1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/madvise.c 4 * 5 * Copyright (C) 1999 Linus Torvalds 6 * Copyright (C) 2002 Christoph Hellwig 7 */ 8 9 #include <linux/mman.h> 10 #include <linux/pagemap.h> 11 #include <linux/syscalls.h> 12 #include <linux/mempolicy.h> 13 #include <linux/page-isolation.h> 14 #include <linux/page_idle.h> 15 #include <linux/userfaultfd_k.h> 16 #include <linux/hugetlb.h> 17 #include <linux/falloc.h> 18 #include <linux/fadvise.h> 19 #include <linux/sched.h> 20 #include <linux/ksm.h> 21 #include <linux/fs.h> 22 #include <linux/file.h> 23 #include <linux/blkdev.h> 24 #include <linux/backing-dev.h> 25 #include <linux/pagewalk.h> 26 #include <linux/swap.h> 27 #include <linux/swapops.h> 28 #include <linux/shmem_fs.h> 29 #include <linux/mmu_notifier.h> 30 #include <linux/sched/mm.h> 31 32 #include <asm/tlb.h> 33 34 #include "internal.h" 35 36 struct madvise_walk_private { 37 struct mmu_gather *tlb; 38 bool pageout; 39 }; 40 41 /* 42 * Any behaviour which results in changes to the vma->vm_flags needs to 43 * take mmap_lock for writing. Others, which simply traverse vmas, need 44 * to only take it for reading. 45 */ 46 static int madvise_need_mmap_write(int behavior) 47 { 48 switch (behavior) { 49 case MADV_REMOVE: 50 case MADV_WILLNEED: 51 case MADV_DONTNEED: 52 case MADV_COLD: 53 case MADV_PAGEOUT: 54 case MADV_FREE: 55 return 0; 56 default: 57 /* be safe, default to 1. list exceptions explicitly */ 58 return 1; 59 } 60 } 61 62 /* 63 * We can potentially split a vm area into separate 64 * areas, each area with its own behavior. 65 */ 66 static long madvise_behavior(struct vm_area_struct *vma, 67 struct vm_area_struct **prev, 68 unsigned long start, unsigned long end, int behavior) 69 { 70 struct mm_struct *mm = vma->vm_mm; 71 int error = 0; 72 pgoff_t pgoff; 73 unsigned long new_flags = vma->vm_flags; 74 75 switch (behavior) { 76 case MADV_NORMAL: 77 new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ; 78 break; 79 case MADV_SEQUENTIAL: 80 new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ; 81 break; 82 case MADV_RANDOM: 83 new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ; 84 break; 85 case MADV_DONTFORK: 86 new_flags |= VM_DONTCOPY; 87 break; 88 case MADV_DOFORK: 89 if (vma->vm_flags & VM_IO) { 90 error = -EINVAL; 91 goto out; 92 } 93 new_flags &= ~VM_DONTCOPY; 94 break; 95 case MADV_WIPEONFORK: 96 /* MADV_WIPEONFORK is only supported on anonymous memory. */ 97 if (vma->vm_file || vma->vm_flags & VM_SHARED) { 98 error = -EINVAL; 99 goto out; 100 } 101 new_flags |= VM_WIPEONFORK; 102 break; 103 case MADV_KEEPONFORK: 104 new_flags &= ~VM_WIPEONFORK; 105 break; 106 case MADV_DONTDUMP: 107 new_flags |= VM_DONTDUMP; 108 break; 109 case MADV_DODUMP: 110 if (!is_vm_hugetlb_page(vma) && new_flags & VM_SPECIAL) { 111 error = -EINVAL; 112 goto out; 113 } 114 new_flags &= ~VM_DONTDUMP; 115 break; 116 case MADV_MERGEABLE: 117 case MADV_UNMERGEABLE: 118 error = ksm_madvise(vma, start, end, behavior, &new_flags); 119 if (error) 120 goto out_convert_errno; 121 break; 122 case MADV_HUGEPAGE: 123 case MADV_NOHUGEPAGE: 124 error = hugepage_madvise(vma, &new_flags, behavior); 125 if (error) 126 goto out_convert_errno; 127 break; 128 } 129 130 if (new_flags == vma->vm_flags) { 131 *prev = vma; 132 goto out; 133 } 134 135 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT); 136 *prev = vma_merge(mm, *prev, start, end, new_flags, vma->anon_vma, 137 vma->vm_file, pgoff, vma_policy(vma), 138 vma->vm_userfaultfd_ctx); 139 if (*prev) { 140 vma = *prev; 141 goto success; 142 } 143 144 *prev = vma; 145 146 if (start != vma->vm_start) { 147 if (unlikely(mm->map_count >= sysctl_max_map_count)) { 148 error = -ENOMEM; 149 goto out; 150 } 151 error = __split_vma(mm, vma, start, 1); 152 if (error) 153 goto out_convert_errno; 154 } 155 156 if (end != vma->vm_end) { 157 if (unlikely(mm->map_count >= sysctl_max_map_count)) { 158 error = -ENOMEM; 159 goto out; 160 } 161 error = __split_vma(mm, vma, end, 0); 162 if (error) 163 goto out_convert_errno; 164 } 165 166 success: 167 /* 168 * vm_flags is protected by the mmap_lock held in write mode. 169 */ 170 vma->vm_flags = new_flags; 171 172 out_convert_errno: 173 /* 174 * madvise() returns EAGAIN if kernel resources, such as 175 * slab, are temporarily unavailable. 176 */ 177 if (error == -ENOMEM) 178 error = -EAGAIN; 179 out: 180 return error; 181 } 182 183 #ifdef CONFIG_SWAP 184 static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start, 185 unsigned long end, struct mm_walk *walk) 186 { 187 pte_t *orig_pte; 188 struct vm_area_struct *vma = walk->private; 189 unsigned long index; 190 191 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 192 return 0; 193 194 for (index = start; index != end; index += PAGE_SIZE) { 195 pte_t pte; 196 swp_entry_t entry; 197 struct page *page; 198 spinlock_t *ptl; 199 200 orig_pte = pte_offset_map_lock(vma->vm_mm, pmd, start, &ptl); 201 pte = *(orig_pte + ((index - start) / PAGE_SIZE)); 202 pte_unmap_unlock(orig_pte, ptl); 203 204 if (pte_present(pte) || pte_none(pte)) 205 continue; 206 entry = pte_to_swp_entry(pte); 207 if (unlikely(non_swap_entry(entry))) 208 continue; 209 210 page = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE, 211 vma, index, false); 212 if (page) 213 put_page(page); 214 } 215 216 return 0; 217 } 218 219 static const struct mm_walk_ops swapin_walk_ops = { 220 .pmd_entry = swapin_walk_pmd_entry, 221 }; 222 223 static void force_shm_swapin_readahead(struct vm_area_struct *vma, 224 unsigned long start, unsigned long end, 225 struct address_space *mapping) 226 { 227 pgoff_t index; 228 struct page *page; 229 swp_entry_t swap; 230 231 for (; start < end; start += PAGE_SIZE) { 232 index = ((start - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 233 234 page = find_get_entry(mapping, index); 235 if (!xa_is_value(page)) { 236 if (page) 237 put_page(page); 238 continue; 239 } 240 swap = radix_to_swp_entry(page); 241 page = read_swap_cache_async(swap, GFP_HIGHUSER_MOVABLE, 242 NULL, 0, false); 243 if (page) 244 put_page(page); 245 } 246 247 lru_add_drain(); /* Push any new pages onto the LRU now */ 248 } 249 #endif /* CONFIG_SWAP */ 250 251 /* 252 * Schedule all required I/O operations. Do not wait for completion. 253 */ 254 static long madvise_willneed(struct vm_area_struct *vma, 255 struct vm_area_struct **prev, 256 unsigned long start, unsigned long end) 257 { 258 struct file *file = vma->vm_file; 259 loff_t offset; 260 261 *prev = vma; 262 #ifdef CONFIG_SWAP 263 if (!file) { 264 walk_page_range(vma->vm_mm, start, end, &swapin_walk_ops, vma); 265 lru_add_drain(); /* Push any new pages onto the LRU now */ 266 return 0; 267 } 268 269 if (shmem_mapping(file->f_mapping)) { 270 force_shm_swapin_readahead(vma, start, end, 271 file->f_mapping); 272 return 0; 273 } 274 #else 275 if (!file) 276 return -EBADF; 277 #endif 278 279 if (IS_DAX(file_inode(file))) { 280 /* no bad return value, but ignore advice */ 281 return 0; 282 } 283 284 /* 285 * Filesystem's fadvise may need to take various locks. We need to 286 * explicitly grab a reference because the vma (and hence the 287 * vma's reference to the file) can go away as soon as we drop 288 * mmap_lock. 289 */ 290 *prev = NULL; /* tell sys_madvise we drop mmap_lock */ 291 get_file(file); 292 mmap_read_unlock(current->mm); 293 offset = (loff_t)(start - vma->vm_start) 294 + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 295 vfs_fadvise(file, offset, end - start, POSIX_FADV_WILLNEED); 296 fput(file); 297 mmap_read_lock(current->mm); 298 return 0; 299 } 300 301 static int madvise_cold_or_pageout_pte_range(pmd_t *pmd, 302 unsigned long addr, unsigned long end, 303 struct mm_walk *walk) 304 { 305 struct madvise_walk_private *private = walk->private; 306 struct mmu_gather *tlb = private->tlb; 307 bool pageout = private->pageout; 308 struct mm_struct *mm = tlb->mm; 309 struct vm_area_struct *vma = walk->vma; 310 pte_t *orig_pte, *pte, ptent; 311 spinlock_t *ptl; 312 struct page *page = NULL; 313 LIST_HEAD(page_list); 314 315 if (fatal_signal_pending(current)) 316 return -EINTR; 317 318 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 319 if (pmd_trans_huge(*pmd)) { 320 pmd_t orig_pmd; 321 unsigned long next = pmd_addr_end(addr, end); 322 323 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 324 ptl = pmd_trans_huge_lock(pmd, vma); 325 if (!ptl) 326 return 0; 327 328 orig_pmd = *pmd; 329 if (is_huge_zero_pmd(orig_pmd)) 330 goto huge_unlock; 331 332 if (unlikely(!pmd_present(orig_pmd))) { 333 VM_BUG_ON(thp_migration_supported() && 334 !is_pmd_migration_entry(orig_pmd)); 335 goto huge_unlock; 336 } 337 338 page = pmd_page(orig_pmd); 339 340 /* Do not interfere with other mappings of this page */ 341 if (page_mapcount(page) != 1) 342 goto huge_unlock; 343 344 if (next - addr != HPAGE_PMD_SIZE) { 345 int err; 346 347 get_page(page); 348 spin_unlock(ptl); 349 lock_page(page); 350 err = split_huge_page(page); 351 unlock_page(page); 352 put_page(page); 353 if (!err) 354 goto regular_page; 355 return 0; 356 } 357 358 if (pmd_young(orig_pmd)) { 359 pmdp_invalidate(vma, addr, pmd); 360 orig_pmd = pmd_mkold(orig_pmd); 361 362 set_pmd_at(mm, addr, pmd, orig_pmd); 363 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 364 } 365 366 ClearPageReferenced(page); 367 test_and_clear_page_young(page); 368 if (pageout) { 369 if (!isolate_lru_page(page)) { 370 if (PageUnevictable(page)) 371 putback_lru_page(page); 372 else 373 list_add(&page->lru, &page_list); 374 } 375 } else 376 deactivate_page(page); 377 huge_unlock: 378 spin_unlock(ptl); 379 if (pageout) 380 reclaim_pages(&page_list); 381 return 0; 382 } 383 384 if (pmd_trans_unstable(pmd)) 385 return 0; 386 regular_page: 387 #endif 388 tlb_change_page_size(tlb, PAGE_SIZE); 389 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 390 flush_tlb_batched_pending(mm); 391 arch_enter_lazy_mmu_mode(); 392 for (; addr < end; pte++, addr += PAGE_SIZE) { 393 ptent = *pte; 394 395 if (pte_none(ptent)) 396 continue; 397 398 if (!pte_present(ptent)) 399 continue; 400 401 page = vm_normal_page(vma, addr, ptent); 402 if (!page) 403 continue; 404 405 /* 406 * Creating a THP page is expensive so split it only if we 407 * are sure it's worth. Split it if we are only owner. 408 */ 409 if (PageTransCompound(page)) { 410 if (page_mapcount(page) != 1) 411 break; 412 get_page(page); 413 if (!trylock_page(page)) { 414 put_page(page); 415 break; 416 } 417 pte_unmap_unlock(orig_pte, ptl); 418 if (split_huge_page(page)) { 419 unlock_page(page); 420 put_page(page); 421 pte_offset_map_lock(mm, pmd, addr, &ptl); 422 break; 423 } 424 unlock_page(page); 425 put_page(page); 426 pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 427 pte--; 428 addr -= PAGE_SIZE; 429 continue; 430 } 431 432 /* Do not interfere with other mappings of this page */ 433 if (page_mapcount(page) != 1) 434 continue; 435 436 VM_BUG_ON_PAGE(PageTransCompound(page), page); 437 438 if (pte_young(ptent)) { 439 ptent = ptep_get_and_clear_full(mm, addr, pte, 440 tlb->fullmm); 441 ptent = pte_mkold(ptent); 442 set_pte_at(mm, addr, pte, ptent); 443 tlb_remove_tlb_entry(tlb, pte, addr); 444 } 445 446 /* 447 * We are deactivating a page for accelerating reclaiming. 448 * VM couldn't reclaim the page unless we clear PG_young. 449 * As a side effect, it makes confuse idle-page tracking 450 * because they will miss recent referenced history. 451 */ 452 ClearPageReferenced(page); 453 test_and_clear_page_young(page); 454 if (pageout) { 455 if (!isolate_lru_page(page)) { 456 if (PageUnevictable(page)) 457 putback_lru_page(page); 458 else 459 list_add(&page->lru, &page_list); 460 } 461 } else 462 deactivate_page(page); 463 } 464 465 arch_leave_lazy_mmu_mode(); 466 pte_unmap_unlock(orig_pte, ptl); 467 if (pageout) 468 reclaim_pages(&page_list); 469 cond_resched(); 470 471 return 0; 472 } 473 474 static const struct mm_walk_ops cold_walk_ops = { 475 .pmd_entry = madvise_cold_or_pageout_pte_range, 476 }; 477 478 static void madvise_cold_page_range(struct mmu_gather *tlb, 479 struct vm_area_struct *vma, 480 unsigned long addr, unsigned long end) 481 { 482 struct madvise_walk_private walk_private = { 483 .pageout = false, 484 .tlb = tlb, 485 }; 486 487 tlb_start_vma(tlb, vma); 488 walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private); 489 tlb_end_vma(tlb, vma); 490 } 491 492 static long madvise_cold(struct vm_area_struct *vma, 493 struct vm_area_struct **prev, 494 unsigned long start_addr, unsigned long end_addr) 495 { 496 struct mm_struct *mm = vma->vm_mm; 497 struct mmu_gather tlb; 498 499 *prev = vma; 500 if (!can_madv_lru_vma(vma)) 501 return -EINVAL; 502 503 lru_add_drain(); 504 tlb_gather_mmu(&tlb, mm, start_addr, end_addr); 505 madvise_cold_page_range(&tlb, vma, start_addr, end_addr); 506 tlb_finish_mmu(&tlb, start_addr, end_addr); 507 508 return 0; 509 } 510 511 static void madvise_pageout_page_range(struct mmu_gather *tlb, 512 struct vm_area_struct *vma, 513 unsigned long addr, unsigned long end) 514 { 515 struct madvise_walk_private walk_private = { 516 .pageout = true, 517 .tlb = tlb, 518 }; 519 520 tlb_start_vma(tlb, vma); 521 walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private); 522 tlb_end_vma(tlb, vma); 523 } 524 525 static inline bool can_do_pageout(struct vm_area_struct *vma) 526 { 527 if (vma_is_anonymous(vma)) 528 return true; 529 if (!vma->vm_file) 530 return false; 531 /* 532 * paging out pagecache only for non-anonymous mappings that correspond 533 * to the files the calling process could (if tried) open for writing; 534 * otherwise we'd be including shared non-exclusive mappings, which 535 * opens a side channel. 536 */ 537 return inode_owner_or_capable(file_inode(vma->vm_file)) || 538 inode_permission(file_inode(vma->vm_file), MAY_WRITE) == 0; 539 } 540 541 static long madvise_pageout(struct vm_area_struct *vma, 542 struct vm_area_struct **prev, 543 unsigned long start_addr, unsigned long end_addr) 544 { 545 struct mm_struct *mm = vma->vm_mm; 546 struct mmu_gather tlb; 547 548 *prev = vma; 549 if (!can_madv_lru_vma(vma)) 550 return -EINVAL; 551 552 if (!can_do_pageout(vma)) 553 return 0; 554 555 lru_add_drain(); 556 tlb_gather_mmu(&tlb, mm, start_addr, end_addr); 557 madvise_pageout_page_range(&tlb, vma, start_addr, end_addr); 558 tlb_finish_mmu(&tlb, start_addr, end_addr); 559 560 return 0; 561 } 562 563 static int madvise_free_pte_range(pmd_t *pmd, unsigned long addr, 564 unsigned long end, struct mm_walk *walk) 565 566 { 567 struct mmu_gather *tlb = walk->private; 568 struct mm_struct *mm = tlb->mm; 569 struct vm_area_struct *vma = walk->vma; 570 spinlock_t *ptl; 571 pte_t *orig_pte, *pte, ptent; 572 struct page *page; 573 int nr_swap = 0; 574 unsigned long next; 575 576 next = pmd_addr_end(addr, end); 577 if (pmd_trans_huge(*pmd)) 578 if (madvise_free_huge_pmd(tlb, vma, pmd, addr, next)) 579 goto next; 580 581 if (pmd_trans_unstable(pmd)) 582 return 0; 583 584 tlb_change_page_size(tlb, PAGE_SIZE); 585 orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 586 flush_tlb_batched_pending(mm); 587 arch_enter_lazy_mmu_mode(); 588 for (; addr != end; pte++, addr += PAGE_SIZE) { 589 ptent = *pte; 590 591 if (pte_none(ptent)) 592 continue; 593 /* 594 * If the pte has swp_entry, just clear page table to 595 * prevent swap-in which is more expensive rather than 596 * (page allocation + zeroing). 597 */ 598 if (!pte_present(ptent)) { 599 swp_entry_t entry; 600 601 entry = pte_to_swp_entry(ptent); 602 if (non_swap_entry(entry)) 603 continue; 604 nr_swap--; 605 free_swap_and_cache(entry); 606 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 607 continue; 608 } 609 610 page = vm_normal_page(vma, addr, ptent); 611 if (!page) 612 continue; 613 614 /* 615 * If pmd isn't transhuge but the page is THP and 616 * is owned by only this process, split it and 617 * deactivate all pages. 618 */ 619 if (PageTransCompound(page)) { 620 if (page_mapcount(page) != 1) 621 goto out; 622 get_page(page); 623 if (!trylock_page(page)) { 624 put_page(page); 625 goto out; 626 } 627 pte_unmap_unlock(orig_pte, ptl); 628 if (split_huge_page(page)) { 629 unlock_page(page); 630 put_page(page); 631 pte_offset_map_lock(mm, pmd, addr, &ptl); 632 goto out; 633 } 634 unlock_page(page); 635 put_page(page); 636 pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 637 pte--; 638 addr -= PAGE_SIZE; 639 continue; 640 } 641 642 VM_BUG_ON_PAGE(PageTransCompound(page), page); 643 644 if (PageSwapCache(page) || PageDirty(page)) { 645 if (!trylock_page(page)) 646 continue; 647 /* 648 * If page is shared with others, we couldn't clear 649 * PG_dirty of the page. 650 */ 651 if (page_mapcount(page) != 1) { 652 unlock_page(page); 653 continue; 654 } 655 656 if (PageSwapCache(page) && !try_to_free_swap(page)) { 657 unlock_page(page); 658 continue; 659 } 660 661 ClearPageDirty(page); 662 unlock_page(page); 663 } 664 665 if (pte_young(ptent) || pte_dirty(ptent)) { 666 /* 667 * Some of architecture(ex, PPC) don't update TLB 668 * with set_pte_at and tlb_remove_tlb_entry so for 669 * the portability, remap the pte with old|clean 670 * after pte clearing. 671 */ 672 ptent = ptep_get_and_clear_full(mm, addr, pte, 673 tlb->fullmm); 674 675 ptent = pte_mkold(ptent); 676 ptent = pte_mkclean(ptent); 677 set_pte_at(mm, addr, pte, ptent); 678 tlb_remove_tlb_entry(tlb, pte, addr); 679 } 680 mark_page_lazyfree(page); 681 } 682 out: 683 if (nr_swap) { 684 if (current->mm == mm) 685 sync_mm_rss(mm); 686 687 add_mm_counter(mm, MM_SWAPENTS, nr_swap); 688 } 689 arch_leave_lazy_mmu_mode(); 690 pte_unmap_unlock(orig_pte, ptl); 691 cond_resched(); 692 next: 693 return 0; 694 } 695 696 static const struct mm_walk_ops madvise_free_walk_ops = { 697 .pmd_entry = madvise_free_pte_range, 698 }; 699 700 static int madvise_free_single_vma(struct vm_area_struct *vma, 701 unsigned long start_addr, unsigned long end_addr) 702 { 703 struct mm_struct *mm = vma->vm_mm; 704 struct mmu_notifier_range range; 705 struct mmu_gather tlb; 706 707 /* MADV_FREE works for only anon vma at the moment */ 708 if (!vma_is_anonymous(vma)) 709 return -EINVAL; 710 711 range.start = max(vma->vm_start, start_addr); 712 if (range.start >= vma->vm_end) 713 return -EINVAL; 714 range.end = min(vma->vm_end, end_addr); 715 if (range.end <= vma->vm_start) 716 return -EINVAL; 717 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, 718 range.start, range.end); 719 720 lru_add_drain(); 721 tlb_gather_mmu(&tlb, mm, range.start, range.end); 722 update_hiwater_rss(mm); 723 724 mmu_notifier_invalidate_range_start(&range); 725 tlb_start_vma(&tlb, vma); 726 walk_page_range(vma->vm_mm, range.start, range.end, 727 &madvise_free_walk_ops, &tlb); 728 tlb_end_vma(&tlb, vma); 729 mmu_notifier_invalidate_range_end(&range); 730 tlb_finish_mmu(&tlb, range.start, range.end); 731 732 return 0; 733 } 734 735 /* 736 * Application no longer needs these pages. If the pages are dirty, 737 * it's OK to just throw them away. The app will be more careful about 738 * data it wants to keep. Be sure to free swap resources too. The 739 * zap_page_range call sets things up for shrink_active_list to actually free 740 * these pages later if no one else has touched them in the meantime, 741 * although we could add these pages to a global reuse list for 742 * shrink_active_list to pick up before reclaiming other pages. 743 * 744 * NB: This interface discards data rather than pushes it out to swap, 745 * as some implementations do. This has performance implications for 746 * applications like large transactional databases which want to discard 747 * pages in anonymous maps after committing to backing store the data 748 * that was kept in them. There is no reason to write this data out to 749 * the swap area if the application is discarding it. 750 * 751 * An interface that causes the system to free clean pages and flush 752 * dirty pages is already available as msync(MS_INVALIDATE). 753 */ 754 static long madvise_dontneed_single_vma(struct vm_area_struct *vma, 755 unsigned long start, unsigned long end) 756 { 757 zap_page_range(vma, start, end - start); 758 return 0; 759 } 760 761 static long madvise_dontneed_free(struct vm_area_struct *vma, 762 struct vm_area_struct **prev, 763 unsigned long start, unsigned long end, 764 int behavior) 765 { 766 *prev = vma; 767 if (!can_madv_lru_vma(vma)) 768 return -EINVAL; 769 770 if (!userfaultfd_remove(vma, start, end)) { 771 *prev = NULL; /* mmap_lock has been dropped, prev is stale */ 772 773 mmap_read_lock(current->mm); 774 vma = find_vma(current->mm, start); 775 if (!vma) 776 return -ENOMEM; 777 if (start < vma->vm_start) { 778 /* 779 * This "vma" under revalidation is the one 780 * with the lowest vma->vm_start where start 781 * is also < vma->vm_end. If start < 782 * vma->vm_start it means an hole materialized 783 * in the user address space within the 784 * virtual range passed to MADV_DONTNEED 785 * or MADV_FREE. 786 */ 787 return -ENOMEM; 788 } 789 if (!can_madv_lru_vma(vma)) 790 return -EINVAL; 791 if (end > vma->vm_end) { 792 /* 793 * Don't fail if end > vma->vm_end. If the old 794 * vma was splitted while the mmap_lock was 795 * released the effect of the concurrent 796 * operation may not cause madvise() to 797 * have an undefined result. There may be an 798 * adjacent next vma that we'll walk 799 * next. userfaultfd_remove() will generate an 800 * UFFD_EVENT_REMOVE repetition on the 801 * end-vma->vm_end range, but the manager can 802 * handle a repetition fine. 803 */ 804 end = vma->vm_end; 805 } 806 VM_WARN_ON(start >= end); 807 } 808 809 if (behavior == MADV_DONTNEED) 810 return madvise_dontneed_single_vma(vma, start, end); 811 else if (behavior == MADV_FREE) 812 return madvise_free_single_vma(vma, start, end); 813 else 814 return -EINVAL; 815 } 816 817 /* 818 * Application wants to free up the pages and associated backing store. 819 * This is effectively punching a hole into the middle of a file. 820 */ 821 static long madvise_remove(struct vm_area_struct *vma, 822 struct vm_area_struct **prev, 823 unsigned long start, unsigned long end) 824 { 825 loff_t offset; 826 int error; 827 struct file *f; 828 829 *prev = NULL; /* tell sys_madvise we drop mmap_lock */ 830 831 if (vma->vm_flags & VM_LOCKED) 832 return -EINVAL; 833 834 f = vma->vm_file; 835 836 if (!f || !f->f_mapping || !f->f_mapping->host) { 837 return -EINVAL; 838 } 839 840 if ((vma->vm_flags & (VM_SHARED|VM_WRITE)) != (VM_SHARED|VM_WRITE)) 841 return -EACCES; 842 843 offset = (loff_t)(start - vma->vm_start) 844 + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 845 846 /* 847 * Filesystem's fallocate may need to take i_mutex. We need to 848 * explicitly grab a reference because the vma (and hence the 849 * vma's reference to the file) can go away as soon as we drop 850 * mmap_lock. 851 */ 852 get_file(f); 853 if (userfaultfd_remove(vma, start, end)) { 854 /* mmap_lock was not released by userfaultfd_remove() */ 855 mmap_read_unlock(current->mm); 856 } 857 error = vfs_fallocate(f, 858 FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 859 offset, end - start); 860 fput(f); 861 mmap_read_lock(current->mm); 862 return error; 863 } 864 865 #ifdef CONFIG_MEMORY_FAILURE 866 /* 867 * Error injection support for memory error handling. 868 */ 869 static int madvise_inject_error(int behavior, 870 unsigned long start, unsigned long end) 871 { 872 struct page *page; 873 struct zone *zone; 874 unsigned long size; 875 876 if (!capable(CAP_SYS_ADMIN)) 877 return -EPERM; 878 879 880 for (; start < end; start += size) { 881 unsigned long pfn; 882 int ret; 883 884 ret = get_user_pages_fast(start, 1, 0, &page); 885 if (ret != 1) 886 return ret; 887 pfn = page_to_pfn(page); 888 889 /* 890 * When soft offlining hugepages, after migrating the page 891 * we dissolve it, therefore in the second loop "page" will 892 * no longer be a compound page. 893 */ 894 size = page_size(compound_head(page)); 895 896 if (PageHWPoison(page)) { 897 put_page(page); 898 continue; 899 } 900 901 if (behavior == MADV_SOFT_OFFLINE) { 902 pr_info("Soft offlining pfn %#lx at process virtual address %#lx\n", 903 pfn, start); 904 905 ret = soft_offline_page(pfn, MF_COUNT_INCREASED); 906 if (ret) 907 return ret; 908 continue; 909 } 910 911 pr_info("Injecting memory failure for pfn %#lx at process virtual address %#lx\n", 912 pfn, start); 913 914 /* 915 * Drop the page reference taken by get_user_pages_fast(). In 916 * the absence of MF_COUNT_INCREASED the memory_failure() 917 * routine is responsible for pinning the page to prevent it 918 * from being released back to the page allocator. 919 */ 920 put_page(page); 921 ret = memory_failure(pfn, 0); 922 if (ret) 923 return ret; 924 } 925 926 /* Ensure that all poisoned pages are removed from per-cpu lists */ 927 for_each_populated_zone(zone) 928 drain_all_pages(zone); 929 930 return 0; 931 } 932 #endif 933 934 static long 935 madvise_vma(struct vm_area_struct *vma, struct vm_area_struct **prev, 936 unsigned long start, unsigned long end, int behavior) 937 { 938 switch (behavior) { 939 case MADV_REMOVE: 940 return madvise_remove(vma, prev, start, end); 941 case MADV_WILLNEED: 942 return madvise_willneed(vma, prev, start, end); 943 case MADV_COLD: 944 return madvise_cold(vma, prev, start, end); 945 case MADV_PAGEOUT: 946 return madvise_pageout(vma, prev, start, end); 947 case MADV_FREE: 948 case MADV_DONTNEED: 949 return madvise_dontneed_free(vma, prev, start, end, behavior); 950 default: 951 return madvise_behavior(vma, prev, start, end, behavior); 952 } 953 } 954 955 static bool 956 madvise_behavior_valid(int behavior) 957 { 958 switch (behavior) { 959 case MADV_DOFORK: 960 case MADV_DONTFORK: 961 case MADV_NORMAL: 962 case MADV_SEQUENTIAL: 963 case MADV_RANDOM: 964 case MADV_REMOVE: 965 case MADV_WILLNEED: 966 case MADV_DONTNEED: 967 case MADV_FREE: 968 case MADV_COLD: 969 case MADV_PAGEOUT: 970 #ifdef CONFIG_KSM 971 case MADV_MERGEABLE: 972 case MADV_UNMERGEABLE: 973 #endif 974 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 975 case MADV_HUGEPAGE: 976 case MADV_NOHUGEPAGE: 977 #endif 978 case MADV_DONTDUMP: 979 case MADV_DODUMP: 980 case MADV_WIPEONFORK: 981 case MADV_KEEPONFORK: 982 #ifdef CONFIG_MEMORY_FAILURE 983 case MADV_SOFT_OFFLINE: 984 case MADV_HWPOISON: 985 #endif 986 return true; 987 988 default: 989 return false; 990 } 991 } 992 993 /* 994 * The madvise(2) system call. 995 * 996 * Applications can use madvise() to advise the kernel how it should 997 * handle paging I/O in this VM area. The idea is to help the kernel 998 * use appropriate read-ahead and caching techniques. The information 999 * provided is advisory only, and can be safely disregarded by the 1000 * kernel without affecting the correct operation of the application. 1001 * 1002 * behavior values: 1003 * MADV_NORMAL - the default behavior is to read clusters. This 1004 * results in some read-ahead and read-behind. 1005 * MADV_RANDOM - the system should read the minimum amount of data 1006 * on any access, since it is unlikely that the appli- 1007 * cation will need more than what it asks for. 1008 * MADV_SEQUENTIAL - pages in the given range will probably be accessed 1009 * once, so they can be aggressively read ahead, and 1010 * can be freed soon after they are accessed. 1011 * MADV_WILLNEED - the application is notifying the system to read 1012 * some pages ahead. 1013 * MADV_DONTNEED - the application is finished with the given range, 1014 * so the kernel can free resources associated with it. 1015 * MADV_FREE - the application marks pages in the given range as lazy free, 1016 * where actual purges are postponed until memory pressure happens. 1017 * MADV_REMOVE - the application wants to free up the given range of 1018 * pages and associated backing store. 1019 * MADV_DONTFORK - omit this area from child's address space when forking: 1020 * typically, to avoid COWing pages pinned by get_user_pages(). 1021 * MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking. 1022 * MADV_WIPEONFORK - present the child process with zero-filled memory in this 1023 * range after a fork. 1024 * MADV_KEEPONFORK - undo the effect of MADV_WIPEONFORK 1025 * MADV_HWPOISON - trigger memory error handler as if the given memory range 1026 * were corrupted by unrecoverable hardware memory failure. 1027 * MADV_SOFT_OFFLINE - try to soft-offline the given range of memory. 1028 * MADV_MERGEABLE - the application recommends that KSM try to merge pages in 1029 * this area with pages of identical content from other such areas. 1030 * MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others. 1031 * MADV_HUGEPAGE - the application wants to back the given range by transparent 1032 * huge pages in the future. Existing pages might be coalesced and 1033 * new pages might be allocated as THP. 1034 * MADV_NOHUGEPAGE - mark the given range as not worth being backed by 1035 * transparent huge pages so the existing pages will not be 1036 * coalesced into THP and new pages will not be allocated as THP. 1037 * MADV_DONTDUMP - the application wants to prevent pages in the given range 1038 * from being included in its core dump. 1039 * MADV_DODUMP - cancel MADV_DONTDUMP: no longer exclude from core dump. 1040 * 1041 * return values: 1042 * zero - success 1043 * -EINVAL - start + len < 0, start is not page-aligned, 1044 * "behavior" is not a valid value, or application 1045 * is attempting to release locked or shared pages, 1046 * or the specified address range includes file, Huge TLB, 1047 * MAP_SHARED or VMPFNMAP range. 1048 * -ENOMEM - addresses in the specified range are not currently 1049 * mapped, or are outside the AS of the process. 1050 * -EIO - an I/O error occurred while paging in data. 1051 * -EBADF - map exists, but area maps something that isn't a file. 1052 * -EAGAIN - a kernel resource was temporarily unavailable. 1053 */ 1054 int do_madvise(unsigned long start, size_t len_in, int behavior) 1055 { 1056 unsigned long end, tmp; 1057 struct vm_area_struct *vma, *prev; 1058 int unmapped_error = 0; 1059 int error = -EINVAL; 1060 int write; 1061 size_t len; 1062 struct blk_plug plug; 1063 1064 start = untagged_addr(start); 1065 1066 if (!madvise_behavior_valid(behavior)) 1067 return error; 1068 1069 if (!PAGE_ALIGNED(start)) 1070 return error; 1071 len = PAGE_ALIGN(len_in); 1072 1073 /* Check to see whether len was rounded up from small -ve to zero */ 1074 if (len_in && !len) 1075 return error; 1076 1077 end = start + len; 1078 if (end < start) 1079 return error; 1080 1081 error = 0; 1082 if (end == start) 1083 return error; 1084 1085 #ifdef CONFIG_MEMORY_FAILURE 1086 if (behavior == MADV_HWPOISON || behavior == MADV_SOFT_OFFLINE) 1087 return madvise_inject_error(behavior, start, start + len_in); 1088 #endif 1089 1090 write = madvise_need_mmap_write(behavior); 1091 if (write) { 1092 if (mmap_write_lock_killable(current->mm)) 1093 return -EINTR; 1094 1095 /* 1096 * We may have stolen the mm from another process 1097 * that is undergoing core dumping. 1098 * 1099 * Right now that's io_ring, in the future it may 1100 * be remote process management and not "current" 1101 * at all. 1102 * 1103 * We need to fix core dumping to not do this, 1104 * but for now we have the mmget_still_valid() 1105 * model. 1106 */ 1107 if (!mmget_still_valid(current->mm)) { 1108 mmap_write_unlock(current->mm); 1109 return -EINTR; 1110 } 1111 } else { 1112 mmap_read_lock(current->mm); 1113 } 1114 1115 /* 1116 * If the interval [start,end) covers some unmapped address 1117 * ranges, just ignore them, but return -ENOMEM at the end. 1118 * - different from the way of handling in mlock etc. 1119 */ 1120 vma = find_vma_prev(current->mm, start, &prev); 1121 if (vma && start > vma->vm_start) 1122 prev = vma; 1123 1124 blk_start_plug(&plug); 1125 for (;;) { 1126 /* Still start < end. */ 1127 error = -ENOMEM; 1128 if (!vma) 1129 goto out; 1130 1131 /* Here start < (end|vma->vm_end). */ 1132 if (start < vma->vm_start) { 1133 unmapped_error = -ENOMEM; 1134 start = vma->vm_start; 1135 if (start >= end) 1136 goto out; 1137 } 1138 1139 /* Here vma->vm_start <= start < (end|vma->vm_end) */ 1140 tmp = vma->vm_end; 1141 if (end < tmp) 1142 tmp = end; 1143 1144 /* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */ 1145 error = madvise_vma(vma, &prev, start, tmp, behavior); 1146 if (error) 1147 goto out; 1148 start = tmp; 1149 if (prev && start < prev->vm_end) 1150 start = prev->vm_end; 1151 error = unmapped_error; 1152 if (start >= end) 1153 goto out; 1154 if (prev) 1155 vma = prev->vm_next; 1156 else /* madvise_remove dropped mmap_lock */ 1157 vma = find_vma(current->mm, start); 1158 } 1159 out: 1160 blk_finish_plug(&plug); 1161 if (write) 1162 mmap_write_unlock(current->mm); 1163 else 1164 mmap_read_unlock(current->mm); 1165 1166 return error; 1167 } 1168 1169 SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior) 1170 { 1171 return do_madvise(start, len_in, behavior); 1172 } 1173