1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/madvise.c 4 * 5 * Copyright (C) 1999 Linus Torvalds 6 * Copyright (C) 2002 Christoph Hellwig 7 */ 8 9 #include <linux/mman.h> 10 #include <linux/pagemap.h> 11 #include <linux/syscalls.h> 12 #include <linux/mempolicy.h> 13 #include <linux/page-isolation.h> 14 #include <linux/page_idle.h> 15 #include <linux/userfaultfd_k.h> 16 #include <linux/hugetlb.h> 17 #include <linux/falloc.h> 18 #include <linux/fadvise.h> 19 #include <linux/sched.h> 20 #include <linux/ksm.h> 21 #include <linux/fs.h> 22 #include <linux/file.h> 23 #include <linux/blkdev.h> 24 #include <linux/backing-dev.h> 25 #include <linux/pagewalk.h> 26 #include <linux/swap.h> 27 #include <linux/swapops.h> 28 #include <linux/shmem_fs.h> 29 #include <linux/mmu_notifier.h> 30 31 #include <asm/tlb.h> 32 33 #include "internal.h" 34 35 struct madvise_walk_private { 36 struct mmu_gather *tlb; 37 bool pageout; 38 }; 39 40 /* 41 * Any behaviour which results in changes to the vma->vm_flags needs to 42 * take mmap_sem for writing. Others, which simply traverse vmas, need 43 * to only take it for reading. 44 */ 45 static int madvise_need_mmap_write(int behavior) 46 { 47 switch (behavior) { 48 case MADV_REMOVE: 49 case MADV_WILLNEED: 50 case MADV_DONTNEED: 51 case MADV_COLD: 52 case MADV_PAGEOUT: 53 case MADV_FREE: 54 return 0; 55 default: 56 /* be safe, default to 1. list exceptions explicitly */ 57 return 1; 58 } 59 } 60 61 /* 62 * We can potentially split a vm area into separate 63 * areas, each area with its own behavior. 64 */ 65 static long madvise_behavior(struct vm_area_struct *vma, 66 struct vm_area_struct **prev, 67 unsigned long start, unsigned long end, int behavior) 68 { 69 struct mm_struct *mm = vma->vm_mm; 70 int error = 0; 71 pgoff_t pgoff; 72 unsigned long new_flags = vma->vm_flags; 73 74 switch (behavior) { 75 case MADV_NORMAL: 76 new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ; 77 break; 78 case MADV_SEQUENTIAL: 79 new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ; 80 break; 81 case MADV_RANDOM: 82 new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ; 83 break; 84 case MADV_DONTFORK: 85 new_flags |= VM_DONTCOPY; 86 break; 87 case MADV_DOFORK: 88 if (vma->vm_flags & VM_IO) { 89 error = -EINVAL; 90 goto out; 91 } 92 new_flags &= ~VM_DONTCOPY; 93 break; 94 case MADV_WIPEONFORK: 95 /* MADV_WIPEONFORK is only supported on anonymous memory. */ 96 if (vma->vm_file || vma->vm_flags & VM_SHARED) { 97 error = -EINVAL; 98 goto out; 99 } 100 new_flags |= VM_WIPEONFORK; 101 break; 102 case MADV_KEEPONFORK: 103 new_flags &= ~VM_WIPEONFORK; 104 break; 105 case MADV_DONTDUMP: 106 new_flags |= VM_DONTDUMP; 107 break; 108 case MADV_DODUMP: 109 if (!is_vm_hugetlb_page(vma) && new_flags & VM_SPECIAL) { 110 error = -EINVAL; 111 goto out; 112 } 113 new_flags &= ~VM_DONTDUMP; 114 break; 115 case MADV_MERGEABLE: 116 case MADV_UNMERGEABLE: 117 error = ksm_madvise(vma, start, end, behavior, &new_flags); 118 if (error) 119 goto out_convert_errno; 120 break; 121 case MADV_HUGEPAGE: 122 case MADV_NOHUGEPAGE: 123 error = hugepage_madvise(vma, &new_flags, behavior); 124 if (error) 125 goto out_convert_errno; 126 break; 127 } 128 129 if (new_flags == vma->vm_flags) { 130 *prev = vma; 131 goto out; 132 } 133 134 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT); 135 *prev = vma_merge(mm, *prev, start, end, new_flags, vma->anon_vma, 136 vma->vm_file, pgoff, vma_policy(vma), 137 vma->vm_userfaultfd_ctx); 138 if (*prev) { 139 vma = *prev; 140 goto success; 141 } 142 143 *prev = vma; 144 145 if (start != vma->vm_start) { 146 if (unlikely(mm->map_count >= sysctl_max_map_count)) { 147 error = -ENOMEM; 148 goto out; 149 } 150 error = __split_vma(mm, vma, start, 1); 151 if (error) 152 goto out_convert_errno; 153 } 154 155 if (end != vma->vm_end) { 156 if (unlikely(mm->map_count >= sysctl_max_map_count)) { 157 error = -ENOMEM; 158 goto out; 159 } 160 error = __split_vma(mm, vma, end, 0); 161 if (error) 162 goto out_convert_errno; 163 } 164 165 success: 166 /* 167 * vm_flags is protected by the mmap_sem held in write mode. 168 */ 169 vma->vm_flags = new_flags; 170 171 out_convert_errno: 172 /* 173 * madvise() returns EAGAIN if kernel resources, such as 174 * slab, are temporarily unavailable. 175 */ 176 if (error == -ENOMEM) 177 error = -EAGAIN; 178 out: 179 return error; 180 } 181 182 #ifdef CONFIG_SWAP 183 static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start, 184 unsigned long end, struct mm_walk *walk) 185 { 186 pte_t *orig_pte; 187 struct vm_area_struct *vma = walk->private; 188 unsigned long index; 189 190 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 191 return 0; 192 193 for (index = start; index != end; index += PAGE_SIZE) { 194 pte_t pte; 195 swp_entry_t entry; 196 struct page *page; 197 spinlock_t *ptl; 198 199 orig_pte = pte_offset_map_lock(vma->vm_mm, pmd, start, &ptl); 200 pte = *(orig_pte + ((index - start) / PAGE_SIZE)); 201 pte_unmap_unlock(orig_pte, ptl); 202 203 if (pte_present(pte) || pte_none(pte)) 204 continue; 205 entry = pte_to_swp_entry(pte); 206 if (unlikely(non_swap_entry(entry))) 207 continue; 208 209 page = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE, 210 vma, index, false); 211 if (page) 212 put_page(page); 213 } 214 215 return 0; 216 } 217 218 static const struct mm_walk_ops swapin_walk_ops = { 219 .pmd_entry = swapin_walk_pmd_entry, 220 }; 221 222 static void force_shm_swapin_readahead(struct vm_area_struct *vma, 223 unsigned long start, unsigned long end, 224 struct address_space *mapping) 225 { 226 pgoff_t index; 227 struct page *page; 228 swp_entry_t swap; 229 230 for (; start < end; start += PAGE_SIZE) { 231 index = ((start - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 232 233 page = find_get_entry(mapping, index); 234 if (!xa_is_value(page)) { 235 if (page) 236 put_page(page); 237 continue; 238 } 239 swap = radix_to_swp_entry(page); 240 page = read_swap_cache_async(swap, GFP_HIGHUSER_MOVABLE, 241 NULL, 0, false); 242 if (page) 243 put_page(page); 244 } 245 246 lru_add_drain(); /* Push any new pages onto the LRU now */ 247 } 248 #endif /* CONFIG_SWAP */ 249 250 /* 251 * Schedule all required I/O operations. Do not wait for completion. 252 */ 253 static long madvise_willneed(struct vm_area_struct *vma, 254 struct vm_area_struct **prev, 255 unsigned long start, unsigned long end) 256 { 257 struct file *file = vma->vm_file; 258 loff_t offset; 259 260 *prev = vma; 261 #ifdef CONFIG_SWAP 262 if (!file) { 263 walk_page_range(vma->vm_mm, start, end, &swapin_walk_ops, vma); 264 lru_add_drain(); /* Push any new pages onto the LRU now */ 265 return 0; 266 } 267 268 if (shmem_mapping(file->f_mapping)) { 269 force_shm_swapin_readahead(vma, start, end, 270 file->f_mapping); 271 return 0; 272 } 273 #else 274 if (!file) 275 return -EBADF; 276 #endif 277 278 if (IS_DAX(file_inode(file))) { 279 /* no bad return value, but ignore advice */ 280 return 0; 281 } 282 283 /* 284 * Filesystem's fadvise may need to take various locks. We need to 285 * explicitly grab a reference because the vma (and hence the 286 * vma's reference to the file) can go away as soon as we drop 287 * mmap_sem. 288 */ 289 *prev = NULL; /* tell sys_madvise we drop mmap_sem */ 290 get_file(file); 291 up_read(¤t->mm->mmap_sem); 292 offset = (loff_t)(start - vma->vm_start) 293 + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 294 vfs_fadvise(file, offset, end - start, POSIX_FADV_WILLNEED); 295 fput(file); 296 down_read(¤t->mm->mmap_sem); 297 return 0; 298 } 299 300 static int madvise_cold_or_pageout_pte_range(pmd_t *pmd, 301 unsigned long addr, unsigned long end, 302 struct mm_walk *walk) 303 { 304 struct madvise_walk_private *private = walk->private; 305 struct mmu_gather *tlb = private->tlb; 306 bool pageout = private->pageout; 307 struct mm_struct *mm = tlb->mm; 308 struct vm_area_struct *vma = walk->vma; 309 pte_t *orig_pte, *pte, ptent; 310 spinlock_t *ptl; 311 struct page *page = NULL; 312 LIST_HEAD(page_list); 313 314 if (fatal_signal_pending(current)) 315 return -EINTR; 316 317 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 318 if (pmd_trans_huge(*pmd)) { 319 pmd_t orig_pmd; 320 unsigned long next = pmd_addr_end(addr, end); 321 322 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 323 ptl = pmd_trans_huge_lock(pmd, vma); 324 if (!ptl) 325 return 0; 326 327 orig_pmd = *pmd; 328 if (is_huge_zero_pmd(orig_pmd)) 329 goto huge_unlock; 330 331 if (unlikely(!pmd_present(orig_pmd))) { 332 VM_BUG_ON(thp_migration_supported() && 333 !is_pmd_migration_entry(orig_pmd)); 334 goto huge_unlock; 335 } 336 337 page = pmd_page(orig_pmd); 338 if (next - addr != HPAGE_PMD_SIZE) { 339 int err; 340 341 if (page_mapcount(page) != 1) 342 goto huge_unlock; 343 344 get_page(page); 345 spin_unlock(ptl); 346 lock_page(page); 347 err = split_huge_page(page); 348 unlock_page(page); 349 put_page(page); 350 if (!err) 351 goto regular_page; 352 return 0; 353 } 354 355 if (pmd_young(orig_pmd)) { 356 pmdp_invalidate(vma, addr, pmd); 357 orig_pmd = pmd_mkold(orig_pmd); 358 359 set_pmd_at(mm, addr, pmd, orig_pmd); 360 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 361 } 362 363 ClearPageReferenced(page); 364 test_and_clear_page_young(page); 365 if (pageout) { 366 if (!isolate_lru_page(page)) 367 list_add(&page->lru, &page_list); 368 } else 369 deactivate_page(page); 370 huge_unlock: 371 spin_unlock(ptl); 372 if (pageout) 373 reclaim_pages(&page_list); 374 return 0; 375 } 376 377 if (pmd_trans_unstable(pmd)) 378 return 0; 379 regular_page: 380 #endif 381 tlb_change_page_size(tlb, PAGE_SIZE); 382 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 383 flush_tlb_batched_pending(mm); 384 arch_enter_lazy_mmu_mode(); 385 for (; addr < end; pte++, addr += PAGE_SIZE) { 386 ptent = *pte; 387 388 if (pte_none(ptent)) 389 continue; 390 391 if (!pte_present(ptent)) 392 continue; 393 394 page = vm_normal_page(vma, addr, ptent); 395 if (!page) 396 continue; 397 398 /* 399 * Creating a THP page is expensive so split it only if we 400 * are sure it's worth. Split it if we are only owner. 401 */ 402 if (PageTransCompound(page)) { 403 if (page_mapcount(page) != 1) 404 break; 405 get_page(page); 406 if (!trylock_page(page)) { 407 put_page(page); 408 break; 409 } 410 pte_unmap_unlock(orig_pte, ptl); 411 if (split_huge_page(page)) { 412 unlock_page(page); 413 put_page(page); 414 pte_offset_map_lock(mm, pmd, addr, &ptl); 415 break; 416 } 417 unlock_page(page); 418 put_page(page); 419 pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 420 pte--; 421 addr -= PAGE_SIZE; 422 continue; 423 } 424 425 VM_BUG_ON_PAGE(PageTransCompound(page), page); 426 427 if (pte_young(ptent)) { 428 ptent = ptep_get_and_clear_full(mm, addr, pte, 429 tlb->fullmm); 430 ptent = pte_mkold(ptent); 431 set_pte_at(mm, addr, pte, ptent); 432 tlb_remove_tlb_entry(tlb, pte, addr); 433 } 434 435 /* 436 * We are deactivating a page for accelerating reclaiming. 437 * VM couldn't reclaim the page unless we clear PG_young. 438 * As a side effect, it makes confuse idle-page tracking 439 * because they will miss recent referenced history. 440 */ 441 ClearPageReferenced(page); 442 test_and_clear_page_young(page); 443 if (pageout) { 444 if (!isolate_lru_page(page)) 445 list_add(&page->lru, &page_list); 446 } else 447 deactivate_page(page); 448 } 449 450 arch_leave_lazy_mmu_mode(); 451 pte_unmap_unlock(orig_pte, ptl); 452 if (pageout) 453 reclaim_pages(&page_list); 454 cond_resched(); 455 456 return 0; 457 } 458 459 static const struct mm_walk_ops cold_walk_ops = { 460 .pmd_entry = madvise_cold_or_pageout_pte_range, 461 }; 462 463 static void madvise_cold_page_range(struct mmu_gather *tlb, 464 struct vm_area_struct *vma, 465 unsigned long addr, unsigned long end) 466 { 467 struct madvise_walk_private walk_private = { 468 .pageout = false, 469 .tlb = tlb, 470 }; 471 472 tlb_start_vma(tlb, vma); 473 walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private); 474 tlb_end_vma(tlb, vma); 475 } 476 477 static long madvise_cold(struct vm_area_struct *vma, 478 struct vm_area_struct **prev, 479 unsigned long start_addr, unsigned long end_addr) 480 { 481 struct mm_struct *mm = vma->vm_mm; 482 struct mmu_gather tlb; 483 484 *prev = vma; 485 if (!can_madv_lru_vma(vma)) 486 return -EINVAL; 487 488 lru_add_drain(); 489 tlb_gather_mmu(&tlb, mm, start_addr, end_addr); 490 madvise_cold_page_range(&tlb, vma, start_addr, end_addr); 491 tlb_finish_mmu(&tlb, start_addr, end_addr); 492 493 return 0; 494 } 495 496 static void madvise_pageout_page_range(struct mmu_gather *tlb, 497 struct vm_area_struct *vma, 498 unsigned long addr, unsigned long end) 499 { 500 struct madvise_walk_private walk_private = { 501 .pageout = true, 502 .tlb = tlb, 503 }; 504 505 tlb_start_vma(tlb, vma); 506 walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private); 507 tlb_end_vma(tlb, vma); 508 } 509 510 static inline bool can_do_pageout(struct vm_area_struct *vma) 511 { 512 if (vma_is_anonymous(vma)) 513 return true; 514 if (!vma->vm_file) 515 return false; 516 /* 517 * paging out pagecache only for non-anonymous mappings that correspond 518 * to the files the calling process could (if tried) open for writing; 519 * otherwise we'd be including shared non-exclusive mappings, which 520 * opens a side channel. 521 */ 522 return inode_owner_or_capable(file_inode(vma->vm_file)) || 523 inode_permission(file_inode(vma->vm_file), MAY_WRITE) == 0; 524 } 525 526 static long madvise_pageout(struct vm_area_struct *vma, 527 struct vm_area_struct **prev, 528 unsigned long start_addr, unsigned long end_addr) 529 { 530 struct mm_struct *mm = vma->vm_mm; 531 struct mmu_gather tlb; 532 533 *prev = vma; 534 if (!can_madv_lru_vma(vma)) 535 return -EINVAL; 536 537 if (!can_do_pageout(vma)) 538 return 0; 539 540 lru_add_drain(); 541 tlb_gather_mmu(&tlb, mm, start_addr, end_addr); 542 madvise_pageout_page_range(&tlb, vma, start_addr, end_addr); 543 tlb_finish_mmu(&tlb, start_addr, end_addr); 544 545 return 0; 546 } 547 548 static int madvise_free_pte_range(pmd_t *pmd, unsigned long addr, 549 unsigned long end, struct mm_walk *walk) 550 551 { 552 struct mmu_gather *tlb = walk->private; 553 struct mm_struct *mm = tlb->mm; 554 struct vm_area_struct *vma = walk->vma; 555 spinlock_t *ptl; 556 pte_t *orig_pte, *pte, ptent; 557 struct page *page; 558 int nr_swap = 0; 559 unsigned long next; 560 561 next = pmd_addr_end(addr, end); 562 if (pmd_trans_huge(*pmd)) 563 if (madvise_free_huge_pmd(tlb, vma, pmd, addr, next)) 564 goto next; 565 566 if (pmd_trans_unstable(pmd)) 567 return 0; 568 569 tlb_change_page_size(tlb, PAGE_SIZE); 570 orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 571 flush_tlb_batched_pending(mm); 572 arch_enter_lazy_mmu_mode(); 573 for (; addr != end; pte++, addr += PAGE_SIZE) { 574 ptent = *pte; 575 576 if (pte_none(ptent)) 577 continue; 578 /* 579 * If the pte has swp_entry, just clear page table to 580 * prevent swap-in which is more expensive rather than 581 * (page allocation + zeroing). 582 */ 583 if (!pte_present(ptent)) { 584 swp_entry_t entry; 585 586 entry = pte_to_swp_entry(ptent); 587 if (non_swap_entry(entry)) 588 continue; 589 nr_swap--; 590 free_swap_and_cache(entry); 591 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 592 continue; 593 } 594 595 page = vm_normal_page(vma, addr, ptent); 596 if (!page) 597 continue; 598 599 /* 600 * If pmd isn't transhuge but the page is THP and 601 * is owned by only this process, split it and 602 * deactivate all pages. 603 */ 604 if (PageTransCompound(page)) { 605 if (page_mapcount(page) != 1) 606 goto out; 607 get_page(page); 608 if (!trylock_page(page)) { 609 put_page(page); 610 goto out; 611 } 612 pte_unmap_unlock(orig_pte, ptl); 613 if (split_huge_page(page)) { 614 unlock_page(page); 615 put_page(page); 616 pte_offset_map_lock(mm, pmd, addr, &ptl); 617 goto out; 618 } 619 unlock_page(page); 620 put_page(page); 621 pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 622 pte--; 623 addr -= PAGE_SIZE; 624 continue; 625 } 626 627 VM_BUG_ON_PAGE(PageTransCompound(page), page); 628 629 if (PageSwapCache(page) || PageDirty(page)) { 630 if (!trylock_page(page)) 631 continue; 632 /* 633 * If page is shared with others, we couldn't clear 634 * PG_dirty of the page. 635 */ 636 if (page_mapcount(page) != 1) { 637 unlock_page(page); 638 continue; 639 } 640 641 if (PageSwapCache(page) && !try_to_free_swap(page)) { 642 unlock_page(page); 643 continue; 644 } 645 646 ClearPageDirty(page); 647 unlock_page(page); 648 } 649 650 if (pte_young(ptent) || pte_dirty(ptent)) { 651 /* 652 * Some of architecture(ex, PPC) don't update TLB 653 * with set_pte_at and tlb_remove_tlb_entry so for 654 * the portability, remap the pte with old|clean 655 * after pte clearing. 656 */ 657 ptent = ptep_get_and_clear_full(mm, addr, pte, 658 tlb->fullmm); 659 660 ptent = pte_mkold(ptent); 661 ptent = pte_mkclean(ptent); 662 set_pte_at(mm, addr, pte, ptent); 663 tlb_remove_tlb_entry(tlb, pte, addr); 664 } 665 mark_page_lazyfree(page); 666 } 667 out: 668 if (nr_swap) { 669 if (current->mm == mm) 670 sync_mm_rss(mm); 671 672 add_mm_counter(mm, MM_SWAPENTS, nr_swap); 673 } 674 arch_leave_lazy_mmu_mode(); 675 pte_unmap_unlock(orig_pte, ptl); 676 cond_resched(); 677 next: 678 return 0; 679 } 680 681 static const struct mm_walk_ops madvise_free_walk_ops = { 682 .pmd_entry = madvise_free_pte_range, 683 }; 684 685 static int madvise_free_single_vma(struct vm_area_struct *vma, 686 unsigned long start_addr, unsigned long end_addr) 687 { 688 struct mm_struct *mm = vma->vm_mm; 689 struct mmu_notifier_range range; 690 struct mmu_gather tlb; 691 692 /* MADV_FREE works for only anon vma at the moment */ 693 if (!vma_is_anonymous(vma)) 694 return -EINVAL; 695 696 range.start = max(vma->vm_start, start_addr); 697 if (range.start >= vma->vm_end) 698 return -EINVAL; 699 range.end = min(vma->vm_end, end_addr); 700 if (range.end <= vma->vm_start) 701 return -EINVAL; 702 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, 703 range.start, range.end); 704 705 lru_add_drain(); 706 tlb_gather_mmu(&tlb, mm, range.start, range.end); 707 update_hiwater_rss(mm); 708 709 mmu_notifier_invalidate_range_start(&range); 710 tlb_start_vma(&tlb, vma); 711 walk_page_range(vma->vm_mm, range.start, range.end, 712 &madvise_free_walk_ops, &tlb); 713 tlb_end_vma(&tlb, vma); 714 mmu_notifier_invalidate_range_end(&range); 715 tlb_finish_mmu(&tlb, range.start, range.end); 716 717 return 0; 718 } 719 720 /* 721 * Application no longer needs these pages. If the pages are dirty, 722 * it's OK to just throw them away. The app will be more careful about 723 * data it wants to keep. Be sure to free swap resources too. The 724 * zap_page_range call sets things up for shrink_active_list to actually free 725 * these pages later if no one else has touched them in the meantime, 726 * although we could add these pages to a global reuse list for 727 * shrink_active_list to pick up before reclaiming other pages. 728 * 729 * NB: This interface discards data rather than pushes it out to swap, 730 * as some implementations do. This has performance implications for 731 * applications like large transactional databases which want to discard 732 * pages in anonymous maps after committing to backing store the data 733 * that was kept in them. There is no reason to write this data out to 734 * the swap area if the application is discarding it. 735 * 736 * An interface that causes the system to free clean pages and flush 737 * dirty pages is already available as msync(MS_INVALIDATE). 738 */ 739 static long madvise_dontneed_single_vma(struct vm_area_struct *vma, 740 unsigned long start, unsigned long end) 741 { 742 zap_page_range(vma, start, end - start); 743 return 0; 744 } 745 746 static long madvise_dontneed_free(struct vm_area_struct *vma, 747 struct vm_area_struct **prev, 748 unsigned long start, unsigned long end, 749 int behavior) 750 { 751 *prev = vma; 752 if (!can_madv_lru_vma(vma)) 753 return -EINVAL; 754 755 if (!userfaultfd_remove(vma, start, end)) { 756 *prev = NULL; /* mmap_sem has been dropped, prev is stale */ 757 758 down_read(¤t->mm->mmap_sem); 759 vma = find_vma(current->mm, start); 760 if (!vma) 761 return -ENOMEM; 762 if (start < vma->vm_start) { 763 /* 764 * This "vma" under revalidation is the one 765 * with the lowest vma->vm_start where start 766 * is also < vma->vm_end. If start < 767 * vma->vm_start it means an hole materialized 768 * in the user address space within the 769 * virtual range passed to MADV_DONTNEED 770 * or MADV_FREE. 771 */ 772 return -ENOMEM; 773 } 774 if (!can_madv_lru_vma(vma)) 775 return -EINVAL; 776 if (end > vma->vm_end) { 777 /* 778 * Don't fail if end > vma->vm_end. If the old 779 * vma was splitted while the mmap_sem was 780 * released the effect of the concurrent 781 * operation may not cause madvise() to 782 * have an undefined result. There may be an 783 * adjacent next vma that we'll walk 784 * next. userfaultfd_remove() will generate an 785 * UFFD_EVENT_REMOVE repetition on the 786 * end-vma->vm_end range, but the manager can 787 * handle a repetition fine. 788 */ 789 end = vma->vm_end; 790 } 791 VM_WARN_ON(start >= end); 792 } 793 794 if (behavior == MADV_DONTNEED) 795 return madvise_dontneed_single_vma(vma, start, end); 796 else if (behavior == MADV_FREE) 797 return madvise_free_single_vma(vma, start, end); 798 else 799 return -EINVAL; 800 } 801 802 /* 803 * Application wants to free up the pages and associated backing store. 804 * This is effectively punching a hole into the middle of a file. 805 */ 806 static long madvise_remove(struct vm_area_struct *vma, 807 struct vm_area_struct **prev, 808 unsigned long start, unsigned long end) 809 { 810 loff_t offset; 811 int error; 812 struct file *f; 813 814 *prev = NULL; /* tell sys_madvise we drop mmap_sem */ 815 816 if (vma->vm_flags & VM_LOCKED) 817 return -EINVAL; 818 819 f = vma->vm_file; 820 821 if (!f || !f->f_mapping || !f->f_mapping->host) { 822 return -EINVAL; 823 } 824 825 if ((vma->vm_flags & (VM_SHARED|VM_WRITE)) != (VM_SHARED|VM_WRITE)) 826 return -EACCES; 827 828 offset = (loff_t)(start - vma->vm_start) 829 + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 830 831 /* 832 * Filesystem's fallocate may need to take i_mutex. We need to 833 * explicitly grab a reference because the vma (and hence the 834 * vma's reference to the file) can go away as soon as we drop 835 * mmap_sem. 836 */ 837 get_file(f); 838 if (userfaultfd_remove(vma, start, end)) { 839 /* mmap_sem was not released by userfaultfd_remove() */ 840 up_read(¤t->mm->mmap_sem); 841 } 842 error = vfs_fallocate(f, 843 FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 844 offset, end - start); 845 fput(f); 846 down_read(¤t->mm->mmap_sem); 847 return error; 848 } 849 850 #ifdef CONFIG_MEMORY_FAILURE 851 /* 852 * Error injection support for memory error handling. 853 */ 854 static int madvise_inject_error(int behavior, 855 unsigned long start, unsigned long end) 856 { 857 struct page *page; 858 struct zone *zone; 859 unsigned int order; 860 861 if (!capable(CAP_SYS_ADMIN)) 862 return -EPERM; 863 864 865 for (; start < end; start += PAGE_SIZE << order) { 866 unsigned long pfn; 867 int ret; 868 869 ret = get_user_pages_fast(start, 1, 0, &page); 870 if (ret != 1) 871 return ret; 872 pfn = page_to_pfn(page); 873 874 /* 875 * When soft offlining hugepages, after migrating the page 876 * we dissolve it, therefore in the second loop "page" will 877 * no longer be a compound page, and order will be 0. 878 */ 879 order = compound_order(compound_head(page)); 880 881 if (PageHWPoison(page)) { 882 put_page(page); 883 continue; 884 } 885 886 if (behavior == MADV_SOFT_OFFLINE) { 887 pr_info("Soft offlining pfn %#lx at process virtual address %#lx\n", 888 pfn, start); 889 890 ret = soft_offline_page(page, MF_COUNT_INCREASED); 891 if (ret) 892 return ret; 893 continue; 894 } 895 896 pr_info("Injecting memory failure for pfn %#lx at process virtual address %#lx\n", 897 pfn, start); 898 899 /* 900 * Drop the page reference taken by get_user_pages_fast(). In 901 * the absence of MF_COUNT_INCREASED the memory_failure() 902 * routine is responsible for pinning the page to prevent it 903 * from being released back to the page allocator. 904 */ 905 put_page(page); 906 ret = memory_failure(pfn, 0); 907 if (ret) 908 return ret; 909 } 910 911 /* Ensure that all poisoned pages are removed from per-cpu lists */ 912 for_each_populated_zone(zone) 913 drain_all_pages(zone); 914 915 return 0; 916 } 917 #endif 918 919 static long 920 madvise_vma(struct vm_area_struct *vma, struct vm_area_struct **prev, 921 unsigned long start, unsigned long end, int behavior) 922 { 923 switch (behavior) { 924 case MADV_REMOVE: 925 return madvise_remove(vma, prev, start, end); 926 case MADV_WILLNEED: 927 return madvise_willneed(vma, prev, start, end); 928 case MADV_COLD: 929 return madvise_cold(vma, prev, start, end); 930 case MADV_PAGEOUT: 931 return madvise_pageout(vma, prev, start, end); 932 case MADV_FREE: 933 case MADV_DONTNEED: 934 return madvise_dontneed_free(vma, prev, start, end, behavior); 935 default: 936 return madvise_behavior(vma, prev, start, end, behavior); 937 } 938 } 939 940 static bool 941 madvise_behavior_valid(int behavior) 942 { 943 switch (behavior) { 944 case MADV_DOFORK: 945 case MADV_DONTFORK: 946 case MADV_NORMAL: 947 case MADV_SEQUENTIAL: 948 case MADV_RANDOM: 949 case MADV_REMOVE: 950 case MADV_WILLNEED: 951 case MADV_DONTNEED: 952 case MADV_FREE: 953 case MADV_COLD: 954 case MADV_PAGEOUT: 955 #ifdef CONFIG_KSM 956 case MADV_MERGEABLE: 957 case MADV_UNMERGEABLE: 958 #endif 959 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 960 case MADV_HUGEPAGE: 961 case MADV_NOHUGEPAGE: 962 #endif 963 case MADV_DONTDUMP: 964 case MADV_DODUMP: 965 case MADV_WIPEONFORK: 966 case MADV_KEEPONFORK: 967 #ifdef CONFIG_MEMORY_FAILURE 968 case MADV_SOFT_OFFLINE: 969 case MADV_HWPOISON: 970 #endif 971 return true; 972 973 default: 974 return false; 975 } 976 } 977 978 /* 979 * The madvise(2) system call. 980 * 981 * Applications can use madvise() to advise the kernel how it should 982 * handle paging I/O in this VM area. The idea is to help the kernel 983 * use appropriate read-ahead and caching techniques. The information 984 * provided is advisory only, and can be safely disregarded by the 985 * kernel without affecting the correct operation of the application. 986 * 987 * behavior values: 988 * MADV_NORMAL - the default behavior is to read clusters. This 989 * results in some read-ahead and read-behind. 990 * MADV_RANDOM - the system should read the minimum amount of data 991 * on any access, since it is unlikely that the appli- 992 * cation will need more than what it asks for. 993 * MADV_SEQUENTIAL - pages in the given range will probably be accessed 994 * once, so they can be aggressively read ahead, and 995 * can be freed soon after they are accessed. 996 * MADV_WILLNEED - the application is notifying the system to read 997 * some pages ahead. 998 * MADV_DONTNEED - the application is finished with the given range, 999 * so the kernel can free resources associated with it. 1000 * MADV_FREE - the application marks pages in the given range as lazy free, 1001 * where actual purges are postponed until memory pressure happens. 1002 * MADV_REMOVE - the application wants to free up the given range of 1003 * pages and associated backing store. 1004 * MADV_DONTFORK - omit this area from child's address space when forking: 1005 * typically, to avoid COWing pages pinned by get_user_pages(). 1006 * MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking. 1007 * MADV_WIPEONFORK - present the child process with zero-filled memory in this 1008 * range after a fork. 1009 * MADV_KEEPONFORK - undo the effect of MADV_WIPEONFORK 1010 * MADV_HWPOISON - trigger memory error handler as if the given memory range 1011 * were corrupted by unrecoverable hardware memory failure. 1012 * MADV_SOFT_OFFLINE - try to soft-offline the given range of memory. 1013 * MADV_MERGEABLE - the application recommends that KSM try to merge pages in 1014 * this area with pages of identical content from other such areas. 1015 * MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others. 1016 * MADV_HUGEPAGE - the application wants to back the given range by transparent 1017 * huge pages in the future. Existing pages might be coalesced and 1018 * new pages might be allocated as THP. 1019 * MADV_NOHUGEPAGE - mark the given range as not worth being backed by 1020 * transparent huge pages so the existing pages will not be 1021 * coalesced into THP and new pages will not be allocated as THP. 1022 * MADV_DONTDUMP - the application wants to prevent pages in the given range 1023 * from being included in its core dump. 1024 * MADV_DODUMP - cancel MADV_DONTDUMP: no longer exclude from core dump. 1025 * 1026 * return values: 1027 * zero - success 1028 * -EINVAL - start + len < 0, start is not page-aligned, 1029 * "behavior" is not a valid value, or application 1030 * is attempting to release locked or shared pages, 1031 * or the specified address range includes file, Huge TLB, 1032 * MAP_SHARED or VMPFNMAP range. 1033 * -ENOMEM - addresses in the specified range are not currently 1034 * mapped, or are outside the AS of the process. 1035 * -EIO - an I/O error occurred while paging in data. 1036 * -EBADF - map exists, but area maps something that isn't a file. 1037 * -EAGAIN - a kernel resource was temporarily unavailable. 1038 */ 1039 SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior) 1040 { 1041 unsigned long end, tmp; 1042 struct vm_area_struct *vma, *prev; 1043 int unmapped_error = 0; 1044 int error = -EINVAL; 1045 int write; 1046 size_t len; 1047 struct blk_plug plug; 1048 1049 start = untagged_addr(start); 1050 1051 if (!madvise_behavior_valid(behavior)) 1052 return error; 1053 1054 if (start & ~PAGE_MASK) 1055 return error; 1056 len = (len_in + ~PAGE_MASK) & PAGE_MASK; 1057 1058 /* Check to see whether len was rounded up from small -ve to zero */ 1059 if (len_in && !len) 1060 return error; 1061 1062 end = start + len; 1063 if (end < start) 1064 return error; 1065 1066 error = 0; 1067 if (end == start) 1068 return error; 1069 1070 #ifdef CONFIG_MEMORY_FAILURE 1071 if (behavior == MADV_HWPOISON || behavior == MADV_SOFT_OFFLINE) 1072 return madvise_inject_error(behavior, start, start + len_in); 1073 #endif 1074 1075 write = madvise_need_mmap_write(behavior); 1076 if (write) { 1077 if (down_write_killable(¤t->mm->mmap_sem)) 1078 return -EINTR; 1079 } else { 1080 down_read(¤t->mm->mmap_sem); 1081 } 1082 1083 /* 1084 * If the interval [start,end) covers some unmapped address 1085 * ranges, just ignore them, but return -ENOMEM at the end. 1086 * - different from the way of handling in mlock etc. 1087 */ 1088 vma = find_vma_prev(current->mm, start, &prev); 1089 if (vma && start > vma->vm_start) 1090 prev = vma; 1091 1092 blk_start_plug(&plug); 1093 for (;;) { 1094 /* Still start < end. */ 1095 error = -ENOMEM; 1096 if (!vma) 1097 goto out; 1098 1099 /* Here start < (end|vma->vm_end). */ 1100 if (start < vma->vm_start) { 1101 unmapped_error = -ENOMEM; 1102 start = vma->vm_start; 1103 if (start >= end) 1104 goto out; 1105 } 1106 1107 /* Here vma->vm_start <= start < (end|vma->vm_end) */ 1108 tmp = vma->vm_end; 1109 if (end < tmp) 1110 tmp = end; 1111 1112 /* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */ 1113 error = madvise_vma(vma, &prev, start, tmp, behavior); 1114 if (error) 1115 goto out; 1116 start = tmp; 1117 if (prev && start < prev->vm_end) 1118 start = prev->vm_end; 1119 error = unmapped_error; 1120 if (start >= end) 1121 goto out; 1122 if (prev) 1123 vma = prev->vm_next; 1124 else /* madvise_remove dropped mmap_sem */ 1125 vma = find_vma(current->mm, start); 1126 } 1127 out: 1128 blk_finish_plug(&plug); 1129 if (write) 1130 up_write(¤t->mm->mmap_sem); 1131 else 1132 up_read(¤t->mm->mmap_sem); 1133 1134 return error; 1135 } 1136