xref: /openbmc/linux/mm/madvise.c (revision 26ba4e57)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *	linux/mm/madvise.c
4  *
5  * Copyright (C) 1999  Linus Torvalds
6  * Copyright (C) 2002  Christoph Hellwig
7  */
8 
9 #include <linux/mman.h>
10 #include <linux/pagemap.h>
11 #include <linux/syscalls.h>
12 #include <linux/mempolicy.h>
13 #include <linux/page-isolation.h>
14 #include <linux/page_idle.h>
15 #include <linux/userfaultfd_k.h>
16 #include <linux/hugetlb.h>
17 #include <linux/falloc.h>
18 #include <linux/fadvise.h>
19 #include <linux/sched.h>
20 #include <linux/ksm.h>
21 #include <linux/fs.h>
22 #include <linux/file.h>
23 #include <linux/blkdev.h>
24 #include <linux/backing-dev.h>
25 #include <linux/pagewalk.h>
26 #include <linux/swap.h>
27 #include <linux/swapops.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/mmu_notifier.h>
30 
31 #include <asm/tlb.h>
32 
33 #include "internal.h"
34 
35 struct madvise_walk_private {
36 	struct mmu_gather *tlb;
37 	bool pageout;
38 };
39 
40 /*
41  * Any behaviour which results in changes to the vma->vm_flags needs to
42  * take mmap_sem for writing. Others, which simply traverse vmas, need
43  * to only take it for reading.
44  */
45 static int madvise_need_mmap_write(int behavior)
46 {
47 	switch (behavior) {
48 	case MADV_REMOVE:
49 	case MADV_WILLNEED:
50 	case MADV_DONTNEED:
51 	case MADV_COLD:
52 	case MADV_PAGEOUT:
53 	case MADV_FREE:
54 		return 0;
55 	default:
56 		/* be safe, default to 1. list exceptions explicitly */
57 		return 1;
58 	}
59 }
60 
61 /*
62  * We can potentially split a vm area into separate
63  * areas, each area with its own behavior.
64  */
65 static long madvise_behavior(struct vm_area_struct *vma,
66 		     struct vm_area_struct **prev,
67 		     unsigned long start, unsigned long end, int behavior)
68 {
69 	struct mm_struct *mm = vma->vm_mm;
70 	int error = 0;
71 	pgoff_t pgoff;
72 	unsigned long new_flags = vma->vm_flags;
73 
74 	switch (behavior) {
75 	case MADV_NORMAL:
76 		new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ;
77 		break;
78 	case MADV_SEQUENTIAL:
79 		new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ;
80 		break;
81 	case MADV_RANDOM:
82 		new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ;
83 		break;
84 	case MADV_DONTFORK:
85 		new_flags |= VM_DONTCOPY;
86 		break;
87 	case MADV_DOFORK:
88 		if (vma->vm_flags & VM_IO) {
89 			error = -EINVAL;
90 			goto out;
91 		}
92 		new_flags &= ~VM_DONTCOPY;
93 		break;
94 	case MADV_WIPEONFORK:
95 		/* MADV_WIPEONFORK is only supported on anonymous memory. */
96 		if (vma->vm_file || vma->vm_flags & VM_SHARED) {
97 			error = -EINVAL;
98 			goto out;
99 		}
100 		new_flags |= VM_WIPEONFORK;
101 		break;
102 	case MADV_KEEPONFORK:
103 		new_flags &= ~VM_WIPEONFORK;
104 		break;
105 	case MADV_DONTDUMP:
106 		new_flags |= VM_DONTDUMP;
107 		break;
108 	case MADV_DODUMP:
109 		if (!is_vm_hugetlb_page(vma) && new_flags & VM_SPECIAL) {
110 			error = -EINVAL;
111 			goto out;
112 		}
113 		new_flags &= ~VM_DONTDUMP;
114 		break;
115 	case MADV_MERGEABLE:
116 	case MADV_UNMERGEABLE:
117 		error = ksm_madvise(vma, start, end, behavior, &new_flags);
118 		if (error)
119 			goto out_convert_errno;
120 		break;
121 	case MADV_HUGEPAGE:
122 	case MADV_NOHUGEPAGE:
123 		error = hugepage_madvise(vma, &new_flags, behavior);
124 		if (error)
125 			goto out_convert_errno;
126 		break;
127 	}
128 
129 	if (new_flags == vma->vm_flags) {
130 		*prev = vma;
131 		goto out;
132 	}
133 
134 	pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
135 	*prev = vma_merge(mm, *prev, start, end, new_flags, vma->anon_vma,
136 			  vma->vm_file, pgoff, vma_policy(vma),
137 			  vma->vm_userfaultfd_ctx);
138 	if (*prev) {
139 		vma = *prev;
140 		goto success;
141 	}
142 
143 	*prev = vma;
144 
145 	if (start != vma->vm_start) {
146 		if (unlikely(mm->map_count >= sysctl_max_map_count)) {
147 			error = -ENOMEM;
148 			goto out;
149 		}
150 		error = __split_vma(mm, vma, start, 1);
151 		if (error)
152 			goto out_convert_errno;
153 	}
154 
155 	if (end != vma->vm_end) {
156 		if (unlikely(mm->map_count >= sysctl_max_map_count)) {
157 			error = -ENOMEM;
158 			goto out;
159 		}
160 		error = __split_vma(mm, vma, end, 0);
161 		if (error)
162 			goto out_convert_errno;
163 	}
164 
165 success:
166 	/*
167 	 * vm_flags is protected by the mmap_sem held in write mode.
168 	 */
169 	vma->vm_flags = new_flags;
170 
171 out_convert_errno:
172 	/*
173 	 * madvise() returns EAGAIN if kernel resources, such as
174 	 * slab, are temporarily unavailable.
175 	 */
176 	if (error == -ENOMEM)
177 		error = -EAGAIN;
178 out:
179 	return error;
180 }
181 
182 #ifdef CONFIG_SWAP
183 static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start,
184 	unsigned long end, struct mm_walk *walk)
185 {
186 	pte_t *orig_pte;
187 	struct vm_area_struct *vma = walk->private;
188 	unsigned long index;
189 
190 	if (pmd_none_or_trans_huge_or_clear_bad(pmd))
191 		return 0;
192 
193 	for (index = start; index != end; index += PAGE_SIZE) {
194 		pte_t pte;
195 		swp_entry_t entry;
196 		struct page *page;
197 		spinlock_t *ptl;
198 
199 		orig_pte = pte_offset_map_lock(vma->vm_mm, pmd, start, &ptl);
200 		pte = *(orig_pte + ((index - start) / PAGE_SIZE));
201 		pte_unmap_unlock(orig_pte, ptl);
202 
203 		if (pte_present(pte) || pte_none(pte))
204 			continue;
205 		entry = pte_to_swp_entry(pte);
206 		if (unlikely(non_swap_entry(entry)))
207 			continue;
208 
209 		page = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE,
210 							vma, index, false);
211 		if (page)
212 			put_page(page);
213 	}
214 
215 	return 0;
216 }
217 
218 static const struct mm_walk_ops swapin_walk_ops = {
219 	.pmd_entry		= swapin_walk_pmd_entry,
220 };
221 
222 static void force_shm_swapin_readahead(struct vm_area_struct *vma,
223 		unsigned long start, unsigned long end,
224 		struct address_space *mapping)
225 {
226 	pgoff_t index;
227 	struct page *page;
228 	swp_entry_t swap;
229 
230 	for (; start < end; start += PAGE_SIZE) {
231 		index = ((start - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
232 
233 		page = find_get_entry(mapping, index);
234 		if (!xa_is_value(page)) {
235 			if (page)
236 				put_page(page);
237 			continue;
238 		}
239 		swap = radix_to_swp_entry(page);
240 		page = read_swap_cache_async(swap, GFP_HIGHUSER_MOVABLE,
241 							NULL, 0, false);
242 		if (page)
243 			put_page(page);
244 	}
245 
246 	lru_add_drain();	/* Push any new pages onto the LRU now */
247 }
248 #endif		/* CONFIG_SWAP */
249 
250 /*
251  * Schedule all required I/O operations.  Do not wait for completion.
252  */
253 static long madvise_willneed(struct vm_area_struct *vma,
254 			     struct vm_area_struct **prev,
255 			     unsigned long start, unsigned long end)
256 {
257 	struct file *file = vma->vm_file;
258 	loff_t offset;
259 
260 	*prev = vma;
261 #ifdef CONFIG_SWAP
262 	if (!file) {
263 		walk_page_range(vma->vm_mm, start, end, &swapin_walk_ops, vma);
264 		lru_add_drain(); /* Push any new pages onto the LRU now */
265 		return 0;
266 	}
267 
268 	if (shmem_mapping(file->f_mapping)) {
269 		force_shm_swapin_readahead(vma, start, end,
270 					file->f_mapping);
271 		return 0;
272 	}
273 #else
274 	if (!file)
275 		return -EBADF;
276 #endif
277 
278 	if (IS_DAX(file_inode(file))) {
279 		/* no bad return value, but ignore advice */
280 		return 0;
281 	}
282 
283 	/*
284 	 * Filesystem's fadvise may need to take various locks.  We need to
285 	 * explicitly grab a reference because the vma (and hence the
286 	 * vma's reference to the file) can go away as soon as we drop
287 	 * mmap_sem.
288 	 */
289 	*prev = NULL;	/* tell sys_madvise we drop mmap_sem */
290 	get_file(file);
291 	up_read(&current->mm->mmap_sem);
292 	offset = (loff_t)(start - vma->vm_start)
293 			+ ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
294 	vfs_fadvise(file, offset, end - start, POSIX_FADV_WILLNEED);
295 	fput(file);
296 	down_read(&current->mm->mmap_sem);
297 	return 0;
298 }
299 
300 static int madvise_cold_or_pageout_pte_range(pmd_t *pmd,
301 				unsigned long addr, unsigned long end,
302 				struct mm_walk *walk)
303 {
304 	struct madvise_walk_private *private = walk->private;
305 	struct mmu_gather *tlb = private->tlb;
306 	bool pageout = private->pageout;
307 	struct mm_struct *mm = tlb->mm;
308 	struct vm_area_struct *vma = walk->vma;
309 	pte_t *orig_pte, *pte, ptent;
310 	spinlock_t *ptl;
311 	struct page *page = NULL;
312 	LIST_HEAD(page_list);
313 
314 	if (fatal_signal_pending(current))
315 		return -EINTR;
316 
317 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
318 	if (pmd_trans_huge(*pmd)) {
319 		pmd_t orig_pmd;
320 		unsigned long next = pmd_addr_end(addr, end);
321 
322 		tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
323 		ptl = pmd_trans_huge_lock(pmd, vma);
324 		if (!ptl)
325 			return 0;
326 
327 		orig_pmd = *pmd;
328 		if (is_huge_zero_pmd(orig_pmd))
329 			goto huge_unlock;
330 
331 		if (unlikely(!pmd_present(orig_pmd))) {
332 			VM_BUG_ON(thp_migration_supported() &&
333 					!is_pmd_migration_entry(orig_pmd));
334 			goto huge_unlock;
335 		}
336 
337 		page = pmd_page(orig_pmd);
338 		if (next - addr != HPAGE_PMD_SIZE) {
339 			int err;
340 
341 			if (page_mapcount(page) != 1)
342 				goto huge_unlock;
343 
344 			get_page(page);
345 			spin_unlock(ptl);
346 			lock_page(page);
347 			err = split_huge_page(page);
348 			unlock_page(page);
349 			put_page(page);
350 			if (!err)
351 				goto regular_page;
352 			return 0;
353 		}
354 
355 		if (pmd_young(orig_pmd)) {
356 			pmdp_invalidate(vma, addr, pmd);
357 			orig_pmd = pmd_mkold(orig_pmd);
358 
359 			set_pmd_at(mm, addr, pmd, orig_pmd);
360 			tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
361 		}
362 
363 		ClearPageReferenced(page);
364 		test_and_clear_page_young(page);
365 		if (pageout) {
366 			if (!isolate_lru_page(page))
367 				list_add(&page->lru, &page_list);
368 		} else
369 			deactivate_page(page);
370 huge_unlock:
371 		spin_unlock(ptl);
372 		if (pageout)
373 			reclaim_pages(&page_list);
374 		return 0;
375 	}
376 
377 	if (pmd_trans_unstable(pmd))
378 		return 0;
379 regular_page:
380 #endif
381 	tlb_change_page_size(tlb, PAGE_SIZE);
382 	orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
383 	flush_tlb_batched_pending(mm);
384 	arch_enter_lazy_mmu_mode();
385 	for (; addr < end; pte++, addr += PAGE_SIZE) {
386 		ptent = *pte;
387 
388 		if (pte_none(ptent))
389 			continue;
390 
391 		if (!pte_present(ptent))
392 			continue;
393 
394 		page = vm_normal_page(vma, addr, ptent);
395 		if (!page)
396 			continue;
397 
398 		/*
399 		 * Creating a THP page is expensive so split it only if we
400 		 * are sure it's worth. Split it if we are only owner.
401 		 */
402 		if (PageTransCompound(page)) {
403 			if (page_mapcount(page) != 1)
404 				break;
405 			get_page(page);
406 			if (!trylock_page(page)) {
407 				put_page(page);
408 				break;
409 			}
410 			pte_unmap_unlock(orig_pte, ptl);
411 			if (split_huge_page(page)) {
412 				unlock_page(page);
413 				put_page(page);
414 				pte_offset_map_lock(mm, pmd, addr, &ptl);
415 				break;
416 			}
417 			unlock_page(page);
418 			put_page(page);
419 			pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
420 			pte--;
421 			addr -= PAGE_SIZE;
422 			continue;
423 		}
424 
425 		VM_BUG_ON_PAGE(PageTransCompound(page), page);
426 
427 		if (pte_young(ptent)) {
428 			ptent = ptep_get_and_clear_full(mm, addr, pte,
429 							tlb->fullmm);
430 			ptent = pte_mkold(ptent);
431 			set_pte_at(mm, addr, pte, ptent);
432 			tlb_remove_tlb_entry(tlb, pte, addr);
433 		}
434 
435 		/*
436 		 * We are deactivating a page for accelerating reclaiming.
437 		 * VM couldn't reclaim the page unless we clear PG_young.
438 		 * As a side effect, it makes confuse idle-page tracking
439 		 * because they will miss recent referenced history.
440 		 */
441 		ClearPageReferenced(page);
442 		test_and_clear_page_young(page);
443 		if (pageout) {
444 			if (!isolate_lru_page(page))
445 				list_add(&page->lru, &page_list);
446 		} else
447 			deactivate_page(page);
448 	}
449 
450 	arch_leave_lazy_mmu_mode();
451 	pte_unmap_unlock(orig_pte, ptl);
452 	if (pageout)
453 		reclaim_pages(&page_list);
454 	cond_resched();
455 
456 	return 0;
457 }
458 
459 static const struct mm_walk_ops cold_walk_ops = {
460 	.pmd_entry = madvise_cold_or_pageout_pte_range,
461 };
462 
463 static void madvise_cold_page_range(struct mmu_gather *tlb,
464 			     struct vm_area_struct *vma,
465 			     unsigned long addr, unsigned long end)
466 {
467 	struct madvise_walk_private walk_private = {
468 		.pageout = false,
469 		.tlb = tlb,
470 	};
471 
472 	tlb_start_vma(tlb, vma);
473 	walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
474 	tlb_end_vma(tlb, vma);
475 }
476 
477 static long madvise_cold(struct vm_area_struct *vma,
478 			struct vm_area_struct **prev,
479 			unsigned long start_addr, unsigned long end_addr)
480 {
481 	struct mm_struct *mm = vma->vm_mm;
482 	struct mmu_gather tlb;
483 
484 	*prev = vma;
485 	if (!can_madv_lru_vma(vma))
486 		return -EINVAL;
487 
488 	lru_add_drain();
489 	tlb_gather_mmu(&tlb, mm, start_addr, end_addr);
490 	madvise_cold_page_range(&tlb, vma, start_addr, end_addr);
491 	tlb_finish_mmu(&tlb, start_addr, end_addr);
492 
493 	return 0;
494 }
495 
496 static void madvise_pageout_page_range(struct mmu_gather *tlb,
497 			     struct vm_area_struct *vma,
498 			     unsigned long addr, unsigned long end)
499 {
500 	struct madvise_walk_private walk_private = {
501 		.pageout = true,
502 		.tlb = tlb,
503 	};
504 
505 	tlb_start_vma(tlb, vma);
506 	walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
507 	tlb_end_vma(tlb, vma);
508 }
509 
510 static inline bool can_do_pageout(struct vm_area_struct *vma)
511 {
512 	if (vma_is_anonymous(vma))
513 		return true;
514 	if (!vma->vm_file)
515 		return false;
516 	/*
517 	 * paging out pagecache only for non-anonymous mappings that correspond
518 	 * to the files the calling process could (if tried) open for writing;
519 	 * otherwise we'd be including shared non-exclusive mappings, which
520 	 * opens a side channel.
521 	 */
522 	return inode_owner_or_capable(file_inode(vma->vm_file)) ||
523 		inode_permission(file_inode(vma->vm_file), MAY_WRITE) == 0;
524 }
525 
526 static long madvise_pageout(struct vm_area_struct *vma,
527 			struct vm_area_struct **prev,
528 			unsigned long start_addr, unsigned long end_addr)
529 {
530 	struct mm_struct *mm = vma->vm_mm;
531 	struct mmu_gather tlb;
532 
533 	*prev = vma;
534 	if (!can_madv_lru_vma(vma))
535 		return -EINVAL;
536 
537 	if (!can_do_pageout(vma))
538 		return 0;
539 
540 	lru_add_drain();
541 	tlb_gather_mmu(&tlb, mm, start_addr, end_addr);
542 	madvise_pageout_page_range(&tlb, vma, start_addr, end_addr);
543 	tlb_finish_mmu(&tlb, start_addr, end_addr);
544 
545 	return 0;
546 }
547 
548 static int madvise_free_pte_range(pmd_t *pmd, unsigned long addr,
549 				unsigned long end, struct mm_walk *walk)
550 
551 {
552 	struct mmu_gather *tlb = walk->private;
553 	struct mm_struct *mm = tlb->mm;
554 	struct vm_area_struct *vma = walk->vma;
555 	spinlock_t *ptl;
556 	pte_t *orig_pte, *pte, ptent;
557 	struct page *page;
558 	int nr_swap = 0;
559 	unsigned long next;
560 
561 	next = pmd_addr_end(addr, end);
562 	if (pmd_trans_huge(*pmd))
563 		if (madvise_free_huge_pmd(tlb, vma, pmd, addr, next))
564 			goto next;
565 
566 	if (pmd_trans_unstable(pmd))
567 		return 0;
568 
569 	tlb_change_page_size(tlb, PAGE_SIZE);
570 	orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
571 	flush_tlb_batched_pending(mm);
572 	arch_enter_lazy_mmu_mode();
573 	for (; addr != end; pte++, addr += PAGE_SIZE) {
574 		ptent = *pte;
575 
576 		if (pte_none(ptent))
577 			continue;
578 		/*
579 		 * If the pte has swp_entry, just clear page table to
580 		 * prevent swap-in which is more expensive rather than
581 		 * (page allocation + zeroing).
582 		 */
583 		if (!pte_present(ptent)) {
584 			swp_entry_t entry;
585 
586 			entry = pte_to_swp_entry(ptent);
587 			if (non_swap_entry(entry))
588 				continue;
589 			nr_swap--;
590 			free_swap_and_cache(entry);
591 			pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
592 			continue;
593 		}
594 
595 		page = vm_normal_page(vma, addr, ptent);
596 		if (!page)
597 			continue;
598 
599 		/*
600 		 * If pmd isn't transhuge but the page is THP and
601 		 * is owned by only this process, split it and
602 		 * deactivate all pages.
603 		 */
604 		if (PageTransCompound(page)) {
605 			if (page_mapcount(page) != 1)
606 				goto out;
607 			get_page(page);
608 			if (!trylock_page(page)) {
609 				put_page(page);
610 				goto out;
611 			}
612 			pte_unmap_unlock(orig_pte, ptl);
613 			if (split_huge_page(page)) {
614 				unlock_page(page);
615 				put_page(page);
616 				pte_offset_map_lock(mm, pmd, addr, &ptl);
617 				goto out;
618 			}
619 			unlock_page(page);
620 			put_page(page);
621 			pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
622 			pte--;
623 			addr -= PAGE_SIZE;
624 			continue;
625 		}
626 
627 		VM_BUG_ON_PAGE(PageTransCompound(page), page);
628 
629 		if (PageSwapCache(page) || PageDirty(page)) {
630 			if (!trylock_page(page))
631 				continue;
632 			/*
633 			 * If page is shared with others, we couldn't clear
634 			 * PG_dirty of the page.
635 			 */
636 			if (page_mapcount(page) != 1) {
637 				unlock_page(page);
638 				continue;
639 			}
640 
641 			if (PageSwapCache(page) && !try_to_free_swap(page)) {
642 				unlock_page(page);
643 				continue;
644 			}
645 
646 			ClearPageDirty(page);
647 			unlock_page(page);
648 		}
649 
650 		if (pte_young(ptent) || pte_dirty(ptent)) {
651 			/*
652 			 * Some of architecture(ex, PPC) don't update TLB
653 			 * with set_pte_at and tlb_remove_tlb_entry so for
654 			 * the portability, remap the pte with old|clean
655 			 * after pte clearing.
656 			 */
657 			ptent = ptep_get_and_clear_full(mm, addr, pte,
658 							tlb->fullmm);
659 
660 			ptent = pte_mkold(ptent);
661 			ptent = pte_mkclean(ptent);
662 			set_pte_at(mm, addr, pte, ptent);
663 			tlb_remove_tlb_entry(tlb, pte, addr);
664 		}
665 		mark_page_lazyfree(page);
666 	}
667 out:
668 	if (nr_swap) {
669 		if (current->mm == mm)
670 			sync_mm_rss(mm);
671 
672 		add_mm_counter(mm, MM_SWAPENTS, nr_swap);
673 	}
674 	arch_leave_lazy_mmu_mode();
675 	pte_unmap_unlock(orig_pte, ptl);
676 	cond_resched();
677 next:
678 	return 0;
679 }
680 
681 static const struct mm_walk_ops madvise_free_walk_ops = {
682 	.pmd_entry		= madvise_free_pte_range,
683 };
684 
685 static int madvise_free_single_vma(struct vm_area_struct *vma,
686 			unsigned long start_addr, unsigned long end_addr)
687 {
688 	struct mm_struct *mm = vma->vm_mm;
689 	struct mmu_notifier_range range;
690 	struct mmu_gather tlb;
691 
692 	/* MADV_FREE works for only anon vma at the moment */
693 	if (!vma_is_anonymous(vma))
694 		return -EINVAL;
695 
696 	range.start = max(vma->vm_start, start_addr);
697 	if (range.start >= vma->vm_end)
698 		return -EINVAL;
699 	range.end = min(vma->vm_end, end_addr);
700 	if (range.end <= vma->vm_start)
701 		return -EINVAL;
702 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
703 				range.start, range.end);
704 
705 	lru_add_drain();
706 	tlb_gather_mmu(&tlb, mm, range.start, range.end);
707 	update_hiwater_rss(mm);
708 
709 	mmu_notifier_invalidate_range_start(&range);
710 	tlb_start_vma(&tlb, vma);
711 	walk_page_range(vma->vm_mm, range.start, range.end,
712 			&madvise_free_walk_ops, &tlb);
713 	tlb_end_vma(&tlb, vma);
714 	mmu_notifier_invalidate_range_end(&range);
715 	tlb_finish_mmu(&tlb, range.start, range.end);
716 
717 	return 0;
718 }
719 
720 /*
721  * Application no longer needs these pages.  If the pages are dirty,
722  * it's OK to just throw them away.  The app will be more careful about
723  * data it wants to keep.  Be sure to free swap resources too.  The
724  * zap_page_range call sets things up for shrink_active_list to actually free
725  * these pages later if no one else has touched them in the meantime,
726  * although we could add these pages to a global reuse list for
727  * shrink_active_list to pick up before reclaiming other pages.
728  *
729  * NB: This interface discards data rather than pushes it out to swap,
730  * as some implementations do.  This has performance implications for
731  * applications like large transactional databases which want to discard
732  * pages in anonymous maps after committing to backing store the data
733  * that was kept in them.  There is no reason to write this data out to
734  * the swap area if the application is discarding it.
735  *
736  * An interface that causes the system to free clean pages and flush
737  * dirty pages is already available as msync(MS_INVALIDATE).
738  */
739 static long madvise_dontneed_single_vma(struct vm_area_struct *vma,
740 					unsigned long start, unsigned long end)
741 {
742 	zap_page_range(vma, start, end - start);
743 	return 0;
744 }
745 
746 static long madvise_dontneed_free(struct vm_area_struct *vma,
747 				  struct vm_area_struct **prev,
748 				  unsigned long start, unsigned long end,
749 				  int behavior)
750 {
751 	*prev = vma;
752 	if (!can_madv_lru_vma(vma))
753 		return -EINVAL;
754 
755 	if (!userfaultfd_remove(vma, start, end)) {
756 		*prev = NULL; /* mmap_sem has been dropped, prev is stale */
757 
758 		down_read(&current->mm->mmap_sem);
759 		vma = find_vma(current->mm, start);
760 		if (!vma)
761 			return -ENOMEM;
762 		if (start < vma->vm_start) {
763 			/*
764 			 * This "vma" under revalidation is the one
765 			 * with the lowest vma->vm_start where start
766 			 * is also < vma->vm_end. If start <
767 			 * vma->vm_start it means an hole materialized
768 			 * in the user address space within the
769 			 * virtual range passed to MADV_DONTNEED
770 			 * or MADV_FREE.
771 			 */
772 			return -ENOMEM;
773 		}
774 		if (!can_madv_lru_vma(vma))
775 			return -EINVAL;
776 		if (end > vma->vm_end) {
777 			/*
778 			 * Don't fail if end > vma->vm_end. If the old
779 			 * vma was splitted while the mmap_sem was
780 			 * released the effect of the concurrent
781 			 * operation may not cause madvise() to
782 			 * have an undefined result. There may be an
783 			 * adjacent next vma that we'll walk
784 			 * next. userfaultfd_remove() will generate an
785 			 * UFFD_EVENT_REMOVE repetition on the
786 			 * end-vma->vm_end range, but the manager can
787 			 * handle a repetition fine.
788 			 */
789 			end = vma->vm_end;
790 		}
791 		VM_WARN_ON(start >= end);
792 	}
793 
794 	if (behavior == MADV_DONTNEED)
795 		return madvise_dontneed_single_vma(vma, start, end);
796 	else if (behavior == MADV_FREE)
797 		return madvise_free_single_vma(vma, start, end);
798 	else
799 		return -EINVAL;
800 }
801 
802 /*
803  * Application wants to free up the pages and associated backing store.
804  * This is effectively punching a hole into the middle of a file.
805  */
806 static long madvise_remove(struct vm_area_struct *vma,
807 				struct vm_area_struct **prev,
808 				unsigned long start, unsigned long end)
809 {
810 	loff_t offset;
811 	int error;
812 	struct file *f;
813 
814 	*prev = NULL;	/* tell sys_madvise we drop mmap_sem */
815 
816 	if (vma->vm_flags & VM_LOCKED)
817 		return -EINVAL;
818 
819 	f = vma->vm_file;
820 
821 	if (!f || !f->f_mapping || !f->f_mapping->host) {
822 			return -EINVAL;
823 	}
824 
825 	if ((vma->vm_flags & (VM_SHARED|VM_WRITE)) != (VM_SHARED|VM_WRITE))
826 		return -EACCES;
827 
828 	offset = (loff_t)(start - vma->vm_start)
829 			+ ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
830 
831 	/*
832 	 * Filesystem's fallocate may need to take i_mutex.  We need to
833 	 * explicitly grab a reference because the vma (and hence the
834 	 * vma's reference to the file) can go away as soon as we drop
835 	 * mmap_sem.
836 	 */
837 	get_file(f);
838 	if (userfaultfd_remove(vma, start, end)) {
839 		/* mmap_sem was not released by userfaultfd_remove() */
840 		up_read(&current->mm->mmap_sem);
841 	}
842 	error = vfs_fallocate(f,
843 				FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
844 				offset, end - start);
845 	fput(f);
846 	down_read(&current->mm->mmap_sem);
847 	return error;
848 }
849 
850 #ifdef CONFIG_MEMORY_FAILURE
851 /*
852  * Error injection support for memory error handling.
853  */
854 static int madvise_inject_error(int behavior,
855 		unsigned long start, unsigned long end)
856 {
857 	struct page *page;
858 	struct zone *zone;
859 	unsigned int order;
860 
861 	if (!capable(CAP_SYS_ADMIN))
862 		return -EPERM;
863 
864 
865 	for (; start < end; start += PAGE_SIZE << order) {
866 		unsigned long pfn;
867 		int ret;
868 
869 		ret = get_user_pages_fast(start, 1, 0, &page);
870 		if (ret != 1)
871 			return ret;
872 		pfn = page_to_pfn(page);
873 
874 		/*
875 		 * When soft offlining hugepages, after migrating the page
876 		 * we dissolve it, therefore in the second loop "page" will
877 		 * no longer be a compound page, and order will be 0.
878 		 */
879 		order = compound_order(compound_head(page));
880 
881 		if (PageHWPoison(page)) {
882 			put_page(page);
883 			continue;
884 		}
885 
886 		if (behavior == MADV_SOFT_OFFLINE) {
887 			pr_info("Soft offlining pfn %#lx at process virtual address %#lx\n",
888 					pfn, start);
889 
890 			ret = soft_offline_page(page, MF_COUNT_INCREASED);
891 			if (ret)
892 				return ret;
893 			continue;
894 		}
895 
896 		pr_info("Injecting memory failure for pfn %#lx at process virtual address %#lx\n",
897 				pfn, start);
898 
899 		/*
900 		 * Drop the page reference taken by get_user_pages_fast(). In
901 		 * the absence of MF_COUNT_INCREASED the memory_failure()
902 		 * routine is responsible for pinning the page to prevent it
903 		 * from being released back to the page allocator.
904 		 */
905 		put_page(page);
906 		ret = memory_failure(pfn, 0);
907 		if (ret)
908 			return ret;
909 	}
910 
911 	/* Ensure that all poisoned pages are removed from per-cpu lists */
912 	for_each_populated_zone(zone)
913 		drain_all_pages(zone);
914 
915 	return 0;
916 }
917 #endif
918 
919 static long
920 madvise_vma(struct vm_area_struct *vma, struct vm_area_struct **prev,
921 		unsigned long start, unsigned long end, int behavior)
922 {
923 	switch (behavior) {
924 	case MADV_REMOVE:
925 		return madvise_remove(vma, prev, start, end);
926 	case MADV_WILLNEED:
927 		return madvise_willneed(vma, prev, start, end);
928 	case MADV_COLD:
929 		return madvise_cold(vma, prev, start, end);
930 	case MADV_PAGEOUT:
931 		return madvise_pageout(vma, prev, start, end);
932 	case MADV_FREE:
933 	case MADV_DONTNEED:
934 		return madvise_dontneed_free(vma, prev, start, end, behavior);
935 	default:
936 		return madvise_behavior(vma, prev, start, end, behavior);
937 	}
938 }
939 
940 static bool
941 madvise_behavior_valid(int behavior)
942 {
943 	switch (behavior) {
944 	case MADV_DOFORK:
945 	case MADV_DONTFORK:
946 	case MADV_NORMAL:
947 	case MADV_SEQUENTIAL:
948 	case MADV_RANDOM:
949 	case MADV_REMOVE:
950 	case MADV_WILLNEED:
951 	case MADV_DONTNEED:
952 	case MADV_FREE:
953 	case MADV_COLD:
954 	case MADV_PAGEOUT:
955 #ifdef CONFIG_KSM
956 	case MADV_MERGEABLE:
957 	case MADV_UNMERGEABLE:
958 #endif
959 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
960 	case MADV_HUGEPAGE:
961 	case MADV_NOHUGEPAGE:
962 #endif
963 	case MADV_DONTDUMP:
964 	case MADV_DODUMP:
965 	case MADV_WIPEONFORK:
966 	case MADV_KEEPONFORK:
967 #ifdef CONFIG_MEMORY_FAILURE
968 	case MADV_SOFT_OFFLINE:
969 	case MADV_HWPOISON:
970 #endif
971 		return true;
972 
973 	default:
974 		return false;
975 	}
976 }
977 
978 /*
979  * The madvise(2) system call.
980  *
981  * Applications can use madvise() to advise the kernel how it should
982  * handle paging I/O in this VM area.  The idea is to help the kernel
983  * use appropriate read-ahead and caching techniques.  The information
984  * provided is advisory only, and can be safely disregarded by the
985  * kernel without affecting the correct operation of the application.
986  *
987  * behavior values:
988  *  MADV_NORMAL - the default behavior is to read clusters.  This
989  *		results in some read-ahead and read-behind.
990  *  MADV_RANDOM - the system should read the minimum amount of data
991  *		on any access, since it is unlikely that the appli-
992  *		cation will need more than what it asks for.
993  *  MADV_SEQUENTIAL - pages in the given range will probably be accessed
994  *		once, so they can be aggressively read ahead, and
995  *		can be freed soon after they are accessed.
996  *  MADV_WILLNEED - the application is notifying the system to read
997  *		some pages ahead.
998  *  MADV_DONTNEED - the application is finished with the given range,
999  *		so the kernel can free resources associated with it.
1000  *  MADV_FREE - the application marks pages in the given range as lazy free,
1001  *		where actual purges are postponed until memory pressure happens.
1002  *  MADV_REMOVE - the application wants to free up the given range of
1003  *		pages and associated backing store.
1004  *  MADV_DONTFORK - omit this area from child's address space when forking:
1005  *		typically, to avoid COWing pages pinned by get_user_pages().
1006  *  MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking.
1007  *  MADV_WIPEONFORK - present the child process with zero-filled memory in this
1008  *              range after a fork.
1009  *  MADV_KEEPONFORK - undo the effect of MADV_WIPEONFORK
1010  *  MADV_HWPOISON - trigger memory error handler as if the given memory range
1011  *		were corrupted by unrecoverable hardware memory failure.
1012  *  MADV_SOFT_OFFLINE - try to soft-offline the given range of memory.
1013  *  MADV_MERGEABLE - the application recommends that KSM try to merge pages in
1014  *		this area with pages of identical content from other such areas.
1015  *  MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others.
1016  *  MADV_HUGEPAGE - the application wants to back the given range by transparent
1017  *		huge pages in the future. Existing pages might be coalesced and
1018  *		new pages might be allocated as THP.
1019  *  MADV_NOHUGEPAGE - mark the given range as not worth being backed by
1020  *		transparent huge pages so the existing pages will not be
1021  *		coalesced into THP and new pages will not be allocated as THP.
1022  *  MADV_DONTDUMP - the application wants to prevent pages in the given range
1023  *		from being included in its core dump.
1024  *  MADV_DODUMP - cancel MADV_DONTDUMP: no longer exclude from core dump.
1025  *
1026  * return values:
1027  *  zero    - success
1028  *  -EINVAL - start + len < 0, start is not page-aligned,
1029  *		"behavior" is not a valid value, or application
1030  *		is attempting to release locked or shared pages,
1031  *		or the specified address range includes file, Huge TLB,
1032  *		MAP_SHARED or VMPFNMAP range.
1033  *  -ENOMEM - addresses in the specified range are not currently
1034  *		mapped, or are outside the AS of the process.
1035  *  -EIO    - an I/O error occurred while paging in data.
1036  *  -EBADF  - map exists, but area maps something that isn't a file.
1037  *  -EAGAIN - a kernel resource was temporarily unavailable.
1038  */
1039 SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior)
1040 {
1041 	unsigned long end, tmp;
1042 	struct vm_area_struct *vma, *prev;
1043 	int unmapped_error = 0;
1044 	int error = -EINVAL;
1045 	int write;
1046 	size_t len;
1047 	struct blk_plug plug;
1048 
1049 	start = untagged_addr(start);
1050 
1051 	if (!madvise_behavior_valid(behavior))
1052 		return error;
1053 
1054 	if (start & ~PAGE_MASK)
1055 		return error;
1056 	len = (len_in + ~PAGE_MASK) & PAGE_MASK;
1057 
1058 	/* Check to see whether len was rounded up from small -ve to zero */
1059 	if (len_in && !len)
1060 		return error;
1061 
1062 	end = start + len;
1063 	if (end < start)
1064 		return error;
1065 
1066 	error = 0;
1067 	if (end == start)
1068 		return error;
1069 
1070 #ifdef CONFIG_MEMORY_FAILURE
1071 	if (behavior == MADV_HWPOISON || behavior == MADV_SOFT_OFFLINE)
1072 		return madvise_inject_error(behavior, start, start + len_in);
1073 #endif
1074 
1075 	write = madvise_need_mmap_write(behavior);
1076 	if (write) {
1077 		if (down_write_killable(&current->mm->mmap_sem))
1078 			return -EINTR;
1079 	} else {
1080 		down_read(&current->mm->mmap_sem);
1081 	}
1082 
1083 	/*
1084 	 * If the interval [start,end) covers some unmapped address
1085 	 * ranges, just ignore them, but return -ENOMEM at the end.
1086 	 * - different from the way of handling in mlock etc.
1087 	 */
1088 	vma = find_vma_prev(current->mm, start, &prev);
1089 	if (vma && start > vma->vm_start)
1090 		prev = vma;
1091 
1092 	blk_start_plug(&plug);
1093 	for (;;) {
1094 		/* Still start < end. */
1095 		error = -ENOMEM;
1096 		if (!vma)
1097 			goto out;
1098 
1099 		/* Here start < (end|vma->vm_end). */
1100 		if (start < vma->vm_start) {
1101 			unmapped_error = -ENOMEM;
1102 			start = vma->vm_start;
1103 			if (start >= end)
1104 				goto out;
1105 		}
1106 
1107 		/* Here vma->vm_start <= start < (end|vma->vm_end) */
1108 		tmp = vma->vm_end;
1109 		if (end < tmp)
1110 			tmp = end;
1111 
1112 		/* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */
1113 		error = madvise_vma(vma, &prev, start, tmp, behavior);
1114 		if (error)
1115 			goto out;
1116 		start = tmp;
1117 		if (prev && start < prev->vm_end)
1118 			start = prev->vm_end;
1119 		error = unmapped_error;
1120 		if (start >= end)
1121 			goto out;
1122 		if (prev)
1123 			vma = prev->vm_next;
1124 		else	/* madvise_remove dropped mmap_sem */
1125 			vma = find_vma(current->mm, start);
1126 	}
1127 out:
1128 	blk_finish_plug(&plug);
1129 	if (write)
1130 		up_write(&current->mm->mmap_sem);
1131 	else
1132 		up_read(&current->mm->mmap_sem);
1133 
1134 	return error;
1135 }
1136