xref: /openbmc/linux/mm/madvise.c (revision 3bf90eca)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *	linux/mm/madvise.c
4  *
5  * Copyright (C) 1999  Linus Torvalds
6  * Copyright (C) 2002  Christoph Hellwig
7  */
8 
9 #include <linux/mman.h>
10 #include <linux/pagemap.h>
11 #include <linux/syscalls.h>
12 #include <linux/mempolicy.h>
13 #include <linux/page-isolation.h>
14 #include <linux/page_idle.h>
15 #include <linux/userfaultfd_k.h>
16 #include <linux/hugetlb.h>
17 #include <linux/falloc.h>
18 #include <linux/fadvise.h>
19 #include <linux/sched.h>
20 #include <linux/sched/mm.h>
21 #include <linux/mm_inline.h>
22 #include <linux/string.h>
23 #include <linux/uio.h>
24 #include <linux/ksm.h>
25 #include <linux/fs.h>
26 #include <linux/file.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagewalk.h>
30 #include <linux/swap.h>
31 #include <linux/swapops.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/mmu_notifier.h>
34 
35 #include <asm/tlb.h>
36 
37 #include "internal.h"
38 #include "swap.h"
39 
40 struct madvise_walk_private {
41 	struct mmu_gather *tlb;
42 	bool pageout;
43 };
44 
45 /*
46  * Any behaviour which results in changes to the vma->vm_flags needs to
47  * take mmap_lock for writing. Others, which simply traverse vmas, need
48  * to only take it for reading.
49  */
50 static int madvise_need_mmap_write(int behavior)
51 {
52 	switch (behavior) {
53 	case MADV_REMOVE:
54 	case MADV_WILLNEED:
55 	case MADV_DONTNEED:
56 	case MADV_DONTNEED_LOCKED:
57 	case MADV_COLD:
58 	case MADV_PAGEOUT:
59 	case MADV_FREE:
60 	case MADV_POPULATE_READ:
61 	case MADV_POPULATE_WRITE:
62 	case MADV_COLLAPSE:
63 		return 0;
64 	default:
65 		/* be safe, default to 1. list exceptions explicitly */
66 		return 1;
67 	}
68 }
69 
70 #ifdef CONFIG_ANON_VMA_NAME
71 struct anon_vma_name *anon_vma_name_alloc(const char *name)
72 {
73 	struct anon_vma_name *anon_name;
74 	size_t count;
75 
76 	/* Add 1 for NUL terminator at the end of the anon_name->name */
77 	count = strlen(name) + 1;
78 	anon_name = kmalloc(struct_size(anon_name, name, count), GFP_KERNEL);
79 	if (anon_name) {
80 		kref_init(&anon_name->kref);
81 		memcpy(anon_name->name, name, count);
82 	}
83 
84 	return anon_name;
85 }
86 
87 void anon_vma_name_free(struct kref *kref)
88 {
89 	struct anon_vma_name *anon_name =
90 			container_of(kref, struct anon_vma_name, kref);
91 	kfree(anon_name);
92 }
93 
94 struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma)
95 {
96 	mmap_assert_locked(vma->vm_mm);
97 
98 	return vma->anon_name;
99 }
100 
101 /* mmap_lock should be write-locked */
102 static int replace_anon_vma_name(struct vm_area_struct *vma,
103 				 struct anon_vma_name *anon_name)
104 {
105 	struct anon_vma_name *orig_name = anon_vma_name(vma);
106 
107 	if (!anon_name) {
108 		vma->anon_name = NULL;
109 		anon_vma_name_put(orig_name);
110 		return 0;
111 	}
112 
113 	if (anon_vma_name_eq(orig_name, anon_name))
114 		return 0;
115 
116 	vma->anon_name = anon_vma_name_reuse(anon_name);
117 	anon_vma_name_put(orig_name);
118 
119 	return 0;
120 }
121 #else /* CONFIG_ANON_VMA_NAME */
122 static int replace_anon_vma_name(struct vm_area_struct *vma,
123 				 struct anon_vma_name *anon_name)
124 {
125 	if (anon_name)
126 		return -EINVAL;
127 
128 	return 0;
129 }
130 #endif /* CONFIG_ANON_VMA_NAME */
131 /*
132  * Update the vm_flags on region of a vma, splitting it or merging it as
133  * necessary.  Must be called with mmap_sem held for writing;
134  * Caller should ensure anon_name stability by raising its refcount even when
135  * anon_name belongs to a valid vma because this function might free that vma.
136  */
137 static int madvise_update_vma(struct vm_area_struct *vma,
138 			      struct vm_area_struct **prev, unsigned long start,
139 			      unsigned long end, unsigned long new_flags,
140 			      struct anon_vma_name *anon_name)
141 {
142 	struct mm_struct *mm = vma->vm_mm;
143 	int error;
144 	pgoff_t pgoff;
145 
146 	if (new_flags == vma->vm_flags && anon_vma_name_eq(anon_vma_name(vma), anon_name)) {
147 		*prev = vma;
148 		return 0;
149 	}
150 
151 	pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
152 	*prev = vma_merge(mm, *prev, start, end, new_flags, vma->anon_vma,
153 			  vma->vm_file, pgoff, vma_policy(vma),
154 			  vma->vm_userfaultfd_ctx, anon_name);
155 	if (*prev) {
156 		vma = *prev;
157 		goto success;
158 	}
159 
160 	*prev = vma;
161 
162 	if (start != vma->vm_start) {
163 		if (unlikely(mm->map_count >= sysctl_max_map_count))
164 			return -ENOMEM;
165 		error = __split_vma(mm, vma, start, 1);
166 		if (error)
167 			return error;
168 	}
169 
170 	if (end != vma->vm_end) {
171 		if (unlikely(mm->map_count >= sysctl_max_map_count))
172 			return -ENOMEM;
173 		error = __split_vma(mm, vma, end, 0);
174 		if (error)
175 			return error;
176 	}
177 
178 success:
179 	/*
180 	 * vm_flags is protected by the mmap_lock held in write mode.
181 	 */
182 	vma->vm_flags = new_flags;
183 	if (!vma->vm_file || vma_is_anon_shmem(vma)) {
184 		error = replace_anon_vma_name(vma, anon_name);
185 		if (error)
186 			return error;
187 	}
188 
189 	return 0;
190 }
191 
192 #ifdef CONFIG_SWAP
193 static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start,
194 	unsigned long end, struct mm_walk *walk)
195 {
196 	struct vm_area_struct *vma = walk->private;
197 	unsigned long index;
198 	struct swap_iocb *splug = NULL;
199 
200 	if (pmd_none_or_trans_huge_or_clear_bad(pmd))
201 		return 0;
202 
203 	for (index = start; index != end; index += PAGE_SIZE) {
204 		pte_t pte;
205 		swp_entry_t entry;
206 		struct page *page;
207 		spinlock_t *ptl;
208 		pte_t *ptep;
209 
210 		ptep = pte_offset_map_lock(vma->vm_mm, pmd, index, &ptl);
211 		pte = *ptep;
212 		pte_unmap_unlock(ptep, ptl);
213 
214 		if (!is_swap_pte(pte))
215 			continue;
216 		entry = pte_to_swp_entry(pte);
217 		if (unlikely(non_swap_entry(entry)))
218 			continue;
219 
220 		page = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE,
221 					     vma, index, false, &splug);
222 		if (page)
223 			put_page(page);
224 	}
225 	swap_read_unplug(splug);
226 	cond_resched();
227 
228 	return 0;
229 }
230 
231 static const struct mm_walk_ops swapin_walk_ops = {
232 	.pmd_entry		= swapin_walk_pmd_entry,
233 };
234 
235 static void force_shm_swapin_readahead(struct vm_area_struct *vma,
236 		unsigned long start, unsigned long end,
237 		struct address_space *mapping)
238 {
239 	XA_STATE(xas, &mapping->i_pages, linear_page_index(vma, start));
240 	pgoff_t end_index = linear_page_index(vma, end + PAGE_SIZE - 1);
241 	struct page *page;
242 	struct swap_iocb *splug = NULL;
243 
244 	rcu_read_lock();
245 	xas_for_each(&xas, page, end_index) {
246 		swp_entry_t swap;
247 
248 		if (!xa_is_value(page))
249 			continue;
250 		swap = radix_to_swp_entry(page);
251 		/* There might be swapin error entries in shmem mapping. */
252 		if (non_swap_entry(swap))
253 			continue;
254 		xas_pause(&xas);
255 		rcu_read_unlock();
256 
257 		page = read_swap_cache_async(swap, GFP_HIGHUSER_MOVABLE,
258 					     NULL, 0, false, &splug);
259 		if (page)
260 			put_page(page);
261 
262 		rcu_read_lock();
263 	}
264 	rcu_read_unlock();
265 	swap_read_unplug(splug);
266 
267 	lru_add_drain();	/* Push any new pages onto the LRU now */
268 }
269 #endif		/* CONFIG_SWAP */
270 
271 /*
272  * Schedule all required I/O operations.  Do not wait for completion.
273  */
274 static long madvise_willneed(struct vm_area_struct *vma,
275 			     struct vm_area_struct **prev,
276 			     unsigned long start, unsigned long end)
277 {
278 	struct mm_struct *mm = vma->vm_mm;
279 	struct file *file = vma->vm_file;
280 	loff_t offset;
281 
282 	*prev = vma;
283 #ifdef CONFIG_SWAP
284 	if (!file) {
285 		walk_page_range(vma->vm_mm, start, end, &swapin_walk_ops, vma);
286 		lru_add_drain(); /* Push any new pages onto the LRU now */
287 		return 0;
288 	}
289 
290 	if (shmem_mapping(file->f_mapping)) {
291 		force_shm_swapin_readahead(vma, start, end,
292 					file->f_mapping);
293 		return 0;
294 	}
295 #else
296 	if (!file)
297 		return -EBADF;
298 #endif
299 
300 	if (IS_DAX(file_inode(file))) {
301 		/* no bad return value, but ignore advice */
302 		return 0;
303 	}
304 
305 	/*
306 	 * Filesystem's fadvise may need to take various locks.  We need to
307 	 * explicitly grab a reference because the vma (and hence the
308 	 * vma's reference to the file) can go away as soon as we drop
309 	 * mmap_lock.
310 	 */
311 	*prev = NULL;	/* tell sys_madvise we drop mmap_lock */
312 	get_file(file);
313 	offset = (loff_t)(start - vma->vm_start)
314 			+ ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
315 	mmap_read_unlock(mm);
316 	vfs_fadvise(file, offset, end - start, POSIX_FADV_WILLNEED);
317 	fput(file);
318 	mmap_read_lock(mm);
319 	return 0;
320 }
321 
322 static inline bool can_do_file_pageout(struct vm_area_struct *vma)
323 {
324 	if (!vma->vm_file)
325 		return false;
326 	/*
327 	 * paging out pagecache only for non-anonymous mappings that correspond
328 	 * to the files the calling process could (if tried) open for writing;
329 	 * otherwise we'd be including shared non-exclusive mappings, which
330 	 * opens a side channel.
331 	 */
332 	return inode_owner_or_capable(&init_user_ns,
333 				      file_inode(vma->vm_file)) ||
334 	       file_permission(vma->vm_file, MAY_WRITE) == 0;
335 }
336 
337 static int madvise_cold_or_pageout_pte_range(pmd_t *pmd,
338 				unsigned long addr, unsigned long end,
339 				struct mm_walk *walk)
340 {
341 	struct madvise_walk_private *private = walk->private;
342 	struct mmu_gather *tlb = private->tlb;
343 	bool pageout = private->pageout;
344 	struct mm_struct *mm = tlb->mm;
345 	struct vm_area_struct *vma = walk->vma;
346 	pte_t *orig_pte, *pte, ptent;
347 	spinlock_t *ptl;
348 	struct page *page = NULL;
349 	LIST_HEAD(page_list);
350 	bool pageout_anon_only_filter;
351 
352 	if (fatal_signal_pending(current))
353 		return -EINTR;
354 
355 	pageout_anon_only_filter = pageout && !vma_is_anonymous(vma) &&
356 					!can_do_file_pageout(vma);
357 
358 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
359 	if (pmd_trans_huge(*pmd)) {
360 		pmd_t orig_pmd;
361 		unsigned long next = pmd_addr_end(addr, end);
362 
363 		tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
364 		ptl = pmd_trans_huge_lock(pmd, vma);
365 		if (!ptl)
366 			return 0;
367 
368 		orig_pmd = *pmd;
369 		if (is_huge_zero_pmd(orig_pmd))
370 			goto huge_unlock;
371 
372 		if (unlikely(!pmd_present(orig_pmd))) {
373 			VM_BUG_ON(thp_migration_supported() &&
374 					!is_pmd_migration_entry(orig_pmd));
375 			goto huge_unlock;
376 		}
377 
378 		page = pmd_page(orig_pmd);
379 
380 		/* Do not interfere with other mappings of this page */
381 		if (page_mapcount(page) != 1)
382 			goto huge_unlock;
383 
384 		if (pageout_anon_only_filter && !PageAnon(page))
385 			goto huge_unlock;
386 
387 		if (next - addr != HPAGE_PMD_SIZE) {
388 			int err;
389 
390 			get_page(page);
391 			spin_unlock(ptl);
392 			lock_page(page);
393 			err = split_huge_page(page);
394 			unlock_page(page);
395 			put_page(page);
396 			if (!err)
397 				goto regular_page;
398 			return 0;
399 		}
400 
401 		if (pmd_young(orig_pmd)) {
402 			pmdp_invalidate(vma, addr, pmd);
403 			orig_pmd = pmd_mkold(orig_pmd);
404 
405 			set_pmd_at(mm, addr, pmd, orig_pmd);
406 			tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
407 		}
408 
409 		ClearPageReferenced(page);
410 		test_and_clear_page_young(page);
411 		if (pageout) {
412 			if (!isolate_lru_page(page)) {
413 				if (PageUnevictable(page))
414 					putback_lru_page(page);
415 				else
416 					list_add(&page->lru, &page_list);
417 			}
418 		} else
419 			deactivate_page(page);
420 huge_unlock:
421 		spin_unlock(ptl);
422 		if (pageout)
423 			reclaim_pages(&page_list);
424 		return 0;
425 	}
426 
427 regular_page:
428 	if (pmd_trans_unstable(pmd))
429 		return 0;
430 #endif
431 	tlb_change_page_size(tlb, PAGE_SIZE);
432 	orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
433 	flush_tlb_batched_pending(mm);
434 	arch_enter_lazy_mmu_mode();
435 	for (; addr < end; pte++, addr += PAGE_SIZE) {
436 		ptent = *pte;
437 
438 		if (pte_none(ptent))
439 			continue;
440 
441 		if (!pte_present(ptent))
442 			continue;
443 
444 		page = vm_normal_page(vma, addr, ptent);
445 		if (!page || is_zone_device_page(page))
446 			continue;
447 
448 		/*
449 		 * Creating a THP page is expensive so split it only if we
450 		 * are sure it's worth. Split it if we are only owner.
451 		 */
452 		if (PageTransCompound(page)) {
453 			if (page_mapcount(page) != 1)
454 				break;
455 			if (pageout_anon_only_filter && !PageAnon(page))
456 				break;
457 			get_page(page);
458 			if (!trylock_page(page)) {
459 				put_page(page);
460 				break;
461 			}
462 			pte_unmap_unlock(orig_pte, ptl);
463 			if (split_huge_page(page)) {
464 				unlock_page(page);
465 				put_page(page);
466 				orig_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
467 				break;
468 			}
469 			unlock_page(page);
470 			put_page(page);
471 			orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
472 			pte--;
473 			addr -= PAGE_SIZE;
474 			continue;
475 		}
476 
477 		/*
478 		 * Do not interfere with other mappings of this page and
479 		 * non-LRU page.
480 		 */
481 		if (!PageLRU(page) || page_mapcount(page) != 1)
482 			continue;
483 
484 		if (pageout_anon_only_filter && !PageAnon(page))
485 			continue;
486 
487 		VM_BUG_ON_PAGE(PageTransCompound(page), page);
488 
489 		if (pte_young(ptent)) {
490 			ptent = ptep_get_and_clear_full(mm, addr, pte,
491 							tlb->fullmm);
492 			ptent = pte_mkold(ptent);
493 			set_pte_at(mm, addr, pte, ptent);
494 			tlb_remove_tlb_entry(tlb, pte, addr);
495 		}
496 
497 		/*
498 		 * We are deactivating a page for accelerating reclaiming.
499 		 * VM couldn't reclaim the page unless we clear PG_young.
500 		 * As a side effect, it makes confuse idle-page tracking
501 		 * because they will miss recent referenced history.
502 		 */
503 		ClearPageReferenced(page);
504 		test_and_clear_page_young(page);
505 		if (pageout) {
506 			if (!isolate_lru_page(page)) {
507 				if (PageUnevictable(page))
508 					putback_lru_page(page);
509 				else
510 					list_add(&page->lru, &page_list);
511 			}
512 		} else
513 			deactivate_page(page);
514 	}
515 
516 	arch_leave_lazy_mmu_mode();
517 	pte_unmap_unlock(orig_pte, ptl);
518 	if (pageout)
519 		reclaim_pages(&page_list);
520 	cond_resched();
521 
522 	return 0;
523 }
524 
525 static const struct mm_walk_ops cold_walk_ops = {
526 	.pmd_entry = madvise_cold_or_pageout_pte_range,
527 };
528 
529 static void madvise_cold_page_range(struct mmu_gather *tlb,
530 			     struct vm_area_struct *vma,
531 			     unsigned long addr, unsigned long end)
532 {
533 	struct madvise_walk_private walk_private = {
534 		.pageout = false,
535 		.tlb = tlb,
536 	};
537 
538 	tlb_start_vma(tlb, vma);
539 	walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
540 	tlb_end_vma(tlb, vma);
541 }
542 
543 static inline bool can_madv_lru_vma(struct vm_area_struct *vma)
544 {
545 	return !(vma->vm_flags & (VM_LOCKED|VM_PFNMAP|VM_HUGETLB));
546 }
547 
548 static long madvise_cold(struct vm_area_struct *vma,
549 			struct vm_area_struct **prev,
550 			unsigned long start_addr, unsigned long end_addr)
551 {
552 	struct mm_struct *mm = vma->vm_mm;
553 	struct mmu_gather tlb;
554 
555 	*prev = vma;
556 	if (!can_madv_lru_vma(vma))
557 		return -EINVAL;
558 
559 	lru_add_drain();
560 	tlb_gather_mmu(&tlb, mm);
561 	madvise_cold_page_range(&tlb, vma, start_addr, end_addr);
562 	tlb_finish_mmu(&tlb);
563 
564 	return 0;
565 }
566 
567 static void madvise_pageout_page_range(struct mmu_gather *tlb,
568 			     struct vm_area_struct *vma,
569 			     unsigned long addr, unsigned long end)
570 {
571 	struct madvise_walk_private walk_private = {
572 		.pageout = true,
573 		.tlb = tlb,
574 	};
575 
576 	tlb_start_vma(tlb, vma);
577 	walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
578 	tlb_end_vma(tlb, vma);
579 }
580 
581 static long madvise_pageout(struct vm_area_struct *vma,
582 			struct vm_area_struct **prev,
583 			unsigned long start_addr, unsigned long end_addr)
584 {
585 	struct mm_struct *mm = vma->vm_mm;
586 	struct mmu_gather tlb;
587 
588 	*prev = vma;
589 	if (!can_madv_lru_vma(vma))
590 		return -EINVAL;
591 
592 	/*
593 	 * If the VMA belongs to a private file mapping, there can be private
594 	 * dirty pages which can be paged out if even this process is neither
595 	 * owner nor write capable of the file. We allow private file mappings
596 	 * further to pageout dirty anon pages.
597 	 */
598 	if (!vma_is_anonymous(vma) && (!can_do_file_pageout(vma) &&
599 				(vma->vm_flags & VM_MAYSHARE)))
600 		return 0;
601 
602 	lru_add_drain();
603 	tlb_gather_mmu(&tlb, mm);
604 	madvise_pageout_page_range(&tlb, vma, start_addr, end_addr);
605 	tlb_finish_mmu(&tlb);
606 
607 	return 0;
608 }
609 
610 static int madvise_free_pte_range(pmd_t *pmd, unsigned long addr,
611 				unsigned long end, struct mm_walk *walk)
612 
613 {
614 	struct mmu_gather *tlb = walk->private;
615 	struct mm_struct *mm = tlb->mm;
616 	struct vm_area_struct *vma = walk->vma;
617 	spinlock_t *ptl;
618 	pte_t *orig_pte, *pte, ptent;
619 	struct folio *folio;
620 	struct page *page;
621 	int nr_swap = 0;
622 	unsigned long next;
623 
624 	next = pmd_addr_end(addr, end);
625 	if (pmd_trans_huge(*pmd))
626 		if (madvise_free_huge_pmd(tlb, vma, pmd, addr, next))
627 			goto next;
628 
629 	if (pmd_trans_unstable(pmd))
630 		return 0;
631 
632 	tlb_change_page_size(tlb, PAGE_SIZE);
633 	orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
634 	flush_tlb_batched_pending(mm);
635 	arch_enter_lazy_mmu_mode();
636 	for (; addr != end; pte++, addr += PAGE_SIZE) {
637 		ptent = *pte;
638 
639 		if (pte_none(ptent))
640 			continue;
641 		/*
642 		 * If the pte has swp_entry, just clear page table to
643 		 * prevent swap-in which is more expensive rather than
644 		 * (page allocation + zeroing).
645 		 */
646 		if (!pte_present(ptent)) {
647 			swp_entry_t entry;
648 
649 			entry = pte_to_swp_entry(ptent);
650 			if (!non_swap_entry(entry)) {
651 				nr_swap--;
652 				free_swap_and_cache(entry);
653 				pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
654 			} else if (is_hwpoison_entry(entry) ||
655 				   is_swapin_error_entry(entry)) {
656 				pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
657 			}
658 			continue;
659 		}
660 
661 		page = vm_normal_page(vma, addr, ptent);
662 		if (!page || is_zone_device_page(page))
663 			continue;
664 		folio = page_folio(page);
665 
666 		/*
667 		 * If pmd isn't transhuge but the folio is large and
668 		 * is owned by only this process, split it and
669 		 * deactivate all pages.
670 		 */
671 		if (folio_test_large(folio)) {
672 			if (folio_mapcount(folio) != 1)
673 				goto out;
674 			folio_get(folio);
675 			if (!folio_trylock(folio)) {
676 				folio_put(folio);
677 				goto out;
678 			}
679 			pte_unmap_unlock(orig_pte, ptl);
680 			if (split_folio(folio)) {
681 				folio_unlock(folio);
682 				folio_put(folio);
683 				orig_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
684 				goto out;
685 			}
686 			folio_unlock(folio);
687 			folio_put(folio);
688 			orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
689 			pte--;
690 			addr -= PAGE_SIZE;
691 			continue;
692 		}
693 
694 		if (folio_test_swapcache(folio) || folio_test_dirty(folio)) {
695 			if (!folio_trylock(folio))
696 				continue;
697 			/*
698 			 * If folio is shared with others, we mustn't clear
699 			 * the folio's dirty flag.
700 			 */
701 			if (folio_mapcount(folio) != 1) {
702 				folio_unlock(folio);
703 				continue;
704 			}
705 
706 			if (folio_test_swapcache(folio) &&
707 			    !folio_free_swap(folio)) {
708 				folio_unlock(folio);
709 				continue;
710 			}
711 
712 			folio_clear_dirty(folio);
713 			folio_unlock(folio);
714 		}
715 
716 		if (pte_young(ptent) || pte_dirty(ptent)) {
717 			/*
718 			 * Some of architecture(ex, PPC) don't update TLB
719 			 * with set_pte_at and tlb_remove_tlb_entry so for
720 			 * the portability, remap the pte with old|clean
721 			 * after pte clearing.
722 			 */
723 			ptent = ptep_get_and_clear_full(mm, addr, pte,
724 							tlb->fullmm);
725 
726 			ptent = pte_mkold(ptent);
727 			ptent = pte_mkclean(ptent);
728 			set_pte_at(mm, addr, pte, ptent);
729 			tlb_remove_tlb_entry(tlb, pte, addr);
730 		}
731 		mark_page_lazyfree(&folio->page);
732 	}
733 out:
734 	if (nr_swap) {
735 		if (current->mm == mm)
736 			sync_mm_rss(mm);
737 
738 		add_mm_counter(mm, MM_SWAPENTS, nr_swap);
739 	}
740 	arch_leave_lazy_mmu_mode();
741 	pte_unmap_unlock(orig_pte, ptl);
742 	cond_resched();
743 next:
744 	return 0;
745 }
746 
747 static const struct mm_walk_ops madvise_free_walk_ops = {
748 	.pmd_entry		= madvise_free_pte_range,
749 };
750 
751 static int madvise_free_single_vma(struct vm_area_struct *vma,
752 			unsigned long start_addr, unsigned long end_addr)
753 {
754 	struct mm_struct *mm = vma->vm_mm;
755 	struct mmu_notifier_range range;
756 	struct mmu_gather tlb;
757 
758 	/* MADV_FREE works for only anon vma at the moment */
759 	if (!vma_is_anonymous(vma))
760 		return -EINVAL;
761 
762 	range.start = max(vma->vm_start, start_addr);
763 	if (range.start >= vma->vm_end)
764 		return -EINVAL;
765 	range.end = min(vma->vm_end, end_addr);
766 	if (range.end <= vma->vm_start)
767 		return -EINVAL;
768 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
769 				range.start, range.end);
770 
771 	lru_add_drain();
772 	tlb_gather_mmu(&tlb, mm);
773 	update_hiwater_rss(mm);
774 
775 	mmu_notifier_invalidate_range_start(&range);
776 	tlb_start_vma(&tlb, vma);
777 	walk_page_range(vma->vm_mm, range.start, range.end,
778 			&madvise_free_walk_ops, &tlb);
779 	tlb_end_vma(&tlb, vma);
780 	mmu_notifier_invalidate_range_end(&range);
781 	tlb_finish_mmu(&tlb);
782 
783 	return 0;
784 }
785 
786 /*
787  * Application no longer needs these pages.  If the pages are dirty,
788  * it's OK to just throw them away.  The app will be more careful about
789  * data it wants to keep.  Be sure to free swap resources too.  The
790  * zap_page_range_single call sets things up for shrink_active_list to actually
791  * free these pages later if no one else has touched them in the meantime,
792  * although we could add these pages to a global reuse list for
793  * shrink_active_list to pick up before reclaiming other pages.
794  *
795  * NB: This interface discards data rather than pushes it out to swap,
796  * as some implementations do.  This has performance implications for
797  * applications like large transactional databases which want to discard
798  * pages in anonymous maps after committing to backing store the data
799  * that was kept in them.  There is no reason to write this data out to
800  * the swap area if the application is discarding it.
801  *
802  * An interface that causes the system to free clean pages and flush
803  * dirty pages is already available as msync(MS_INVALIDATE).
804  */
805 static long madvise_dontneed_single_vma(struct vm_area_struct *vma,
806 					unsigned long start, unsigned long end)
807 {
808 	zap_page_range_single(vma, start, end - start, NULL);
809 	return 0;
810 }
811 
812 static bool madvise_dontneed_free_valid_vma(struct vm_area_struct *vma,
813 					    unsigned long start,
814 					    unsigned long *end,
815 					    int behavior)
816 {
817 	if (!is_vm_hugetlb_page(vma)) {
818 		unsigned int forbidden = VM_PFNMAP;
819 
820 		if (behavior != MADV_DONTNEED_LOCKED)
821 			forbidden |= VM_LOCKED;
822 
823 		return !(vma->vm_flags & forbidden);
824 	}
825 
826 	if (behavior != MADV_DONTNEED && behavior != MADV_DONTNEED_LOCKED)
827 		return false;
828 	if (start & ~huge_page_mask(hstate_vma(vma)))
829 		return false;
830 
831 	/*
832 	 * Madvise callers expect the length to be rounded up to PAGE_SIZE
833 	 * boundaries, and may be unaware that this VMA uses huge pages.
834 	 * Avoid unexpected data loss by rounding down the number of
835 	 * huge pages freed.
836 	 */
837 	*end = ALIGN_DOWN(*end, huge_page_size(hstate_vma(vma)));
838 
839 	return true;
840 }
841 
842 static long madvise_dontneed_free(struct vm_area_struct *vma,
843 				  struct vm_area_struct **prev,
844 				  unsigned long start, unsigned long end,
845 				  int behavior)
846 {
847 	struct mm_struct *mm = vma->vm_mm;
848 
849 	*prev = vma;
850 	if (!madvise_dontneed_free_valid_vma(vma, start, &end, behavior))
851 		return -EINVAL;
852 
853 	if (start == end)
854 		return 0;
855 
856 	if (!userfaultfd_remove(vma, start, end)) {
857 		*prev = NULL; /* mmap_lock has been dropped, prev is stale */
858 
859 		mmap_read_lock(mm);
860 		vma = find_vma(mm, start);
861 		if (!vma)
862 			return -ENOMEM;
863 		if (start < vma->vm_start) {
864 			/*
865 			 * This "vma" under revalidation is the one
866 			 * with the lowest vma->vm_start where start
867 			 * is also < vma->vm_end. If start <
868 			 * vma->vm_start it means an hole materialized
869 			 * in the user address space within the
870 			 * virtual range passed to MADV_DONTNEED
871 			 * or MADV_FREE.
872 			 */
873 			return -ENOMEM;
874 		}
875 		/*
876 		 * Potential end adjustment for hugetlb vma is OK as
877 		 * the check below keeps end within vma.
878 		 */
879 		if (!madvise_dontneed_free_valid_vma(vma, start, &end,
880 						     behavior))
881 			return -EINVAL;
882 		if (end > vma->vm_end) {
883 			/*
884 			 * Don't fail if end > vma->vm_end. If the old
885 			 * vma was split while the mmap_lock was
886 			 * released the effect of the concurrent
887 			 * operation may not cause madvise() to
888 			 * have an undefined result. There may be an
889 			 * adjacent next vma that we'll walk
890 			 * next. userfaultfd_remove() will generate an
891 			 * UFFD_EVENT_REMOVE repetition on the
892 			 * end-vma->vm_end range, but the manager can
893 			 * handle a repetition fine.
894 			 */
895 			end = vma->vm_end;
896 		}
897 		VM_WARN_ON(start >= end);
898 	}
899 
900 	if (behavior == MADV_DONTNEED || behavior == MADV_DONTNEED_LOCKED)
901 		return madvise_dontneed_single_vma(vma, start, end);
902 	else if (behavior == MADV_FREE)
903 		return madvise_free_single_vma(vma, start, end);
904 	else
905 		return -EINVAL;
906 }
907 
908 static long madvise_populate(struct vm_area_struct *vma,
909 			     struct vm_area_struct **prev,
910 			     unsigned long start, unsigned long end,
911 			     int behavior)
912 {
913 	const bool write = behavior == MADV_POPULATE_WRITE;
914 	struct mm_struct *mm = vma->vm_mm;
915 	unsigned long tmp_end;
916 	int locked = 1;
917 	long pages;
918 
919 	*prev = vma;
920 
921 	while (start < end) {
922 		/*
923 		 * We might have temporarily dropped the lock. For example,
924 		 * our VMA might have been split.
925 		 */
926 		if (!vma || start >= vma->vm_end) {
927 			vma = vma_lookup(mm, start);
928 			if (!vma)
929 				return -ENOMEM;
930 		}
931 
932 		tmp_end = min_t(unsigned long, end, vma->vm_end);
933 		/* Populate (prefault) page tables readable/writable. */
934 		pages = faultin_vma_page_range(vma, start, tmp_end, write,
935 					       &locked);
936 		if (!locked) {
937 			mmap_read_lock(mm);
938 			locked = 1;
939 			*prev = NULL;
940 			vma = NULL;
941 		}
942 		if (pages < 0) {
943 			switch (pages) {
944 			case -EINTR:
945 				return -EINTR;
946 			case -EINVAL: /* Incompatible mappings / permissions. */
947 				return -EINVAL;
948 			case -EHWPOISON:
949 				return -EHWPOISON;
950 			case -EFAULT: /* VM_FAULT_SIGBUS or VM_FAULT_SIGSEGV */
951 				return -EFAULT;
952 			default:
953 				pr_warn_once("%s: unhandled return value: %ld\n",
954 					     __func__, pages);
955 				fallthrough;
956 			case -ENOMEM:
957 				return -ENOMEM;
958 			}
959 		}
960 		start += pages * PAGE_SIZE;
961 	}
962 	return 0;
963 }
964 
965 /*
966  * Application wants to free up the pages and associated backing store.
967  * This is effectively punching a hole into the middle of a file.
968  */
969 static long madvise_remove(struct vm_area_struct *vma,
970 				struct vm_area_struct **prev,
971 				unsigned long start, unsigned long end)
972 {
973 	loff_t offset;
974 	int error;
975 	struct file *f;
976 	struct mm_struct *mm = vma->vm_mm;
977 
978 	*prev = NULL;	/* tell sys_madvise we drop mmap_lock */
979 
980 	if (vma->vm_flags & VM_LOCKED)
981 		return -EINVAL;
982 
983 	f = vma->vm_file;
984 
985 	if (!f || !f->f_mapping || !f->f_mapping->host) {
986 			return -EINVAL;
987 	}
988 
989 	if ((vma->vm_flags & (VM_SHARED|VM_WRITE)) != (VM_SHARED|VM_WRITE))
990 		return -EACCES;
991 
992 	offset = (loff_t)(start - vma->vm_start)
993 			+ ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
994 
995 	/*
996 	 * Filesystem's fallocate may need to take i_rwsem.  We need to
997 	 * explicitly grab a reference because the vma (and hence the
998 	 * vma's reference to the file) can go away as soon as we drop
999 	 * mmap_lock.
1000 	 */
1001 	get_file(f);
1002 	if (userfaultfd_remove(vma, start, end)) {
1003 		/* mmap_lock was not released by userfaultfd_remove() */
1004 		mmap_read_unlock(mm);
1005 	}
1006 	error = vfs_fallocate(f,
1007 				FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
1008 				offset, end - start);
1009 	fput(f);
1010 	mmap_read_lock(mm);
1011 	return error;
1012 }
1013 
1014 /*
1015  * Apply an madvise behavior to a region of a vma.  madvise_update_vma
1016  * will handle splitting a vm area into separate areas, each area with its own
1017  * behavior.
1018  */
1019 static int madvise_vma_behavior(struct vm_area_struct *vma,
1020 				struct vm_area_struct **prev,
1021 				unsigned long start, unsigned long end,
1022 				unsigned long behavior)
1023 {
1024 	int error;
1025 	struct anon_vma_name *anon_name;
1026 	unsigned long new_flags = vma->vm_flags;
1027 
1028 	switch (behavior) {
1029 	case MADV_REMOVE:
1030 		return madvise_remove(vma, prev, start, end);
1031 	case MADV_WILLNEED:
1032 		return madvise_willneed(vma, prev, start, end);
1033 	case MADV_COLD:
1034 		return madvise_cold(vma, prev, start, end);
1035 	case MADV_PAGEOUT:
1036 		return madvise_pageout(vma, prev, start, end);
1037 	case MADV_FREE:
1038 	case MADV_DONTNEED:
1039 	case MADV_DONTNEED_LOCKED:
1040 		return madvise_dontneed_free(vma, prev, start, end, behavior);
1041 	case MADV_POPULATE_READ:
1042 	case MADV_POPULATE_WRITE:
1043 		return madvise_populate(vma, prev, start, end, behavior);
1044 	case MADV_NORMAL:
1045 		new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ;
1046 		break;
1047 	case MADV_SEQUENTIAL:
1048 		new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ;
1049 		break;
1050 	case MADV_RANDOM:
1051 		new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ;
1052 		break;
1053 	case MADV_DONTFORK:
1054 		new_flags |= VM_DONTCOPY;
1055 		break;
1056 	case MADV_DOFORK:
1057 		if (vma->vm_flags & VM_IO)
1058 			return -EINVAL;
1059 		new_flags &= ~VM_DONTCOPY;
1060 		break;
1061 	case MADV_WIPEONFORK:
1062 		/* MADV_WIPEONFORK is only supported on anonymous memory. */
1063 		if (vma->vm_file || vma->vm_flags & VM_SHARED)
1064 			return -EINVAL;
1065 		new_flags |= VM_WIPEONFORK;
1066 		break;
1067 	case MADV_KEEPONFORK:
1068 		new_flags &= ~VM_WIPEONFORK;
1069 		break;
1070 	case MADV_DONTDUMP:
1071 		new_flags |= VM_DONTDUMP;
1072 		break;
1073 	case MADV_DODUMP:
1074 		if (!is_vm_hugetlb_page(vma) && new_flags & VM_SPECIAL)
1075 			return -EINVAL;
1076 		new_flags &= ~VM_DONTDUMP;
1077 		break;
1078 	case MADV_MERGEABLE:
1079 	case MADV_UNMERGEABLE:
1080 		error = ksm_madvise(vma, start, end, behavior, &new_flags);
1081 		if (error)
1082 			goto out;
1083 		break;
1084 	case MADV_HUGEPAGE:
1085 	case MADV_NOHUGEPAGE:
1086 		error = hugepage_madvise(vma, &new_flags, behavior);
1087 		if (error)
1088 			goto out;
1089 		break;
1090 	case MADV_COLLAPSE:
1091 		return madvise_collapse(vma, prev, start, end);
1092 	}
1093 
1094 	anon_name = anon_vma_name(vma);
1095 	anon_vma_name_get(anon_name);
1096 	error = madvise_update_vma(vma, prev, start, end, new_flags,
1097 				   anon_name);
1098 	anon_vma_name_put(anon_name);
1099 
1100 out:
1101 	/*
1102 	 * madvise() returns EAGAIN if kernel resources, such as
1103 	 * slab, are temporarily unavailable.
1104 	 */
1105 	if (error == -ENOMEM)
1106 		error = -EAGAIN;
1107 	return error;
1108 }
1109 
1110 #ifdef CONFIG_MEMORY_FAILURE
1111 /*
1112  * Error injection support for memory error handling.
1113  */
1114 static int madvise_inject_error(int behavior,
1115 		unsigned long start, unsigned long end)
1116 {
1117 	unsigned long size;
1118 
1119 	if (!capable(CAP_SYS_ADMIN))
1120 		return -EPERM;
1121 
1122 
1123 	for (; start < end; start += size) {
1124 		unsigned long pfn;
1125 		struct page *page;
1126 		int ret;
1127 
1128 		ret = get_user_pages_fast(start, 1, 0, &page);
1129 		if (ret != 1)
1130 			return ret;
1131 		pfn = page_to_pfn(page);
1132 
1133 		/*
1134 		 * When soft offlining hugepages, after migrating the page
1135 		 * we dissolve it, therefore in the second loop "page" will
1136 		 * no longer be a compound page.
1137 		 */
1138 		size = page_size(compound_head(page));
1139 
1140 		if (behavior == MADV_SOFT_OFFLINE) {
1141 			pr_info("Soft offlining pfn %#lx at process virtual address %#lx\n",
1142 				 pfn, start);
1143 			ret = soft_offline_page(pfn, MF_COUNT_INCREASED);
1144 		} else {
1145 			pr_info("Injecting memory failure for pfn %#lx at process virtual address %#lx\n",
1146 				 pfn, start);
1147 			ret = memory_failure(pfn, MF_COUNT_INCREASED | MF_SW_SIMULATED);
1148 			if (ret == -EOPNOTSUPP)
1149 				ret = 0;
1150 		}
1151 
1152 		if (ret)
1153 			return ret;
1154 	}
1155 
1156 	return 0;
1157 }
1158 #endif
1159 
1160 static bool
1161 madvise_behavior_valid(int behavior)
1162 {
1163 	switch (behavior) {
1164 	case MADV_DOFORK:
1165 	case MADV_DONTFORK:
1166 	case MADV_NORMAL:
1167 	case MADV_SEQUENTIAL:
1168 	case MADV_RANDOM:
1169 	case MADV_REMOVE:
1170 	case MADV_WILLNEED:
1171 	case MADV_DONTNEED:
1172 	case MADV_DONTNEED_LOCKED:
1173 	case MADV_FREE:
1174 	case MADV_COLD:
1175 	case MADV_PAGEOUT:
1176 	case MADV_POPULATE_READ:
1177 	case MADV_POPULATE_WRITE:
1178 #ifdef CONFIG_KSM
1179 	case MADV_MERGEABLE:
1180 	case MADV_UNMERGEABLE:
1181 #endif
1182 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1183 	case MADV_HUGEPAGE:
1184 	case MADV_NOHUGEPAGE:
1185 	case MADV_COLLAPSE:
1186 #endif
1187 	case MADV_DONTDUMP:
1188 	case MADV_DODUMP:
1189 	case MADV_WIPEONFORK:
1190 	case MADV_KEEPONFORK:
1191 #ifdef CONFIG_MEMORY_FAILURE
1192 	case MADV_SOFT_OFFLINE:
1193 	case MADV_HWPOISON:
1194 #endif
1195 		return true;
1196 
1197 	default:
1198 		return false;
1199 	}
1200 }
1201 
1202 static bool process_madvise_behavior_valid(int behavior)
1203 {
1204 	switch (behavior) {
1205 	case MADV_COLD:
1206 	case MADV_PAGEOUT:
1207 	case MADV_WILLNEED:
1208 	case MADV_COLLAPSE:
1209 		return true;
1210 	default:
1211 		return false;
1212 	}
1213 }
1214 
1215 /*
1216  * Walk the vmas in range [start,end), and call the visit function on each one.
1217  * The visit function will get start and end parameters that cover the overlap
1218  * between the current vma and the original range.  Any unmapped regions in the
1219  * original range will result in this function returning -ENOMEM while still
1220  * calling the visit function on all of the existing vmas in the range.
1221  * Must be called with the mmap_lock held for reading or writing.
1222  */
1223 static
1224 int madvise_walk_vmas(struct mm_struct *mm, unsigned long start,
1225 		      unsigned long end, unsigned long arg,
1226 		      int (*visit)(struct vm_area_struct *vma,
1227 				   struct vm_area_struct **prev, unsigned long start,
1228 				   unsigned long end, unsigned long arg))
1229 {
1230 	struct vm_area_struct *vma;
1231 	struct vm_area_struct *prev;
1232 	unsigned long tmp;
1233 	int unmapped_error = 0;
1234 
1235 	/*
1236 	 * If the interval [start,end) covers some unmapped address
1237 	 * ranges, just ignore them, but return -ENOMEM at the end.
1238 	 * - different from the way of handling in mlock etc.
1239 	 */
1240 	vma = find_vma_prev(mm, start, &prev);
1241 	if (vma && start > vma->vm_start)
1242 		prev = vma;
1243 
1244 	for (;;) {
1245 		int error;
1246 
1247 		/* Still start < end. */
1248 		if (!vma)
1249 			return -ENOMEM;
1250 
1251 		/* Here start < (end|vma->vm_end). */
1252 		if (start < vma->vm_start) {
1253 			unmapped_error = -ENOMEM;
1254 			start = vma->vm_start;
1255 			if (start >= end)
1256 				break;
1257 		}
1258 
1259 		/* Here vma->vm_start <= start < (end|vma->vm_end) */
1260 		tmp = vma->vm_end;
1261 		if (end < tmp)
1262 			tmp = end;
1263 
1264 		/* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */
1265 		error = visit(vma, &prev, start, tmp, arg);
1266 		if (error)
1267 			return error;
1268 		start = tmp;
1269 		if (prev && start < prev->vm_end)
1270 			start = prev->vm_end;
1271 		if (start >= end)
1272 			break;
1273 		if (prev)
1274 			vma = find_vma(mm, prev->vm_end);
1275 		else	/* madvise_remove dropped mmap_lock */
1276 			vma = find_vma(mm, start);
1277 	}
1278 
1279 	return unmapped_error;
1280 }
1281 
1282 #ifdef CONFIG_ANON_VMA_NAME
1283 static int madvise_vma_anon_name(struct vm_area_struct *vma,
1284 				 struct vm_area_struct **prev,
1285 				 unsigned long start, unsigned long end,
1286 				 unsigned long anon_name)
1287 {
1288 	int error;
1289 
1290 	/* Only anonymous mappings can be named */
1291 	if (vma->vm_file && !vma_is_anon_shmem(vma))
1292 		return -EBADF;
1293 
1294 	error = madvise_update_vma(vma, prev, start, end, vma->vm_flags,
1295 				   (struct anon_vma_name *)anon_name);
1296 
1297 	/*
1298 	 * madvise() returns EAGAIN if kernel resources, such as
1299 	 * slab, are temporarily unavailable.
1300 	 */
1301 	if (error == -ENOMEM)
1302 		error = -EAGAIN;
1303 	return error;
1304 }
1305 
1306 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
1307 			  unsigned long len_in, struct anon_vma_name *anon_name)
1308 {
1309 	unsigned long end;
1310 	unsigned long len;
1311 
1312 	if (start & ~PAGE_MASK)
1313 		return -EINVAL;
1314 	len = (len_in + ~PAGE_MASK) & PAGE_MASK;
1315 
1316 	/* Check to see whether len was rounded up from small -ve to zero */
1317 	if (len_in && !len)
1318 		return -EINVAL;
1319 
1320 	end = start + len;
1321 	if (end < start)
1322 		return -EINVAL;
1323 
1324 	if (end == start)
1325 		return 0;
1326 
1327 	return madvise_walk_vmas(mm, start, end, (unsigned long)anon_name,
1328 				 madvise_vma_anon_name);
1329 }
1330 #endif /* CONFIG_ANON_VMA_NAME */
1331 /*
1332  * The madvise(2) system call.
1333  *
1334  * Applications can use madvise() to advise the kernel how it should
1335  * handle paging I/O in this VM area.  The idea is to help the kernel
1336  * use appropriate read-ahead and caching techniques.  The information
1337  * provided is advisory only, and can be safely disregarded by the
1338  * kernel without affecting the correct operation of the application.
1339  *
1340  * behavior values:
1341  *  MADV_NORMAL - the default behavior is to read clusters.  This
1342  *		results in some read-ahead and read-behind.
1343  *  MADV_RANDOM - the system should read the minimum amount of data
1344  *		on any access, since it is unlikely that the appli-
1345  *		cation will need more than what it asks for.
1346  *  MADV_SEQUENTIAL - pages in the given range will probably be accessed
1347  *		once, so they can be aggressively read ahead, and
1348  *		can be freed soon after they are accessed.
1349  *  MADV_WILLNEED - the application is notifying the system to read
1350  *		some pages ahead.
1351  *  MADV_DONTNEED - the application is finished with the given range,
1352  *		so the kernel can free resources associated with it.
1353  *  MADV_FREE - the application marks pages in the given range as lazy free,
1354  *		where actual purges are postponed until memory pressure happens.
1355  *  MADV_REMOVE - the application wants to free up the given range of
1356  *		pages and associated backing store.
1357  *  MADV_DONTFORK - omit this area from child's address space when forking:
1358  *		typically, to avoid COWing pages pinned by get_user_pages().
1359  *  MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking.
1360  *  MADV_WIPEONFORK - present the child process with zero-filled memory in this
1361  *              range after a fork.
1362  *  MADV_KEEPONFORK - undo the effect of MADV_WIPEONFORK
1363  *  MADV_HWPOISON - trigger memory error handler as if the given memory range
1364  *		were corrupted by unrecoverable hardware memory failure.
1365  *  MADV_SOFT_OFFLINE - try to soft-offline the given range of memory.
1366  *  MADV_MERGEABLE - the application recommends that KSM try to merge pages in
1367  *		this area with pages of identical content from other such areas.
1368  *  MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others.
1369  *  MADV_HUGEPAGE - the application wants to back the given range by transparent
1370  *		huge pages in the future. Existing pages might be coalesced and
1371  *		new pages might be allocated as THP.
1372  *  MADV_NOHUGEPAGE - mark the given range as not worth being backed by
1373  *		transparent huge pages so the existing pages will not be
1374  *		coalesced into THP and new pages will not be allocated as THP.
1375  *  MADV_COLLAPSE - synchronously coalesce pages into new THP.
1376  *  MADV_DONTDUMP - the application wants to prevent pages in the given range
1377  *		from being included in its core dump.
1378  *  MADV_DODUMP - cancel MADV_DONTDUMP: no longer exclude from core dump.
1379  *  MADV_COLD - the application is not expected to use this memory soon,
1380  *		deactivate pages in this range so that they can be reclaimed
1381  *		easily if memory pressure happens.
1382  *  MADV_PAGEOUT - the application is not expected to use this memory soon,
1383  *		page out the pages in this range immediately.
1384  *  MADV_POPULATE_READ - populate (prefault) page tables readable by
1385  *		triggering read faults if required
1386  *  MADV_POPULATE_WRITE - populate (prefault) page tables writable by
1387  *		triggering write faults if required
1388  *
1389  * return values:
1390  *  zero    - success
1391  *  -EINVAL - start + len < 0, start is not page-aligned,
1392  *		"behavior" is not a valid value, or application
1393  *		is attempting to release locked or shared pages,
1394  *		or the specified address range includes file, Huge TLB,
1395  *		MAP_SHARED or VMPFNMAP range.
1396  *  -ENOMEM - addresses in the specified range are not currently
1397  *		mapped, or are outside the AS of the process.
1398  *  -EIO    - an I/O error occurred while paging in data.
1399  *  -EBADF  - map exists, but area maps something that isn't a file.
1400  *  -EAGAIN - a kernel resource was temporarily unavailable.
1401  */
1402 int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior)
1403 {
1404 	unsigned long end;
1405 	int error;
1406 	int write;
1407 	size_t len;
1408 	struct blk_plug plug;
1409 
1410 	start = untagged_addr(start);
1411 
1412 	if (!madvise_behavior_valid(behavior))
1413 		return -EINVAL;
1414 
1415 	if (!PAGE_ALIGNED(start))
1416 		return -EINVAL;
1417 	len = PAGE_ALIGN(len_in);
1418 
1419 	/* Check to see whether len was rounded up from small -ve to zero */
1420 	if (len_in && !len)
1421 		return -EINVAL;
1422 
1423 	end = start + len;
1424 	if (end < start)
1425 		return -EINVAL;
1426 
1427 	if (end == start)
1428 		return 0;
1429 
1430 #ifdef CONFIG_MEMORY_FAILURE
1431 	if (behavior == MADV_HWPOISON || behavior == MADV_SOFT_OFFLINE)
1432 		return madvise_inject_error(behavior, start, start + len_in);
1433 #endif
1434 
1435 	write = madvise_need_mmap_write(behavior);
1436 	if (write) {
1437 		if (mmap_write_lock_killable(mm))
1438 			return -EINTR;
1439 	} else {
1440 		mmap_read_lock(mm);
1441 	}
1442 
1443 	blk_start_plug(&plug);
1444 	error = madvise_walk_vmas(mm, start, end, behavior,
1445 			madvise_vma_behavior);
1446 	blk_finish_plug(&plug);
1447 	if (write)
1448 		mmap_write_unlock(mm);
1449 	else
1450 		mmap_read_unlock(mm);
1451 
1452 	return error;
1453 }
1454 
1455 SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior)
1456 {
1457 	return do_madvise(current->mm, start, len_in, behavior);
1458 }
1459 
1460 SYSCALL_DEFINE5(process_madvise, int, pidfd, const struct iovec __user *, vec,
1461 		size_t, vlen, int, behavior, unsigned int, flags)
1462 {
1463 	ssize_t ret;
1464 	struct iovec iovstack[UIO_FASTIOV], iovec;
1465 	struct iovec *iov = iovstack;
1466 	struct iov_iter iter;
1467 	struct task_struct *task;
1468 	struct mm_struct *mm;
1469 	size_t total_len;
1470 	unsigned int f_flags;
1471 
1472 	if (flags != 0) {
1473 		ret = -EINVAL;
1474 		goto out;
1475 	}
1476 
1477 	ret = import_iovec(ITER_DEST, vec, vlen, ARRAY_SIZE(iovstack), &iov, &iter);
1478 	if (ret < 0)
1479 		goto out;
1480 
1481 	task = pidfd_get_task(pidfd, &f_flags);
1482 	if (IS_ERR(task)) {
1483 		ret = PTR_ERR(task);
1484 		goto free_iov;
1485 	}
1486 
1487 	if (!process_madvise_behavior_valid(behavior)) {
1488 		ret = -EINVAL;
1489 		goto release_task;
1490 	}
1491 
1492 	/* Require PTRACE_MODE_READ to avoid leaking ASLR metadata. */
1493 	mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1494 	if (IS_ERR_OR_NULL(mm)) {
1495 		ret = IS_ERR(mm) ? PTR_ERR(mm) : -ESRCH;
1496 		goto release_task;
1497 	}
1498 
1499 	/*
1500 	 * Require CAP_SYS_NICE for influencing process performance. Note that
1501 	 * only non-destructive hints are currently supported.
1502 	 */
1503 	if (!capable(CAP_SYS_NICE)) {
1504 		ret = -EPERM;
1505 		goto release_mm;
1506 	}
1507 
1508 	total_len = iov_iter_count(&iter);
1509 
1510 	while (iov_iter_count(&iter)) {
1511 		iovec = iov_iter_iovec(&iter);
1512 		ret = do_madvise(mm, (unsigned long)iovec.iov_base,
1513 					iovec.iov_len, behavior);
1514 		if (ret < 0)
1515 			break;
1516 		iov_iter_advance(&iter, iovec.iov_len);
1517 	}
1518 
1519 	ret = (total_len - iov_iter_count(&iter)) ? : ret;
1520 
1521 release_mm:
1522 	mmput(mm);
1523 release_task:
1524 	put_task_struct(task);
1525 free_iov:
1526 	kfree(iov);
1527 out:
1528 	return ret;
1529 }
1530