xref: /openbmc/linux/mm/madvise.c (revision 28efb0046512e8a13ed9f9bdf0d68d10bbfbe9cf)
1 /*
2  *	linux/mm/madvise.c
3  *
4  * Copyright (C) 1999  Linus Torvalds
5  * Copyright (C) 2002  Christoph Hellwig
6  */
7 
8 #include <linux/mman.h>
9 #include <linux/pagemap.h>
10 #include <linux/syscalls.h>
11 #include <linux/mempolicy.h>
12 #include <linux/page-isolation.h>
13 #include <linux/userfaultfd_k.h>
14 #include <linux/hugetlb.h>
15 #include <linux/falloc.h>
16 #include <linux/sched.h>
17 #include <linux/ksm.h>
18 #include <linux/fs.h>
19 #include <linux/file.h>
20 #include <linux/blkdev.h>
21 #include <linux/backing-dev.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/shmem_fs.h>
25 #include <linux/mmu_notifier.h>
26 
27 #include <asm/tlb.h>
28 
29 #include "internal.h"
30 
31 /*
32  * Any behaviour which results in changes to the vma->vm_flags needs to
33  * take mmap_sem for writing. Others, which simply traverse vmas, need
34  * to only take it for reading.
35  */
36 static int madvise_need_mmap_write(int behavior)
37 {
38 	switch (behavior) {
39 	case MADV_REMOVE:
40 	case MADV_WILLNEED:
41 	case MADV_DONTNEED:
42 	case MADV_FREE:
43 		return 0;
44 	default:
45 		/* be safe, default to 1. list exceptions explicitly */
46 		return 1;
47 	}
48 }
49 
50 /*
51  * We can potentially split a vm area into separate
52  * areas, each area with its own behavior.
53  */
54 static long madvise_behavior(struct vm_area_struct *vma,
55 		     struct vm_area_struct **prev,
56 		     unsigned long start, unsigned long end, int behavior)
57 {
58 	struct mm_struct *mm = vma->vm_mm;
59 	int error = 0;
60 	pgoff_t pgoff;
61 	unsigned long new_flags = vma->vm_flags;
62 
63 	switch (behavior) {
64 	case MADV_NORMAL:
65 		new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ;
66 		break;
67 	case MADV_SEQUENTIAL:
68 		new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ;
69 		break;
70 	case MADV_RANDOM:
71 		new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ;
72 		break;
73 	case MADV_DONTFORK:
74 		new_flags |= VM_DONTCOPY;
75 		break;
76 	case MADV_DOFORK:
77 		if (vma->vm_flags & VM_IO) {
78 			error = -EINVAL;
79 			goto out;
80 		}
81 		new_flags &= ~VM_DONTCOPY;
82 		break;
83 	case MADV_WIPEONFORK:
84 		/* MADV_WIPEONFORK is only supported on anonymous memory. */
85 		if (vma->vm_file || vma->vm_flags & VM_SHARED) {
86 			error = -EINVAL;
87 			goto out;
88 		}
89 		new_flags |= VM_WIPEONFORK;
90 		break;
91 	case MADV_KEEPONFORK:
92 		new_flags &= ~VM_WIPEONFORK;
93 		break;
94 	case MADV_DONTDUMP:
95 		new_flags |= VM_DONTDUMP;
96 		break;
97 	case MADV_DODUMP:
98 		if (new_flags & VM_SPECIAL) {
99 			error = -EINVAL;
100 			goto out;
101 		}
102 		new_flags &= ~VM_DONTDUMP;
103 		break;
104 	case MADV_MERGEABLE:
105 	case MADV_UNMERGEABLE:
106 		error = ksm_madvise(vma, start, end, behavior, &new_flags);
107 		if (error) {
108 			/*
109 			 * madvise() returns EAGAIN if kernel resources, such as
110 			 * slab, are temporarily unavailable.
111 			 */
112 			if (error == -ENOMEM)
113 				error = -EAGAIN;
114 			goto out;
115 		}
116 		break;
117 	case MADV_HUGEPAGE:
118 	case MADV_NOHUGEPAGE:
119 		error = hugepage_madvise(vma, &new_flags, behavior);
120 		if (error) {
121 			/*
122 			 * madvise() returns EAGAIN if kernel resources, such as
123 			 * slab, are temporarily unavailable.
124 			 */
125 			if (error == -ENOMEM)
126 				error = -EAGAIN;
127 			goto out;
128 		}
129 		break;
130 	}
131 
132 	if (new_flags == vma->vm_flags) {
133 		*prev = vma;
134 		goto out;
135 	}
136 
137 	pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
138 	*prev = vma_merge(mm, *prev, start, end, new_flags, vma->anon_vma,
139 			  vma->vm_file, pgoff, vma_policy(vma),
140 			  vma->vm_userfaultfd_ctx);
141 	if (*prev) {
142 		vma = *prev;
143 		goto success;
144 	}
145 
146 	*prev = vma;
147 
148 	if (start != vma->vm_start) {
149 		if (unlikely(mm->map_count >= sysctl_max_map_count)) {
150 			error = -ENOMEM;
151 			goto out;
152 		}
153 		error = __split_vma(mm, vma, start, 1);
154 		if (error) {
155 			/*
156 			 * madvise() returns EAGAIN if kernel resources, such as
157 			 * slab, are temporarily unavailable.
158 			 */
159 			if (error == -ENOMEM)
160 				error = -EAGAIN;
161 			goto out;
162 		}
163 	}
164 
165 	if (end != vma->vm_end) {
166 		if (unlikely(mm->map_count >= sysctl_max_map_count)) {
167 			error = -ENOMEM;
168 			goto out;
169 		}
170 		error = __split_vma(mm, vma, end, 0);
171 		if (error) {
172 			/*
173 			 * madvise() returns EAGAIN if kernel resources, such as
174 			 * slab, are temporarily unavailable.
175 			 */
176 			if (error == -ENOMEM)
177 				error = -EAGAIN;
178 			goto out;
179 		}
180 	}
181 
182 success:
183 	/*
184 	 * vm_flags is protected by the mmap_sem held in write mode.
185 	 */
186 	vma->vm_flags = new_flags;
187 out:
188 	return error;
189 }
190 
191 #ifdef CONFIG_SWAP
192 static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start,
193 	unsigned long end, struct mm_walk *walk)
194 {
195 	pte_t *orig_pte;
196 	struct vm_area_struct *vma = walk->private;
197 	unsigned long index;
198 
199 	if (pmd_none_or_trans_huge_or_clear_bad(pmd))
200 		return 0;
201 
202 	for (index = start; index != end; index += PAGE_SIZE) {
203 		pte_t pte;
204 		swp_entry_t entry;
205 		struct page *page;
206 		spinlock_t *ptl;
207 
208 		orig_pte = pte_offset_map_lock(vma->vm_mm, pmd, start, &ptl);
209 		pte = *(orig_pte + ((index - start) / PAGE_SIZE));
210 		pte_unmap_unlock(orig_pte, ptl);
211 
212 		if (pte_present(pte) || pte_none(pte))
213 			continue;
214 		entry = pte_to_swp_entry(pte);
215 		if (unlikely(non_swap_entry(entry)))
216 			continue;
217 
218 		page = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE,
219 							vma, index, false);
220 		if (page)
221 			put_page(page);
222 	}
223 
224 	return 0;
225 }
226 
227 static void force_swapin_readahead(struct vm_area_struct *vma,
228 		unsigned long start, unsigned long end)
229 {
230 	struct mm_walk walk = {
231 		.mm = vma->vm_mm,
232 		.pmd_entry = swapin_walk_pmd_entry,
233 		.private = vma,
234 	};
235 
236 	walk_page_range(start, end, &walk);
237 
238 	lru_add_drain();	/* Push any new pages onto the LRU now */
239 }
240 
241 static void force_shm_swapin_readahead(struct vm_area_struct *vma,
242 		unsigned long start, unsigned long end,
243 		struct address_space *mapping)
244 {
245 	pgoff_t index;
246 	struct page *page;
247 	swp_entry_t swap;
248 
249 	for (; start < end; start += PAGE_SIZE) {
250 		index = ((start - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
251 
252 		page = find_get_entry(mapping, index);
253 		if (!radix_tree_exceptional_entry(page)) {
254 			if (page)
255 				put_page(page);
256 			continue;
257 		}
258 		swap = radix_to_swp_entry(page);
259 		page = read_swap_cache_async(swap, GFP_HIGHUSER_MOVABLE,
260 							NULL, 0, false);
261 		if (page)
262 			put_page(page);
263 	}
264 
265 	lru_add_drain();	/* Push any new pages onto the LRU now */
266 }
267 #endif		/* CONFIG_SWAP */
268 
269 /*
270  * Schedule all required I/O operations.  Do not wait for completion.
271  */
272 static long madvise_willneed(struct vm_area_struct *vma,
273 			     struct vm_area_struct **prev,
274 			     unsigned long start, unsigned long end)
275 {
276 	struct file *file = vma->vm_file;
277 
278 #ifdef CONFIG_SWAP
279 	if (!file) {
280 		*prev = vma;
281 		force_swapin_readahead(vma, start, end);
282 		return 0;
283 	}
284 
285 	if (shmem_mapping(file->f_mapping)) {
286 		*prev = vma;
287 		force_shm_swapin_readahead(vma, start, end,
288 					file->f_mapping);
289 		return 0;
290 	}
291 #else
292 	if (!file)
293 		return -EBADF;
294 #endif
295 
296 	if (IS_DAX(file_inode(file))) {
297 		/* no bad return value, but ignore advice */
298 		return 0;
299 	}
300 
301 	*prev = vma;
302 	start = ((start - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
303 	if (end > vma->vm_end)
304 		end = vma->vm_end;
305 	end = ((end - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
306 
307 	force_page_cache_readahead(file->f_mapping, file, start, end - start);
308 	return 0;
309 }
310 
311 static int madvise_free_pte_range(pmd_t *pmd, unsigned long addr,
312 				unsigned long end, struct mm_walk *walk)
313 
314 {
315 	struct mmu_gather *tlb = walk->private;
316 	struct mm_struct *mm = tlb->mm;
317 	struct vm_area_struct *vma = walk->vma;
318 	spinlock_t *ptl;
319 	pte_t *orig_pte, *pte, ptent;
320 	struct page *page;
321 	int nr_swap = 0;
322 	unsigned long next;
323 
324 	next = pmd_addr_end(addr, end);
325 	if (pmd_trans_huge(*pmd))
326 		if (madvise_free_huge_pmd(tlb, vma, pmd, addr, next))
327 			goto next;
328 
329 	if (pmd_trans_unstable(pmd))
330 		return 0;
331 
332 	tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
333 	orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
334 	flush_tlb_batched_pending(mm);
335 	arch_enter_lazy_mmu_mode();
336 	for (; addr != end; pte++, addr += PAGE_SIZE) {
337 		ptent = *pte;
338 
339 		if (pte_none(ptent))
340 			continue;
341 		/*
342 		 * If the pte has swp_entry, just clear page table to
343 		 * prevent swap-in which is more expensive rather than
344 		 * (page allocation + zeroing).
345 		 */
346 		if (!pte_present(ptent)) {
347 			swp_entry_t entry;
348 
349 			entry = pte_to_swp_entry(ptent);
350 			if (non_swap_entry(entry))
351 				continue;
352 			nr_swap--;
353 			free_swap_and_cache(entry);
354 			pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
355 			continue;
356 		}
357 
358 		page = _vm_normal_page(vma, addr, ptent, true);
359 		if (!page)
360 			continue;
361 
362 		/*
363 		 * If pmd isn't transhuge but the page is THP and
364 		 * is owned by only this process, split it and
365 		 * deactivate all pages.
366 		 */
367 		if (PageTransCompound(page)) {
368 			if (page_mapcount(page) != 1)
369 				goto out;
370 			get_page(page);
371 			if (!trylock_page(page)) {
372 				put_page(page);
373 				goto out;
374 			}
375 			pte_unmap_unlock(orig_pte, ptl);
376 			if (split_huge_page(page)) {
377 				unlock_page(page);
378 				put_page(page);
379 				pte_offset_map_lock(mm, pmd, addr, &ptl);
380 				goto out;
381 			}
382 			unlock_page(page);
383 			put_page(page);
384 			pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
385 			pte--;
386 			addr -= PAGE_SIZE;
387 			continue;
388 		}
389 
390 		VM_BUG_ON_PAGE(PageTransCompound(page), page);
391 
392 		if (PageSwapCache(page) || PageDirty(page)) {
393 			if (!trylock_page(page))
394 				continue;
395 			/*
396 			 * If page is shared with others, we couldn't clear
397 			 * PG_dirty of the page.
398 			 */
399 			if (page_mapcount(page) != 1) {
400 				unlock_page(page);
401 				continue;
402 			}
403 
404 			if (PageSwapCache(page) && !try_to_free_swap(page)) {
405 				unlock_page(page);
406 				continue;
407 			}
408 
409 			ClearPageDirty(page);
410 			unlock_page(page);
411 		}
412 
413 		if (pte_young(ptent) || pte_dirty(ptent)) {
414 			/*
415 			 * Some of architecture(ex, PPC) don't update TLB
416 			 * with set_pte_at and tlb_remove_tlb_entry so for
417 			 * the portability, remap the pte with old|clean
418 			 * after pte clearing.
419 			 */
420 			ptent = ptep_get_and_clear_full(mm, addr, pte,
421 							tlb->fullmm);
422 
423 			ptent = pte_mkold(ptent);
424 			ptent = pte_mkclean(ptent);
425 			set_pte_at(mm, addr, pte, ptent);
426 			tlb_remove_tlb_entry(tlb, pte, addr);
427 		}
428 		mark_page_lazyfree(page);
429 	}
430 out:
431 	if (nr_swap) {
432 		if (current->mm == mm)
433 			sync_mm_rss(mm);
434 
435 		add_mm_counter(mm, MM_SWAPENTS, nr_swap);
436 	}
437 	arch_leave_lazy_mmu_mode();
438 	pte_unmap_unlock(orig_pte, ptl);
439 	cond_resched();
440 next:
441 	return 0;
442 }
443 
444 static void madvise_free_page_range(struct mmu_gather *tlb,
445 			     struct vm_area_struct *vma,
446 			     unsigned long addr, unsigned long end)
447 {
448 	struct mm_walk free_walk = {
449 		.pmd_entry = madvise_free_pte_range,
450 		.mm = vma->vm_mm,
451 		.private = tlb,
452 	};
453 
454 	tlb_start_vma(tlb, vma);
455 	walk_page_range(addr, end, &free_walk);
456 	tlb_end_vma(tlb, vma);
457 }
458 
459 static int madvise_free_single_vma(struct vm_area_struct *vma,
460 			unsigned long start_addr, unsigned long end_addr)
461 {
462 	unsigned long start, end;
463 	struct mm_struct *mm = vma->vm_mm;
464 	struct mmu_gather tlb;
465 
466 	/* MADV_FREE works for only anon vma at the moment */
467 	if (!vma_is_anonymous(vma))
468 		return -EINVAL;
469 
470 	start = max(vma->vm_start, start_addr);
471 	if (start >= vma->vm_end)
472 		return -EINVAL;
473 	end = min(vma->vm_end, end_addr);
474 	if (end <= vma->vm_start)
475 		return -EINVAL;
476 
477 	lru_add_drain();
478 	tlb_gather_mmu(&tlb, mm, start, end);
479 	update_hiwater_rss(mm);
480 
481 	mmu_notifier_invalidate_range_start(mm, start, end);
482 	madvise_free_page_range(&tlb, vma, start, end);
483 	mmu_notifier_invalidate_range_end(mm, start, end);
484 	tlb_finish_mmu(&tlb, start, end);
485 
486 	return 0;
487 }
488 
489 /*
490  * Application no longer needs these pages.  If the pages are dirty,
491  * it's OK to just throw them away.  The app will be more careful about
492  * data it wants to keep.  Be sure to free swap resources too.  The
493  * zap_page_range call sets things up for shrink_active_list to actually free
494  * these pages later if no one else has touched them in the meantime,
495  * although we could add these pages to a global reuse list for
496  * shrink_active_list to pick up before reclaiming other pages.
497  *
498  * NB: This interface discards data rather than pushes it out to swap,
499  * as some implementations do.  This has performance implications for
500  * applications like large transactional databases which want to discard
501  * pages in anonymous maps after committing to backing store the data
502  * that was kept in them.  There is no reason to write this data out to
503  * the swap area if the application is discarding it.
504  *
505  * An interface that causes the system to free clean pages and flush
506  * dirty pages is already available as msync(MS_INVALIDATE).
507  */
508 static long madvise_dontneed_single_vma(struct vm_area_struct *vma,
509 					unsigned long start, unsigned long end)
510 {
511 	zap_page_range(vma, start, end - start);
512 	return 0;
513 }
514 
515 static long madvise_dontneed_free(struct vm_area_struct *vma,
516 				  struct vm_area_struct **prev,
517 				  unsigned long start, unsigned long end,
518 				  int behavior)
519 {
520 	*prev = vma;
521 	if (!can_madv_dontneed_vma(vma))
522 		return -EINVAL;
523 
524 	if (!userfaultfd_remove(vma, start, end)) {
525 		*prev = NULL; /* mmap_sem has been dropped, prev is stale */
526 
527 		down_read(&current->mm->mmap_sem);
528 		vma = find_vma(current->mm, start);
529 		if (!vma)
530 			return -ENOMEM;
531 		if (start < vma->vm_start) {
532 			/*
533 			 * This "vma" under revalidation is the one
534 			 * with the lowest vma->vm_start where start
535 			 * is also < vma->vm_end. If start <
536 			 * vma->vm_start it means an hole materialized
537 			 * in the user address space within the
538 			 * virtual range passed to MADV_DONTNEED
539 			 * or MADV_FREE.
540 			 */
541 			return -ENOMEM;
542 		}
543 		if (!can_madv_dontneed_vma(vma))
544 			return -EINVAL;
545 		if (end > vma->vm_end) {
546 			/*
547 			 * Don't fail if end > vma->vm_end. If the old
548 			 * vma was splitted while the mmap_sem was
549 			 * released the effect of the concurrent
550 			 * operation may not cause madvise() to
551 			 * have an undefined result. There may be an
552 			 * adjacent next vma that we'll walk
553 			 * next. userfaultfd_remove() will generate an
554 			 * UFFD_EVENT_REMOVE repetition on the
555 			 * end-vma->vm_end range, but the manager can
556 			 * handle a repetition fine.
557 			 */
558 			end = vma->vm_end;
559 		}
560 		VM_WARN_ON(start >= end);
561 	}
562 
563 	if (behavior == MADV_DONTNEED)
564 		return madvise_dontneed_single_vma(vma, start, end);
565 	else if (behavior == MADV_FREE)
566 		return madvise_free_single_vma(vma, start, end);
567 	else
568 		return -EINVAL;
569 }
570 
571 /*
572  * Application wants to free up the pages and associated backing store.
573  * This is effectively punching a hole into the middle of a file.
574  */
575 static long madvise_remove(struct vm_area_struct *vma,
576 				struct vm_area_struct **prev,
577 				unsigned long start, unsigned long end)
578 {
579 	loff_t offset;
580 	int error;
581 	struct file *f;
582 
583 	*prev = NULL;	/* tell sys_madvise we drop mmap_sem */
584 
585 	if (vma->vm_flags & VM_LOCKED)
586 		return -EINVAL;
587 
588 	f = vma->vm_file;
589 
590 	if (!f || !f->f_mapping || !f->f_mapping->host) {
591 			return -EINVAL;
592 	}
593 
594 	if ((vma->vm_flags & (VM_SHARED|VM_WRITE)) != (VM_SHARED|VM_WRITE))
595 		return -EACCES;
596 
597 	offset = (loff_t)(start - vma->vm_start)
598 			+ ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
599 
600 	/*
601 	 * Filesystem's fallocate may need to take i_mutex.  We need to
602 	 * explicitly grab a reference because the vma (and hence the
603 	 * vma's reference to the file) can go away as soon as we drop
604 	 * mmap_sem.
605 	 */
606 	get_file(f);
607 	if (userfaultfd_remove(vma, start, end)) {
608 		/* mmap_sem was not released by userfaultfd_remove() */
609 		up_read(&current->mm->mmap_sem);
610 	}
611 	error = vfs_fallocate(f,
612 				FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
613 				offset, end - start);
614 	fput(f);
615 	down_read(&current->mm->mmap_sem);
616 	return error;
617 }
618 
619 #ifdef CONFIG_MEMORY_FAILURE
620 /*
621  * Error injection support for memory error handling.
622  */
623 static int madvise_inject_error(int behavior,
624 		unsigned long start, unsigned long end)
625 {
626 	struct page *page;
627 	struct zone *zone;
628 
629 	if (!capable(CAP_SYS_ADMIN))
630 		return -EPERM;
631 
632 	for (; start < end; start += PAGE_SIZE <<
633 				compound_order(compound_head(page))) {
634 		int ret;
635 
636 		ret = get_user_pages_fast(start, 1, 0, &page);
637 		if (ret != 1)
638 			return ret;
639 
640 		if (PageHWPoison(page)) {
641 			put_page(page);
642 			continue;
643 		}
644 
645 		if (behavior == MADV_SOFT_OFFLINE) {
646 			pr_info("Soft offlining pfn %#lx at process virtual address %#lx\n",
647 						page_to_pfn(page), start);
648 
649 			ret = soft_offline_page(page, MF_COUNT_INCREASED);
650 			if (ret)
651 				return ret;
652 			continue;
653 		}
654 		pr_info("Injecting memory failure for pfn %#lx at process virtual address %#lx\n",
655 						page_to_pfn(page), start);
656 
657 		ret = memory_failure(page_to_pfn(page), 0, MF_COUNT_INCREASED);
658 		if (ret)
659 			return ret;
660 	}
661 
662 	/* Ensure that all poisoned pages are removed from per-cpu lists */
663 	for_each_populated_zone(zone)
664 		drain_all_pages(zone);
665 
666 	return 0;
667 }
668 #endif
669 
670 static long
671 madvise_vma(struct vm_area_struct *vma, struct vm_area_struct **prev,
672 		unsigned long start, unsigned long end, int behavior)
673 {
674 	switch (behavior) {
675 	case MADV_REMOVE:
676 		return madvise_remove(vma, prev, start, end);
677 	case MADV_WILLNEED:
678 		return madvise_willneed(vma, prev, start, end);
679 	case MADV_FREE:
680 	case MADV_DONTNEED:
681 		return madvise_dontneed_free(vma, prev, start, end, behavior);
682 	default:
683 		return madvise_behavior(vma, prev, start, end, behavior);
684 	}
685 }
686 
687 static bool
688 madvise_behavior_valid(int behavior)
689 {
690 	switch (behavior) {
691 	case MADV_DOFORK:
692 	case MADV_DONTFORK:
693 	case MADV_NORMAL:
694 	case MADV_SEQUENTIAL:
695 	case MADV_RANDOM:
696 	case MADV_REMOVE:
697 	case MADV_WILLNEED:
698 	case MADV_DONTNEED:
699 	case MADV_FREE:
700 #ifdef CONFIG_KSM
701 	case MADV_MERGEABLE:
702 	case MADV_UNMERGEABLE:
703 #endif
704 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
705 	case MADV_HUGEPAGE:
706 	case MADV_NOHUGEPAGE:
707 #endif
708 	case MADV_DONTDUMP:
709 	case MADV_DODUMP:
710 	case MADV_WIPEONFORK:
711 	case MADV_KEEPONFORK:
712 #ifdef CONFIG_MEMORY_FAILURE
713 	case MADV_SOFT_OFFLINE:
714 	case MADV_HWPOISON:
715 #endif
716 		return true;
717 
718 	default:
719 		return false;
720 	}
721 }
722 
723 /*
724  * The madvise(2) system call.
725  *
726  * Applications can use madvise() to advise the kernel how it should
727  * handle paging I/O in this VM area.  The idea is to help the kernel
728  * use appropriate read-ahead and caching techniques.  The information
729  * provided is advisory only, and can be safely disregarded by the
730  * kernel without affecting the correct operation of the application.
731  *
732  * behavior values:
733  *  MADV_NORMAL - the default behavior is to read clusters.  This
734  *		results in some read-ahead and read-behind.
735  *  MADV_RANDOM - the system should read the minimum amount of data
736  *		on any access, since it is unlikely that the appli-
737  *		cation will need more than what it asks for.
738  *  MADV_SEQUENTIAL - pages in the given range will probably be accessed
739  *		once, so they can be aggressively read ahead, and
740  *		can be freed soon after they are accessed.
741  *  MADV_WILLNEED - the application is notifying the system to read
742  *		some pages ahead.
743  *  MADV_DONTNEED - the application is finished with the given range,
744  *		so the kernel can free resources associated with it.
745  *  MADV_FREE - the application marks pages in the given range as lazy free,
746  *		where actual purges are postponed until memory pressure happens.
747  *  MADV_REMOVE - the application wants to free up the given range of
748  *		pages and associated backing store.
749  *  MADV_DONTFORK - omit this area from child's address space when forking:
750  *		typically, to avoid COWing pages pinned by get_user_pages().
751  *  MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking.
752  *  MADV_HWPOISON - trigger memory error handler as if the given memory range
753  *		were corrupted by unrecoverable hardware memory failure.
754  *  MADV_SOFT_OFFLINE - try to soft-offline the given range of memory.
755  *  MADV_MERGEABLE - the application recommends that KSM try to merge pages in
756  *		this area with pages of identical content from other such areas.
757  *  MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others.
758  *  MADV_HUGEPAGE - the application wants to back the given range by transparent
759  *		huge pages in the future. Existing pages might be coalesced and
760  *		new pages might be allocated as THP.
761  *  MADV_NOHUGEPAGE - mark the given range as not worth being backed by
762  *		transparent huge pages so the existing pages will not be
763  *		coalesced into THP and new pages will not be allocated as THP.
764  *  MADV_DONTDUMP - the application wants to prevent pages in the given range
765  *		from being included in its core dump.
766  *  MADV_DODUMP - cancel MADV_DONTDUMP: no longer exclude from core dump.
767  *
768  * return values:
769  *  zero    - success
770  *  -EINVAL - start + len < 0, start is not page-aligned,
771  *		"behavior" is not a valid value, or application
772  *		is attempting to release locked or shared pages.
773  *  -ENOMEM - addresses in the specified range are not currently
774  *		mapped, or are outside the AS of the process.
775  *  -EIO    - an I/O error occurred while paging in data.
776  *  -EBADF  - map exists, but area maps something that isn't a file.
777  *  -EAGAIN - a kernel resource was temporarily unavailable.
778  */
779 SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior)
780 {
781 	unsigned long end, tmp;
782 	struct vm_area_struct *vma, *prev;
783 	int unmapped_error = 0;
784 	int error = -EINVAL;
785 	int write;
786 	size_t len;
787 	struct blk_plug plug;
788 
789 	if (!madvise_behavior_valid(behavior))
790 		return error;
791 
792 	if (start & ~PAGE_MASK)
793 		return error;
794 	len = (len_in + ~PAGE_MASK) & PAGE_MASK;
795 
796 	/* Check to see whether len was rounded up from small -ve to zero */
797 	if (len_in && !len)
798 		return error;
799 
800 	end = start + len;
801 	if (end < start)
802 		return error;
803 
804 	error = 0;
805 	if (end == start)
806 		return error;
807 
808 #ifdef CONFIG_MEMORY_FAILURE
809 	if (behavior == MADV_HWPOISON || behavior == MADV_SOFT_OFFLINE)
810 		return madvise_inject_error(behavior, start, start + len_in);
811 #endif
812 
813 	write = madvise_need_mmap_write(behavior);
814 	if (write) {
815 		if (down_write_killable(&current->mm->mmap_sem))
816 			return -EINTR;
817 	} else {
818 		down_read(&current->mm->mmap_sem);
819 	}
820 
821 	/*
822 	 * If the interval [start,end) covers some unmapped address
823 	 * ranges, just ignore them, but return -ENOMEM at the end.
824 	 * - different from the way of handling in mlock etc.
825 	 */
826 	vma = find_vma_prev(current->mm, start, &prev);
827 	if (vma && start > vma->vm_start)
828 		prev = vma;
829 
830 	blk_start_plug(&plug);
831 	for (;;) {
832 		/* Still start < end. */
833 		error = -ENOMEM;
834 		if (!vma)
835 			goto out;
836 
837 		/* Here start < (end|vma->vm_end). */
838 		if (start < vma->vm_start) {
839 			unmapped_error = -ENOMEM;
840 			start = vma->vm_start;
841 			if (start >= end)
842 				goto out;
843 		}
844 
845 		/* Here vma->vm_start <= start < (end|vma->vm_end) */
846 		tmp = vma->vm_end;
847 		if (end < tmp)
848 			tmp = end;
849 
850 		/* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */
851 		error = madvise_vma(vma, &prev, start, tmp, behavior);
852 		if (error)
853 			goto out;
854 		start = tmp;
855 		if (prev && start < prev->vm_end)
856 			start = prev->vm_end;
857 		error = unmapped_error;
858 		if (start >= end)
859 			goto out;
860 		if (prev)
861 			vma = prev->vm_next;
862 		else	/* madvise_remove dropped mmap_sem */
863 			vma = find_vma(current->mm, start);
864 	}
865 out:
866 	blk_finish_plug(&plug);
867 	if (write)
868 		up_write(&current->mm->mmap_sem);
869 	else
870 		up_read(&current->mm->mmap_sem);
871 
872 	return error;
873 }
874