);
756 	}
757 	cond_resched();
758 
759 	return 0;
760 }
761 
762 static const struct mm_walk_ops madvise_free_walk_ops = {
763 	.pmd_entry		= madvise_free_pte_range,
764 };
765 
766 static int madvise_free_single_vma(struct vm_area_struct *vma,
767 			unsigned long start_addr, unsigned long end_addr)
768 {
769 	struct mm_struct *mm = vma->vm_mm;
770 	struct mmu_notifier_range range;
771 	struct mmu_gather tlb;
772 
773 	/* MADV_FREE works for only anon vma at the moment */
774 	if (!vma_is_anonymous(vma))
775 		return -EINVAL;
776 
777 	range.start = max(vma->vm_start, start_addr);
778 	if (range.start >= vma->vm_end)
779 		return -EINVAL;
780 	range.end = min(vma->vm_end, end_addr);
781 	if (range.end <= vma->vm_start)
782 		return -EINVAL;
783 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
784 				range.start, range.end);
785 
786 	lru_add_drain();
787 	tlb_gather_mmu(&tlb, mm);
788 	update_hiwater_rss(mm);
789 
790 	mmu_notifier_invalidate_range_start(&range);
791 	tlb_start_vma(&tlb, vma);
792 	walk_page_range(vma->vm_mm, range.start, range.end,
793 			&madvise_free_walk_ops, &tlb);
794 	tlb_end_vma(&tlb, vma);
795 	mmu_notifier_invalidate_range_end(&range);
796 	tlb_finish_mmu(&tlb);
797 
798 	return 0;
799 }
800 
801 /*
802  * Application no longer needs these pages.  If the pages are dirty,
803  * it's OK to just throw them away.  The app will be more careful about
804  * data it wants to keep.  Be sure to free swap resources too.  The
805  * zap_page_range_single call sets things up for shrink_active_list to actually
806  * free these pages later if no one else has touched them in the meantime,
807  * although we could add these pages to a global reuse list for
808  * shrink_active_list to pick up before reclaiming other pages.
809  *
810  * NB: This interface discards data rather than pushes it out to swap,
811  * as some implementations do.  This has performance implications for
812  * applications like large transactional databases which want to discard
813  * pages in anonymous maps after committing to backing store the data
814  * that was kept in them.  There is no reason to write this data out to
815  * the swap area if the application is discarding it.
816  *
817  * An interface that causes the system to free clean pages and flush
818  * dirty pages is already available as msync(MS_INVALIDATE).
819  */
820 static long madvise_dontneed_single_vma(struct vm_area_struct *vma,
821 					unsigned long start, unsigned long end)
822 {
823 	zap_page_range_single(vma, start, end - start, NULL);
824 	return 0;
825 }
826 
827 static bool madvise_dontneed_free_valid_vma(struct vm_area_struct *vma,
828 					    unsigned long start,
829 					    unsigned long *end,
830 					    int behavior)
831 {
832 	if (!is_vm_hugetlb_page(vma)) {
833 		unsigned int forbidden = VM_PFNMAP;
834 
835 		if (behavior != MADV_DONTNEED_LOCKED)
836 			forbidden |= VM_LOCKED;
837 
838 		return !(vma->vm_flags & forbidden);
839 	}
840 
841 	if (behavior != MADV_DONTNEED && behavior != MADV_DONTNEED_LOCKED)
842 		return false;
843 	if (start & ~huge_page_mask(hstate_vma(vma)))
844 		return false;
845 
846 	/*
847 	 * Madvise callers expect the length to be rounded up to PAGE_SIZE
848 	 * boundaries, and may be unaware that this VMA uses huge pages.
849 	 * Avoid unexpected data loss by rounding down the number of
850 	 * huge pages freed.
851 	 */
852 	*end = ALIGN_DOWN(*end, huge_page_size(hstate_vma(vma)));
853 
854 	return true;
855 }
856 
857 static long madvise_dontneed_free(struct vm_area_struct *vma,
858 				  struct vm_area_struct **prev,
859 				  unsigned long start, unsigned long end,
860 				  int behavior)
861 {
862 	struct mm_struct *mm = vma->vm_mm;
863 
864 	*prev = vma;
865 	if (!madvise_dontneed_free_valid_vma(vma, start, &end, behavior))
866 		return -EINVAL;
867 
868 	if (start == end)
869 		return 0;
870 
871 	if (!userfaultfd_remove(vma, start, end)) {
872 		*prev = NULL; /* mmap_lock has been dropped, prev is stale */
873 
874 		mmap_read_lock(mm);
875 		vma = vma_lookup(mm, start);
876 		if (!vma)
877 			return -ENOMEM;
878 		/*
879 		 * Potential end adjustment for hugetlb vma is OK as
880 		 * the check below keeps end within vma.
881 		 */
882 		if (!madvise_dontneed_free_valid_vma(vma, start, &end,
883 						     behavior))
884 			return -EINVAL;
885 		if (end > vma->vm_end) {
886 			/*
887 			 * Don't fail if end > vma->vm_end. If the old
888 			 * vma was split while the mmap_lock was
889 			 * released the effect of the concurrent
890 			 * operation may not cause madvise() to
891 			 * have an undefined result. There may be an
892 			 * adjacent next vma that we'll walk
893 			 * next. userfaultfd_remove() will generate an
894 			 * UFFD_EVENT_REMOVE repetition on the
895 			 * end-vma->vm_end range, but the manager can
896 			 * handle a repetition fine.
897 			 */
898 			end = vma->vm_end;
899 		}
900 		VM_WARN_ON(start >= end);
901 	}
902 
903 	if (behavior == MADV_DONTNEED || behavior == MADV_DONTNEED_LOCKED)
904 		return madvise_dontneed_single_vma(vma, start, end);
905 	else if (behavior == MADV_FREE)
906 		return madvise_free_single_vma(vma, start, end);
907 	else
908 		return -EINVAL;
909 }
910 
911 static long madvise_populate(struct vm_area_struct *vma,
912 			     struct vm_area_struct **prev,
913 			     unsigned long start, unsigned long end,
914 			     int behavior)
915 {
916 	const bool write = behavior == MADV_POPULATE_WRITE;
917 	struct mm_struct *mm = vma->vm_mm;
918 	unsigned long tmp_end;
919 	int locked = 1;
920 	long pages;
921 
922 	*prev = vma;
923 
924 	while (start < end) {
925 		/*
926 		 * We might have temporarily dropped the lock. For example,
927 		 * our VMA might have been split.
928 		 */
929 		if (!vma || start >= vma->vm_end) {
930 			vma = vma_lookup(mm, start);
931 			if (!vma)
932 				return -ENOMEM;
933 		}
934 
935 		tmp_end = min_t(unsigned long, end, vma->vm_end);
936 		/* Populate (prefault) page tables readable/writable. */
937 		pages = faultin_vma_page_range(vma, start, tmp_end, write,
938 					       &locked);
939 		if (!locked) {
940 			mmap_read_lock(mm);
941 			locked = 1;
942 			*prev = NULL;
943 			vma = NULL;
944 		}
945 		if (pages < 0) {
946 			switch (pages) {
947 			case -EINTR:
948 				return -EINTR;
949 			case -EINVAL: /* Incompatible mappings / permissions. */
950 				return -EINVAL;
951 			case -EHWPOISON:
952 				return -EHWPOISON;
953 			case -EFAULT: /* VM_FAULT_SIGBUS or VM_FAULT_SIGSEGV */
954 				return -EFAULT;
955 			default:
956 				pr_warn_once("%s: unhandled return value: %ld\n",
957 					     __func__, pages);
958 				fallthrough;
959 			case -ENOMEM:
960 				return -ENOMEM;
961 			}
962 		}
963 		start += pages * PAGE_SIZE;
964 	}
965 	return 0;
966 }
967 
968 /*
969  * Application wants to free up the pages and associated backing store.
970  * This is effectively punching a hole into the middle of a file.
971  */
972 static long madvise_remove(struct vm_area_struct *vma,
973 				struct vm_area_struct **prev,
974 				unsigned long start, unsigned long end)
975 {
976 	loff_t offset;
977 	int error;
978 	struct file *f;
979 	struct mm_struct *mm = vma->vm_mm;
980 
981 	*prev = NULL;	/* tell sys_madvise we drop mmap_lock */
982 
983 	if (vma->vm_flags & VM_LOCKED)
984 		return -EINVAL;
985 
986 	f = vma->vm_file;
987 
988 	if (!f || !f->f_mapping || !f->f_mapping->host) {
989 			return -EINVAL;
990 	}
991 
992 	if ((vma->vm_flags & (VM_SHARED|VM_WRITE)) != (VM_SHARED|VM_WRITE))
993 		return -EACCES;
994 
995 	offset = (loff_t)(start - vma->vm_start)
996 			+ ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
997 
998 	/*
999 	 * Filesystem's fallocate may need to take i_rwsem.  We need to
1000 	 * explicitly grab a reference because the vma (and hence the
1001 	 * vma's reference to the file) can go away as soon as we drop
1002 	 * mmap_lock.
1003 	 */
1004 	get_file(f);
1005 	if (userfaultfd_remove(vma, start, end)) {
1006 		/* mmap_lock was not released by userfaultfd_remove() */
1007 		mmap_read_unlock(mm);
1008 	}
1009 	error = vfs_fallocate(f,
1010 				FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
1011 				offset, end - start);
1012 	fput(f);
1013 	mmap_read_lock(mm);
1014 	return error;
1015 }
1016 
1017 /*
1018  * Apply an madvise behavior to a region of a vma.  madvise_update_vma
1019  * will handle splitting a vm area into separate areas, each area with its own
1020  * behavior.
1021  */
1022 static int madvise_vma_behavior(struct vm_area_struct *vma,
1023 				struct vm_area_struct **prev,
1024 				unsigned long start, unsigned long end,
1025 				unsigned long behavior)
1026 {
1027 	int error;
1028 	struct anon_vma_name *anon_name;
1029 	unsigned long new_flags = vma->vm_flags;
1030 
1031 	switch (behavior) {
1032 	case MADV_REMOVE:
1033 		return madvise_remove(vma, prev, start, end);
1034 	case MADV_WILLNEED:
1035 		return madvise_willneed(vma, prev, start, end);
1036 	case MADV_COLD:
1037 		return madvise_cold(vma, prev, start, end);
1038 	case MADV_PAGEOUT:
1039 		return madvise_pageout(vma, prev, start, end);
1040 	case MADV_FREE:
1041 	case MADV_DONTNEED:
1042 	case MADV_DONTNEED_LOCKED:
1043 		return madvise_dontneed_free(vma, prev, start, end, behavior);
1044 	case MADV_POPULATE_READ:
1045 	case MADV_POPULATE_WRITE:
1046 		return madvise_populate(vma, prev, start, end, behavior);
1047 	case MADV_NORMAL:
1048 		new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ;
1049 		break;
1050 	case MADV_SEQUENTIAL:
1051 		new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ;
1052 		break;
1053 	case MADV_RANDOM:
1054 		new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ;
1055 		break;
1056 	case MADV_DONTFORK:
1057 		new_flags |= VM_DONTCOPY;
1058 		break;
1059 	case MADV_DOFORK:
1060 		if (vma->vm_flags & VM_IO)
1061 			return -EINVAL;
1062 		new_flags &= ~VM_DONTCOPY;
1063 		break;
1064 	case MADV_WIPEONFORK:
1065 		/* MADV_WIPEONFORK is only supported on anonymous memory. */
1066 		if (vma->vm_file || vma->vm_flags & VM_SHARED)
1067 			return -EINVAL;
1068 		new_flags |= VM_WIPEONFORK;
1069 		break;
1070 	case MADV_KEEPONFORK:
1071 		new_flags &= ~VM_WIPEONFORK;
1072 		break;
1073 	case MADV_DONTDUMP:
1074 		new_flags |= VM_DONTDUMP;
1075 		break;
1076 	case MADV_DODUMP:
1077 		if (!is_vm_hugetlb_page(vma) && new_flags & VM_SPECIAL)
1078 			return -EINVAL;
1079 		new_flags &= ~VM_DONTDUMP;
1080 		break;
1081 	case MADV_MERGEABLE:
1082 	case MADV_UNMERGEABLE:
1083 		error = ksm_madvise(vma, start, end, behavior, &new_flags);
1084 		if (error)
1085 			goto out;
1086 		break;
1087 	case MADV_HUGEPAGE:
1088 	case MADV_NOHUGEPAGE:
1089 		error = hugepage_madvise(vma, &new_flags, behavior);
1090 		if (error)
1091 			goto out;
1092 		break;
1093 	case MADV_COLLAPSE:
1094 		return madvise_collapse(vma, prev, start, end);
1095 	}
1096 
1097 	anon_name = anon_vma_name(vma);
1098 	anon_vma_name_get(anon_name);
1099 	error = madvise_update_vma(vma, prev, start, end, new_flags,
1100 				   anon_name);
1101 	anon_vma_name_put(anon_name);
1102 
1103 out:
1104 	/*
1105 	 * madvise() returns EAGAIN if kernel resources, such as
1106 	 * slab, are temporarily unavailable.
1107 	 */
1108 	if (error == -ENOMEM)
1109 		error = -EAGAIN;
1110 	return error;
1111 }
1112 
1113 #ifdef CONFIG_MEMORY_FAILURE
1114 /*
1115  * Error injection support for memory error handling.
1116  */
1117 static int madvise_inject_error(int behavior,
1118 		unsigned long start, unsigned long end)
1119 {
1120 	unsigned long size;
1121 
1122 	if (!capable(CAP_SYS_ADMIN))
1123 		return -EPERM;
1124 
1125 
1126 	for (; start < end; start += size) {
1127 		unsigned long pfn;
1128 		struct page *page;
1129 		int ret;
1130 
1131 		ret = get_user_pages_fast(start, 1, 0, &page);
1132 		if (ret != 1)
1133 			return ret;
1134 		pfn = page_to_pfn(page);
1135 
1136 		/*
1137 		 * When soft offlining hugepages, after migrating the page
1138 		 * we dissolve it, therefore in the second loop "page" will
1139 		 * no longer be a compound page.
1140 		 */
1141 		size = page_size(compound_head(page));
1142 
1143 		if (behavior == MADV_SOFT_OFFLINE) {
1144 			pr_info("Soft offlining pfn %#lx at process virtual address %#lx\n",
1145 				 pfn, start);
1146 			ret = soft_offline_page(pfn, MF_COUNT_INCREASED);
1147 		} else {
1148 			pr_info("Injecting memory failure for pfn %#lx at process virtual address %#lx\n",
1149 				 pfn, start);
1150 			ret = memory_failure(pfn, MF_COUNT_INCREASED | MF_SW_SIMULATED);
1151 			if (ret == -EOPNOTSUPP)
1152 				ret = 0;
1153 		}
1154 
1155 		if (ret)
1156 			return ret;
1157 	}
1158 
1159 	return 0;
1160 }
1161 #endif
1162 
1163 static bool
1164 madvise_behavior_valid(int behavior)
1165 {
1166 	switch (behavior) {
1167 	case MADV_DOFORK:
1168 	case MADV_DONTFORK:
1169 	case MADV_NORMAL:
1170 	case MADV_SEQUENTIAL:
1171 	case MADV_RANDOM:
1172 	case MADV_REMOVE:
1173 	case MADV_WILLNEED:
1174 	case MADV_DONTNEED:
1175 	case MADV_DONTNEED_LOCKED:
1176 	case MADV_FREE:
1177 	case MADV_COLD:
1178 	case MADV_PAGEOUT:
1179 	case MADV_POPULATE_READ:
1180 	case MADV_POPULATE_WRITE:
1181 #ifdef CONFIG_KSM
1182 	case MADV_MERGEABLE:
1183 	case MADV_UNMERGEABLE:
1184 #endif
1185 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1186 	case MADV_HUGEPAGE:
1187 	case MADV_NOHUGEPAGE:
1188 	case MADV_COLLAPSE:
1189 #endif
1190 	case MADV_DONTDUMP:
1191 	case MADV_DODUMP:
1192 	case MADV_WIPEONFORK:
1193 	case MADV_KEEPONFORK:
1194 #ifdef CONFIG_MEMORY_FAILURE
1195 	case MADV_SOFT_OFFLINE:
1196 	case MADV_HWPOISON:
1197 #endif
1198 		return true;
1199 
1200 	default:
1201 		return false;
1202 	}
1203 }
1204 
1205 static bool process_madvise_behavior_valid(int behavior)
1206 {
1207 	switch (behavior) {
1208 	case MADV_COLD:
1209 	case MADV_PAGEOUT:
1210 	case MADV_WILLNEED:
1211 	case MADV_COLLAPSE:
1212 		return true;
1213 	default:
1214 		return false;
1215 	}
1216 }
1217 
1218 /*
1219  * Walk the vmas in range [start,end), and call the visit function on each one.
1220  * The visit function will get start and end parameters that cover the overlap
1221  * between the current vma and the original range.  Any unmapped regions in the
1222  * original range will result in this function returning -ENOMEM while still
1223  * calling the visit function on all of the existing vmas in the range.
1224  * Must be called with the mmap_lock held for reading or writing.
1225  */
1226 static
1227 int madvise_walk_vmas(struct mm_struct *mm, unsigned long start,
1228 		      unsigned long end, unsigned long arg,
1229 		      int (*visit)(struct vm_area_struct *vma,
1230 				   struct vm_area_struct **prev, unsigned long start,
1231 				   unsigned long end, unsigned long arg))
1232 {
1233 	struct vm_area_struct *vma;
1234 	struct vm_area_struct *prev;
1235 	unsigned long tmp;
1236 	int unmapped_error = 0;
1237 
1238 	/*
1239 	 * If the interval [start,end) covers some unmapped address
1240 	 * ranges, just ignore them, but return -ENOMEM at the end.
1241 	 * - different from the way of handling in mlock etc.
1242 	 */
1243 	vma = find_vma_prev(mm, start, &prev);
1244 	if (vma && start > vma->vm_start)
1245 		prev = vma;
1246 
1247 	for (;;) {
1248 		int error;
1249 
1250 		/* Still start < end. */
1251 		if (!vma)
1252 			return -ENOMEM;
1253 
1254 		/* Here start < (end|vma->vm_end). */
1255 		if (start < vma->vm_start) {
1256 			unmapped_error = -ENOMEM;
1257 			start = vma->vm_start;
1258 			if (start >= end)
1259 				break;
1260 		}
1261 
1262 		/* Here vma->vm_start <= start < (end|vma->vm_end) */
1263 		tmp = vma->vm_end;
1264 		if (end < tmp)
1265 			tmp = end;
1266 
1267 		/* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */
1268 		error = visit(vma, &prev, start, tmp, arg);
1269 		if (error)
1270 			return error;
1271 		start = tmp;
1272 		if (prev && start < prev->vm_end)
1273 			start = prev->vm_end;
1274 		if (start >= end)
1275 			break;
1276 		if (prev)
1277 			vma = find_vma(mm, prev->vm_end);
1278 		else	/* madvise_remove dropped mmap_lock */
1279 			vma = find_vma(mm, start);
1280 	}
1281 
1282 	return unmapped_error;
1283 }
1284 
1285 #ifdef CONFIG_ANON_VMA_NAME
1286 static int madvise_vma_anon_name(struct vm_area_struct *vma,
1287 				 struct vm_area_struct **prev,
1288 				 unsigned long start, unsigned long end,
1289 				 unsigned long anon_name)
1290 {
1291 	int error;
1292 
1293 	/* Only anonymous mappings can be named */
1294 	if (vma->vm_file && !vma_is_anon_shmem(vma))
1295 		return -EBADF;
1296 
1297 	error = madvise_update_vma(vma, prev, start, end, vma->vm_flags,
1298 				   (struct anon_vma_name *)anon_name);
1299 
1300 	/*
1301 	 * madvise() returns EAGAIN if kernel resources, such as
1302 	 * slab, are temporarily unavailable.
1303 	 */
1304 	if (error == -ENOMEM)
1305 		error = -EAGAIN;
1306 	return error;
1307 }
1308 
1309 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
1310 			  unsigned long len_in, struct anon_vma_name *anon_name)
1311 {
1312 	unsigned long end;
1313 	unsigned long len;
1314 
1315 	if (start & ~PAGE_MASK)
1316 		return -EINVAL;
1317 	len = (len_in + ~PAGE_MASK) & PAGE_MASK;
1318 
1319 	/* Check to see whether len was rounded up from small -ve to zero */
1320 	if (len_in && !len)
1321 		return -EINVAL;
1322 
1323 	end = start + len;
1324 	if (end < start)
1325 		return -EINVAL;
1326 
1327 	if (end == start)
1328 		return 0;
1329 
1330 	return madvise_walk_vmas(mm, start, end, (unsigned long)anon_name,
1331 				 madvise_vma_anon_name);
1332 }
1333 #endif /* CONFIG_ANON_VMA_NAME */
1334 /*
1335  * The madvise(2) system call.
1336  *
1337  * Applications can use madvise() to advise the kernel how it should
1338  * handle paging I/O in this VM area.  The idea is to help the kernel
1339  * use appropriate read-ahead and caching techniques.  The information
1340  * provided is advisory only, and can be safely disregarded by the
1341  * kernel without affecting the correct operation of the application.
1342  *
1343  * behavior values:
1344  *  MADV_NORMAL - the default behavior is to read clusters.  This
1345  *		results in some read-ahead and read-behind.
1346  *  MADV_RANDOM - the system should read the minimum amount of data
1347  *		on any access, since it is unlikely that the appli-
1348  *		cation will need more than what it asks for.
1349  *  MADV_SEQUENTIAL - pages in the given range will probably be accessed
1350  *		once, so they can be aggressively read ahead, and
1351  *		can be freed soon after they are accessed.
1352  *  MADV_WILLNEED - the application is notifying the system to read
1353  *		some pages ahead.
1354  *  MADV_DONTNEED - the application is finished with the given range,
1355  *		so the kernel can free resources associated with it.
1356  *  MADV_FREE - the application marks pages in the given range as lazy free,
1357  *		where actual purges are postponed until memory pressure happens.
1358  *  MADV_REMOVE - the application wants to free up the given range of
1359  *		pages and associated backing store.
1360  *  MADV_DONTFORK - omit this area from child's address space when forking:
1361  *		typically, to avoid COWing pages pinned by get_user_pages().
1362  *  MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking.
1363  *  MADV_WIPEONFORK - present the child process with zero-filled memory in this
1364  *              range after a fork.
1365  *  MADV_KEEPONFORK - undo the effect of MADV_WIPEONFORK
1366  *  MADV_HWPOISON - trigger memory error handler as if the given memory range
1367  *		were corrupted by unrecoverable hardware memory failure.
1368  *  MADV_SOFT_OFFLINE - try to soft-offline the given range of memory.
1369  *  MADV_MERGEABLE - the application recommends that KSM try to merge pages in
1370  *		this area with pages of identical content from other such areas.
1371  *  MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others.
1372  *  MADV_HUGEPAGE - the application wants to back the given range by transparent
1373  *		huge pages in the future. Existing pages might be coalesced and
1374  *		new pages might be allocated as THP.
1375  *  MADV_NOHUGEPAGE - mark the given range as not worth being backed by
1376  *		transparent huge pages so the existing pages will not be
1377  *		coalesced into THP and new pages will not be allocated as THP.
1378  *  MADV_COLLAPSE - synchronously coalesce pages into new THP.
1379  *  MADV_DONTDUMP - the application wants to prevent pages in the given range
1380  *		from being included in its core dump.
1381  *  MADV_DODUMP - cancel MADV_DONTDUMP: no longer exclude from core dump.
1382  *  MADV_COLD - the application is not expected to use this memory soon,
1383  *		deactivate pages in this range so that they can be reclaimed
1384  *		easily if memory pressure happens.
1385  *  MADV_PAGEOUT - the application is not expected to use this memory soon,
1386  *		page out the pages in this range immediately.
1387  *  MADV_POPULATE_READ - populate (prefault) page tables readable by
1388  *		triggering read faults if required
1389  *  MADV_POPULATE_WRITE - populate (prefault) page tables writable by
1390  *		triggering write faults if required
1391  *
1392  * return values:
1393  *  zero    - success
1394  *  -EINVAL - start + len < 0, start is not page-aligned,
1395  *		"behavior" is not a valid value, or application
1396  *		is attempting to release locked or shared pages,
1397  *		or the specified address range includes file, Huge TLB,
1398  *		MAP_SHARED or VMPFNMAP range.
1399  *  -ENOMEM - addresses in the specified range are not currently
1400  *		mapped, or are outside the AS of the process.
1401  *  -EIO    - an I/O error occurred while paging in data.
1402  *  -EBADF  - map exists, but area maps something that isn't a file.
1403  *  -EAGAIN - a kernel resource was temporarily unavailable.
1404  */
1405 int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior)
1406 {
1407 	unsigned long end;
1408 	int error;
1409 	int write;
1410 	size_t len;
1411 	struct blk_plug plug;
1412 
1413 	if (!madvise_behavior_valid(behavior))
1414 		return -EINVAL;
1415 
1416 	if (!PAGE_ALIGNED(start))
1417 		return -EINVAL;
1418 	len = PAGE_ALIGN(len_in);
1419 
1420 	/* Check to see whether len was rounded up from small -ve to zero */
1421 	if (len_in && !len)
1422 		return -EINVAL;
1423 
1424 	end = start + len;
1425 	if (end < start)
1426 		return -EINVAL;
1427 
1428 	if (end == start)
1429 		return 0;
1430 
1431 #ifdef CONFIG_MEMORY_FAILURE
1432 	if (behavior == MADV_HWPOISON || behavior == MADV_SOFT_OFFLINE)
1433 		return madvise_inject_error(behavior, start, start + len_in);
1434 #endif
1435 
1436 	write = madvise_need_mmap_write(behavior);
1437 	if (write) {
1438 		if (mmap_write_lock_killable(mm))
1439 			return -EINTR;
1440 	} else {
1441 		mmap_read_lock(mm);
1442 	}
1443 
1444 	start = untagged_addr_remote(mm, start);
1445 	end = start + len;
1446 
1447 	blk_start_plug(&plug);
1448 	error = madvise_walk_vmas(mm, start, end, behavior,
1449 			madvise_vma_behavior);
1450 	blk_finish_plug(&plug);
1451 	if (write)
1452 		mmap_write_unlock(mm);
1453 	else
1454 		mmap_read_unlock(mm);
1455 
1456 	return error;
1457 }
1458 
1459 SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior)
1460 {
1461 	return do_madvise(current->mm, start, len_in, behavior);
1462 }
1463 
1464 SYSCALL_DEFINE5(process_madvise, int, pidfd, const struct iovec __user *, vec,
1465 		size_t, vlen, int, behavior, unsigned int, flags)
1466 {
1467 	ssize_t ret;
1468 	struct iovec iovstack[UIO_FASTIOV];
1469 	struct iovec *iov = iovstack;
1470 	struct iov_iter iter;
1471 	struct task_struct *task;
1472 	struct mm_struct *mm;
1473 	size_t total_len;
1474 	unsigned int f_flags;
1475 
1476 	if (flags != 0) {
1477 		ret = -EINVAL;
1478 		goto out;
1479 	}
1480 
1481 	ret = import_iovec(ITER_DEST, vec, vlen, ARRAY_SIZE(iovstack), &iov, &iter);
1482 	if (ret < 0)
1483 		goto out;
1484 
1485 	task = pidfd_get_task(pidfd, &f_flags);
1486 	if (IS_ERR(task)) {
1487 		ret = PTR_ERR(task);
1488 		goto free_iov;
1489 	}
1490 
1491 	if (!process_madvise_behavior_valid(behavior)) {
1492 		ret = -EINVAL;
1493 		goto release_task;
1494 	}
1495 
1496 	/* Require PTRACE_MODE_READ to avoid leaking ASLR metadata. */
1497 	mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1498 	if (IS_ERR_OR_NULL(mm)) {
1499 		ret = IS_ERR(mm) ? PTR_ERR(mm) : -ESRCH;
1500 		goto release_task;
1501 	}
1502 
1503 	/*
1504 	 * Require CAP_SYS_NICE for influencing process performance. Note that
1505 	 * only non-destructive hints are currently supported.
1506 	 */
1507 	if (!capable(CAP_SYS_NICE)) {
1508 		ret = -EPERM;
1509 		goto release_mm;
1510 	}
1511 
1512 	total_len = iov_iter_count(&iter);
1513 
1514 	while (iov_iter_count(&iter)) {
1515 		ret = do_madvise(mm, (unsigned long)iter_iov_addr(&iter),
1516 					iter_iov_len(&iter), behavior);
1517 		if (ret < 0)
1518 			break;
1519 		iov_iter_advance(&iter, iter_iov_len(&iter));
1520 	}
1521 
1522 	ret = (total_len - iov_iter_count(&iter)) ? : ret;
1523 
1524 release_mm:
1525 	mmput(mm);
1526 release_task:
1527 	put_task_struct(task);
1528 free_iov:
1529 	kfree(iov);
1530 out:
1531 	return ret;
1532 }
1533