1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/madvise.c 4 * 5 * Copyright (C) 1999 Linus Torvalds 6 * Copyright (C) 2002 Christoph Hellwig 7 */ 8 9 #include <linux/mman.h> 10 #include <linux/pagemap.h> 11 #include <linux/syscalls.h> 12 #include <linux/mempolicy.h> 13 #include <linux/page-isolation.h> 14 #include <linux/page_idle.h> 15 #include <linux/userfaultfd_k.h> 16 #include <linux/hugetlb.h> 17 #include <linux/falloc.h> 18 #include <linux/fadvise.h> 19 #include <linux/sched.h> 20 #include <linux/sched/mm.h> 21 #include <linux/mm_inline.h> 22 #include <linux/string.h> 23 #include <linux/uio.h> 24 #include <linux/ksm.h> 25 #include <linux/fs.h> 26 #include <linux/file.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/pagewalk.h> 30 #include <linux/swap.h> 31 #include <linux/swapops.h> 32 #include <linux/shmem_fs.h> 33 #include <linux/mmu_notifier.h> 34 35 #include <asm/tlb.h> 36 37 #include "internal.h" 38 #include "swap.h" 39 40 struct madvise_walk_private { 41 struct mmu_gather *tlb; 42 bool pageout; 43 }; 44 45 /* 46 * Any behaviour which results in changes to the vma->vm_flags needs to 47 * take mmap_lock for writing. Others, which simply traverse vmas, need 48 * to only take it for reading. 49 */ 50 static int madvise_need_mmap_write(int behavior) 51 { 52 switch (behavior) { 53 case MADV_REMOVE: 54 case MADV_WILLNEED: 55 case MADV_DONTNEED: 56 case MADV_DONTNEED_LOCKED: 57 case MADV_COLD: 58 case MADV_PAGEOUT: 59 case MADV_FREE: 60 case MADV_POPULATE_READ: 61 case MADV_POPULATE_WRITE: 62 case MADV_COLLAPSE: 63 return 0; 64 default: 65 /* be safe, default to 1. list exceptions explicitly */ 66 return 1; 67 } 68 } 69 70 #ifdef CONFIG_ANON_VMA_NAME 71 struct anon_vma_name *anon_vma_name_alloc(const char *name) 72 { 73 struct anon_vma_name *anon_name; 74 size_t count; 75 76 /* Add 1 for NUL terminator at the end of the anon_name->name */ 77 count = strlen(name) + 1; 78 anon_name = kmalloc(struct_size(anon_name, name, count), GFP_KERNEL); 79 if (anon_name) { 80 kref_init(&anon_name->kref); 81 memcpy(anon_name->name, name, count); 82 } 83 84 return anon_name; 85 } 86 87 void anon_vma_name_free(struct kref *kref) 88 { 89 struct anon_vma_name *anon_name = 90 container_of(kref, struct anon_vma_name, kref); 91 kfree(anon_name); 92 } 93 94 struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma) 95 { 96 mmap_assert_locked(vma->vm_mm); 97 98 if (vma->vm_file) 99 return NULL; 100 101 return vma->anon_name; 102 } 103 104 /* mmap_lock should be write-locked */ 105 static int replace_anon_vma_name(struct vm_area_struct *vma, 106 struct anon_vma_name *anon_name) 107 { 108 struct anon_vma_name *orig_name = anon_vma_name(vma); 109 110 if (!anon_name) { 111 vma->anon_name = NULL; 112 anon_vma_name_put(orig_name); 113 return 0; 114 } 115 116 if (anon_vma_name_eq(orig_name, anon_name)) 117 return 0; 118 119 vma->anon_name = anon_vma_name_reuse(anon_name); 120 anon_vma_name_put(orig_name); 121 122 return 0; 123 } 124 #else /* CONFIG_ANON_VMA_NAME */ 125 static int replace_anon_vma_name(struct vm_area_struct *vma, 126 struct anon_vma_name *anon_name) 127 { 128 if (anon_name) 129 return -EINVAL; 130 131 return 0; 132 } 133 #endif /* CONFIG_ANON_VMA_NAME */ 134 /* 135 * Update the vm_flags on region of a vma, splitting it or merging it as 136 * necessary. Must be called with mmap_sem held for writing; 137 * Caller should ensure anon_name stability by raising its refcount even when 138 * anon_name belongs to a valid vma because this function might free that vma. 139 */ 140 static int madvise_update_vma(struct vm_area_struct *vma, 141 struct vm_area_struct **prev, unsigned long start, 142 unsigned long end, unsigned long new_flags, 143 struct anon_vma_name *anon_name) 144 { 145 struct mm_struct *mm = vma->vm_mm; 146 int error; 147 pgoff_t pgoff; 148 149 if (new_flags == vma->vm_flags && anon_vma_name_eq(anon_vma_name(vma), anon_name)) { 150 *prev = vma; 151 return 0; 152 } 153 154 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT); 155 *prev = vma_merge(mm, *prev, start, end, new_flags, vma->anon_vma, 156 vma->vm_file, pgoff, vma_policy(vma), 157 vma->vm_userfaultfd_ctx, anon_name); 158 if (*prev) { 159 vma = *prev; 160 goto success; 161 } 162 163 *prev = vma; 164 165 if (start != vma->vm_start) { 166 if (unlikely(mm->map_count >= sysctl_max_map_count)) 167 return -ENOMEM; 168 error = __split_vma(mm, vma, start, 1); 169 if (error) 170 return error; 171 } 172 173 if (end != vma->vm_end) { 174 if (unlikely(mm->map_count >= sysctl_max_map_count)) 175 return -ENOMEM; 176 error = __split_vma(mm, vma, end, 0); 177 if (error) 178 return error; 179 } 180 181 success: 182 /* 183 * vm_flags is protected by the mmap_lock held in write mode. 184 */ 185 vma->vm_flags = new_flags; 186 if (!vma->vm_file) { 187 error = replace_anon_vma_name(vma, anon_name); 188 if (error) 189 return error; 190 } 191 192 return 0; 193 } 194 195 #ifdef CONFIG_SWAP 196 static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start, 197 unsigned long end, struct mm_walk *walk) 198 { 199 struct vm_area_struct *vma = walk->private; 200 unsigned long index; 201 struct swap_iocb *splug = NULL; 202 203 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 204 return 0; 205 206 for (index = start; index != end; index += PAGE_SIZE) { 207 pte_t pte; 208 swp_entry_t entry; 209 struct page *page; 210 spinlock_t *ptl; 211 pte_t *ptep; 212 213 ptep = pte_offset_map_lock(vma->vm_mm, pmd, index, &ptl); 214 pte = *ptep; 215 pte_unmap_unlock(ptep, ptl); 216 217 if (!is_swap_pte(pte)) 218 continue; 219 entry = pte_to_swp_entry(pte); 220 if (unlikely(non_swap_entry(entry))) 221 continue; 222 223 page = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE, 224 vma, index, false, &splug); 225 if (page) 226 put_page(page); 227 } 228 swap_read_unplug(splug); 229 230 return 0; 231 } 232 233 static const struct mm_walk_ops swapin_walk_ops = { 234 .pmd_entry = swapin_walk_pmd_entry, 235 }; 236 237 static void force_shm_swapin_readahead(struct vm_area_struct *vma, 238 unsigned long start, unsigned long end, 239 struct address_space *mapping) 240 { 241 XA_STATE(xas, &mapping->i_pages, linear_page_index(vma, start)); 242 pgoff_t end_index = linear_page_index(vma, end + PAGE_SIZE - 1); 243 struct page *page; 244 struct swap_iocb *splug = NULL; 245 246 rcu_read_lock(); 247 xas_for_each(&xas, page, end_index) { 248 swp_entry_t swap; 249 250 if (!xa_is_value(page)) 251 continue; 252 swap = radix_to_swp_entry(page); 253 /* There might be swapin error entries in shmem mapping. */ 254 if (non_swap_entry(swap)) 255 continue; 256 xas_pause(&xas); 257 rcu_read_unlock(); 258 259 page = read_swap_cache_async(swap, GFP_HIGHUSER_MOVABLE, 260 NULL, 0, false, &splug); 261 if (page) 262 put_page(page); 263 264 rcu_read_lock(); 265 } 266 rcu_read_unlock(); 267 swap_read_unplug(splug); 268 269 lru_add_drain(); /* Push any new pages onto the LRU now */ 270 } 271 #endif /* CONFIG_SWAP */ 272 273 /* 274 * Schedule all required I/O operations. Do not wait for completion. 275 */ 276 static long madvise_willneed(struct vm_area_struct *vma, 277 struct vm_area_struct **prev, 278 unsigned long start, unsigned long end) 279 { 280 struct mm_struct *mm = vma->vm_mm; 281 struct file *file = vma->vm_file; 282 loff_t offset; 283 284 *prev = vma; 285 #ifdef CONFIG_SWAP 286 if (!file) { 287 walk_page_range(vma->vm_mm, start, end, &swapin_walk_ops, vma); 288 lru_add_drain(); /* Push any new pages onto the LRU now */ 289 return 0; 290 } 291 292 if (shmem_mapping(file->f_mapping)) { 293 force_shm_swapin_readahead(vma, start, end, 294 file->f_mapping); 295 return 0; 296 } 297 #else 298 if (!file) 299 return -EBADF; 300 #endif 301 302 if (IS_DAX(file_inode(file))) { 303 /* no bad return value, but ignore advice */ 304 return 0; 305 } 306 307 /* 308 * Filesystem's fadvise may need to take various locks. We need to 309 * explicitly grab a reference because the vma (and hence the 310 * vma's reference to the file) can go away as soon as we drop 311 * mmap_lock. 312 */ 313 *prev = NULL; /* tell sys_madvise we drop mmap_lock */ 314 get_file(file); 315 offset = (loff_t)(start - vma->vm_start) 316 + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 317 mmap_read_unlock(mm); 318 vfs_fadvise(file, offset, end - start, POSIX_FADV_WILLNEED); 319 fput(file); 320 mmap_read_lock(mm); 321 return 0; 322 } 323 324 static int madvise_cold_or_pageout_pte_range(pmd_t *pmd, 325 unsigned long addr, unsigned long end, 326 struct mm_walk *walk) 327 { 328 struct madvise_walk_private *private = walk->private; 329 struct mmu_gather *tlb = private->tlb; 330 bool pageout = private->pageout; 331 struct mm_struct *mm = tlb->mm; 332 struct vm_area_struct *vma = walk->vma; 333 pte_t *orig_pte, *pte, ptent; 334 spinlock_t *ptl; 335 struct page *page = NULL; 336 LIST_HEAD(page_list); 337 338 if (fatal_signal_pending(current)) 339 return -EINTR; 340 341 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 342 if (pmd_trans_huge(*pmd)) { 343 pmd_t orig_pmd; 344 unsigned long next = pmd_addr_end(addr, end); 345 346 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 347 ptl = pmd_trans_huge_lock(pmd, vma); 348 if (!ptl) 349 return 0; 350 351 orig_pmd = *pmd; 352 if (is_huge_zero_pmd(orig_pmd)) 353 goto huge_unlock; 354 355 if (unlikely(!pmd_present(orig_pmd))) { 356 VM_BUG_ON(thp_migration_supported() && 357 !is_pmd_migration_entry(orig_pmd)); 358 goto huge_unlock; 359 } 360 361 page = pmd_page(orig_pmd); 362 363 /* Do not interfere with other mappings of this page */ 364 if (page_mapcount(page) != 1) 365 goto huge_unlock; 366 367 if (next - addr != HPAGE_PMD_SIZE) { 368 int err; 369 370 get_page(page); 371 spin_unlock(ptl); 372 lock_page(page); 373 err = split_huge_page(page); 374 unlock_page(page); 375 put_page(page); 376 if (!err) 377 goto regular_page; 378 return 0; 379 } 380 381 if (pmd_young(orig_pmd)) { 382 pmdp_invalidate(vma, addr, pmd); 383 orig_pmd = pmd_mkold(orig_pmd); 384 385 set_pmd_at(mm, addr, pmd, orig_pmd); 386 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 387 } 388 389 ClearPageReferenced(page); 390 test_and_clear_page_young(page); 391 if (pageout) { 392 if (!isolate_lru_page(page)) { 393 if (PageUnevictable(page)) 394 putback_lru_page(page); 395 else 396 list_add(&page->lru, &page_list); 397 } 398 } else 399 deactivate_page(page); 400 huge_unlock: 401 spin_unlock(ptl); 402 if (pageout) 403 reclaim_pages(&page_list); 404 return 0; 405 } 406 407 regular_page: 408 if (pmd_trans_unstable(pmd)) 409 return 0; 410 #endif 411 tlb_change_page_size(tlb, PAGE_SIZE); 412 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 413 flush_tlb_batched_pending(mm); 414 arch_enter_lazy_mmu_mode(); 415 for (; addr < end; pte++, addr += PAGE_SIZE) { 416 ptent = *pte; 417 418 if (pte_none(ptent)) 419 continue; 420 421 if (!pte_present(ptent)) 422 continue; 423 424 page = vm_normal_page(vma, addr, ptent); 425 if (!page || is_zone_device_page(page)) 426 continue; 427 428 /* 429 * Creating a THP page is expensive so split it only if we 430 * are sure it's worth. Split it if we are only owner. 431 */ 432 if (PageTransCompound(page)) { 433 if (page_mapcount(page) != 1) 434 break; 435 get_page(page); 436 if (!trylock_page(page)) { 437 put_page(page); 438 break; 439 } 440 pte_unmap_unlock(orig_pte, ptl); 441 if (split_huge_page(page)) { 442 unlock_page(page); 443 put_page(page); 444 orig_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 445 break; 446 } 447 unlock_page(page); 448 put_page(page); 449 orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 450 pte--; 451 addr -= PAGE_SIZE; 452 continue; 453 } 454 455 /* 456 * Do not interfere with other mappings of this page and 457 * non-LRU page. 458 */ 459 if (!PageLRU(page) || page_mapcount(page) != 1) 460 continue; 461 462 VM_BUG_ON_PAGE(PageTransCompound(page), page); 463 464 if (pte_young(ptent)) { 465 ptent = ptep_get_and_clear_full(mm, addr, pte, 466 tlb->fullmm); 467 ptent = pte_mkold(ptent); 468 set_pte_at(mm, addr, pte, ptent); 469 tlb_remove_tlb_entry(tlb, pte, addr); 470 } 471 472 /* 473 * We are deactivating a page for accelerating reclaiming. 474 * VM couldn't reclaim the page unless we clear PG_young. 475 * As a side effect, it makes confuse idle-page tracking 476 * because they will miss recent referenced history. 477 */ 478 ClearPageReferenced(page); 479 test_and_clear_page_young(page); 480 if (pageout) { 481 if (!isolate_lru_page(page)) { 482 if (PageUnevictable(page)) 483 putback_lru_page(page); 484 else 485 list_add(&page->lru, &page_list); 486 } 487 } else 488 deactivate_page(page); 489 } 490 491 arch_leave_lazy_mmu_mode(); 492 pte_unmap_unlock(orig_pte, ptl); 493 if (pageout) 494 reclaim_pages(&page_list); 495 cond_resched(); 496 497 return 0; 498 } 499 500 static const struct mm_walk_ops cold_walk_ops = { 501 .pmd_entry = madvise_cold_or_pageout_pte_range, 502 }; 503 504 static void madvise_cold_page_range(struct mmu_gather *tlb, 505 struct vm_area_struct *vma, 506 unsigned long addr, unsigned long end) 507 { 508 struct madvise_walk_private walk_private = { 509 .pageout = false, 510 .tlb = tlb, 511 }; 512 513 tlb_start_vma(tlb, vma); 514 walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private); 515 tlb_end_vma(tlb, vma); 516 } 517 518 static inline bool can_madv_lru_vma(struct vm_area_struct *vma) 519 { 520 return !(vma->vm_flags & (VM_LOCKED|VM_PFNMAP|VM_HUGETLB)); 521 } 522 523 static long madvise_cold(struct vm_area_struct *vma, 524 struct vm_area_struct **prev, 525 unsigned long start_addr, unsigned long end_addr) 526 { 527 struct mm_struct *mm = vma->vm_mm; 528 struct mmu_gather tlb; 529 530 *prev = vma; 531 if (!can_madv_lru_vma(vma)) 532 return -EINVAL; 533 534 lru_add_drain(); 535 tlb_gather_mmu(&tlb, mm); 536 madvise_cold_page_range(&tlb, vma, start_addr, end_addr); 537 tlb_finish_mmu(&tlb); 538 539 return 0; 540 } 541 542 static void madvise_pageout_page_range(struct mmu_gather *tlb, 543 struct vm_area_struct *vma, 544 unsigned long addr, unsigned long end) 545 { 546 struct madvise_walk_private walk_private = { 547 .pageout = true, 548 .tlb = tlb, 549 }; 550 551 tlb_start_vma(tlb, vma); 552 walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private); 553 tlb_end_vma(tlb, vma); 554 } 555 556 static inline bool can_do_pageout(struct vm_area_struct *vma) 557 { 558 if (vma_is_anonymous(vma)) 559 return true; 560 if (!vma->vm_file) 561 return false; 562 /* 563 * paging out pagecache only for non-anonymous mappings that correspond 564 * to the files the calling process could (if tried) open for writing; 565 * otherwise we'd be including shared non-exclusive mappings, which 566 * opens a side channel. 567 */ 568 return inode_owner_or_capable(&init_user_ns, 569 file_inode(vma->vm_file)) || 570 file_permission(vma->vm_file, MAY_WRITE) == 0; 571 } 572 573 static long madvise_pageout(struct vm_area_struct *vma, 574 struct vm_area_struct **prev, 575 unsigned long start_addr, unsigned long end_addr) 576 { 577 struct mm_struct *mm = vma->vm_mm; 578 struct mmu_gather tlb; 579 580 *prev = vma; 581 if (!can_madv_lru_vma(vma)) 582 return -EINVAL; 583 584 if (!can_do_pageout(vma)) 585 return 0; 586 587 lru_add_drain(); 588 tlb_gather_mmu(&tlb, mm); 589 madvise_pageout_page_range(&tlb, vma, start_addr, end_addr); 590 tlb_finish_mmu(&tlb); 591 592 return 0; 593 } 594 595 static int madvise_free_pte_range(pmd_t *pmd, unsigned long addr, 596 unsigned long end, struct mm_walk *walk) 597 598 { 599 struct mmu_gather *tlb = walk->private; 600 struct mm_struct *mm = tlb->mm; 601 struct vm_area_struct *vma = walk->vma; 602 spinlock_t *ptl; 603 pte_t *orig_pte, *pte, ptent; 604 struct folio *folio; 605 struct page *page; 606 int nr_swap = 0; 607 unsigned long next; 608 609 next = pmd_addr_end(addr, end); 610 if (pmd_trans_huge(*pmd)) 611 if (madvise_free_huge_pmd(tlb, vma, pmd, addr, next)) 612 goto next; 613 614 if (pmd_trans_unstable(pmd)) 615 return 0; 616 617 tlb_change_page_size(tlb, PAGE_SIZE); 618 orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 619 flush_tlb_batched_pending(mm); 620 arch_enter_lazy_mmu_mode(); 621 for (; addr != end; pte++, addr += PAGE_SIZE) { 622 ptent = *pte; 623 624 if (pte_none(ptent)) 625 continue; 626 /* 627 * If the pte has swp_entry, just clear page table to 628 * prevent swap-in which is more expensive rather than 629 * (page allocation + zeroing). 630 */ 631 if (!pte_present(ptent)) { 632 swp_entry_t entry; 633 634 entry = pte_to_swp_entry(ptent); 635 if (!non_swap_entry(entry)) { 636 nr_swap--; 637 free_swap_and_cache(entry); 638 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 639 } else if (is_hwpoison_entry(entry) || 640 is_swapin_error_entry(entry)) { 641 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 642 } 643 continue; 644 } 645 646 page = vm_normal_page(vma, addr, ptent); 647 if (!page || is_zone_device_page(page)) 648 continue; 649 folio = page_folio(page); 650 651 /* 652 * If pmd isn't transhuge but the folio is large and 653 * is owned by only this process, split it and 654 * deactivate all pages. 655 */ 656 if (folio_test_large(folio)) { 657 if (folio_mapcount(folio) != 1) 658 goto out; 659 folio_get(folio); 660 if (!folio_trylock(folio)) { 661 folio_put(folio); 662 goto out; 663 } 664 pte_unmap_unlock(orig_pte, ptl); 665 if (split_folio(folio)) { 666 folio_unlock(folio); 667 folio_put(folio); 668 orig_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 669 goto out; 670 } 671 folio_unlock(folio); 672 folio_put(folio); 673 orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 674 pte--; 675 addr -= PAGE_SIZE; 676 continue; 677 } 678 679 if (folio_test_swapcache(folio) || folio_test_dirty(folio)) { 680 if (!folio_trylock(folio)) 681 continue; 682 /* 683 * If folio is shared with others, we mustn't clear 684 * the folio's dirty flag. 685 */ 686 if (folio_mapcount(folio) != 1) { 687 folio_unlock(folio); 688 continue; 689 } 690 691 if (folio_test_swapcache(folio) && 692 !folio_free_swap(folio)) { 693 folio_unlock(folio); 694 continue; 695 } 696 697 folio_clear_dirty(folio); 698 folio_unlock(folio); 699 } 700 701 if (pte_young(ptent) || pte_dirty(ptent)) { 702 /* 703 * Some of architecture(ex, PPC) don't update TLB 704 * with set_pte_at and tlb_remove_tlb_entry so for 705 * the portability, remap the pte with old|clean 706 * after pte clearing. 707 */ 708 ptent = ptep_get_and_clear_full(mm, addr, pte, 709 tlb->fullmm); 710 711 ptent = pte_mkold(ptent); 712 ptent = pte_mkclean(ptent); 713 set_pte_at(mm, addr, pte, ptent); 714 tlb_remove_tlb_entry(tlb, pte, addr); 715 } 716 mark_page_lazyfree(&folio->page); 717 } 718 out: 719 if (nr_swap) { 720 if (current->mm == mm) 721 sync_mm_rss(mm); 722 723 add_mm_counter(mm, MM_SWAPENTS, nr_swap); 724 } 725 arch_leave_lazy_mmu_mode(); 726 pte_unmap_unlock(orig_pte, ptl); 727 cond_resched(); 728 next: 729 return 0; 730 } 731 732 static const struct mm_walk_ops madvise_free_walk_ops = { 733 .pmd_entry = madvise_free_pte_range, 734 }; 735 736 static int madvise_free_single_vma(struct vm_area_struct *vma, 737 unsigned long start_addr, unsigned long end_addr) 738 { 739 struct mm_struct *mm = vma->vm_mm; 740 struct mmu_notifier_range range; 741 struct mmu_gather tlb; 742 743 /* MADV_FREE works for only anon vma at the moment */ 744 if (!vma_is_anonymous(vma)) 745 return -EINVAL; 746 747 range.start = max(vma->vm_start, start_addr); 748 if (range.start >= vma->vm_end) 749 return -EINVAL; 750 range.end = min(vma->vm_end, end_addr); 751 if (range.end <= vma->vm_start) 752 return -EINVAL; 753 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, 754 range.start, range.end); 755 756 lru_add_drain(); 757 tlb_gather_mmu(&tlb, mm); 758 update_hiwater_rss(mm); 759 760 mmu_notifier_invalidate_range_start(&range); 761 tlb_start_vma(&tlb, vma); 762 walk_page_range(vma->vm_mm, range.start, range.end, 763 &madvise_free_walk_ops, &tlb); 764 tlb_end_vma(&tlb, vma); 765 mmu_notifier_invalidate_range_end(&range); 766 tlb_finish_mmu(&tlb); 767 768 return 0; 769 } 770 771 /* 772 * Application no longer needs these pages. If the pages are dirty, 773 * it's OK to just throw them away. The app will be more careful about 774 * data it wants to keep. Be sure to free swap resources too. The 775 * zap_page_range call sets things up for shrink_active_list to actually free 776 * these pages later if no one else has touched them in the meantime, 777 * although we could add these pages to a global reuse list for 778 * shrink_active_list to pick up before reclaiming other pages. 779 * 780 * NB: This interface discards data rather than pushes it out to swap, 781 * as some implementations do. This has performance implications for 782 * applications like large transactional databases which want to discard 783 * pages in anonymous maps after committing to backing store the data 784 * that was kept in them. There is no reason to write this data out to 785 * the swap area if the application is discarding it. 786 * 787 * An interface that causes the system to free clean pages and flush 788 * dirty pages is already available as msync(MS_INVALIDATE). 789 */ 790 static long madvise_dontneed_single_vma(struct vm_area_struct *vma, 791 unsigned long start, unsigned long end) 792 { 793 zap_page_range(vma, start, end - start); 794 return 0; 795 } 796 797 static bool madvise_dontneed_free_valid_vma(struct vm_area_struct *vma, 798 unsigned long start, 799 unsigned long *end, 800 int behavior) 801 { 802 if (!is_vm_hugetlb_page(vma)) { 803 unsigned int forbidden = VM_PFNMAP; 804 805 if (behavior != MADV_DONTNEED_LOCKED) 806 forbidden |= VM_LOCKED; 807 808 return !(vma->vm_flags & forbidden); 809 } 810 811 if (behavior != MADV_DONTNEED && behavior != MADV_DONTNEED_LOCKED) 812 return false; 813 if (start & ~huge_page_mask(hstate_vma(vma))) 814 return false; 815 816 /* 817 * Madvise callers expect the length to be rounded up to PAGE_SIZE 818 * boundaries, and may be unaware that this VMA uses huge pages. 819 * Avoid unexpected data loss by rounding down the number of 820 * huge pages freed. 821 */ 822 *end = ALIGN_DOWN(*end, huge_page_size(hstate_vma(vma))); 823 824 return true; 825 } 826 827 static long madvise_dontneed_free(struct vm_area_struct *vma, 828 struct vm_area_struct **prev, 829 unsigned long start, unsigned long end, 830 int behavior) 831 { 832 struct mm_struct *mm = vma->vm_mm; 833 834 *prev = vma; 835 if (!madvise_dontneed_free_valid_vma(vma, start, &end, behavior)) 836 return -EINVAL; 837 838 if (start == end) 839 return 0; 840 841 if (!userfaultfd_remove(vma, start, end)) { 842 *prev = NULL; /* mmap_lock has been dropped, prev is stale */ 843 844 mmap_read_lock(mm); 845 vma = find_vma(mm, start); 846 if (!vma) 847 return -ENOMEM; 848 if (start < vma->vm_start) { 849 /* 850 * This "vma" under revalidation is the one 851 * with the lowest vma->vm_start where start 852 * is also < vma->vm_end. If start < 853 * vma->vm_start it means an hole materialized 854 * in the user address space within the 855 * virtual range passed to MADV_DONTNEED 856 * or MADV_FREE. 857 */ 858 return -ENOMEM; 859 } 860 /* 861 * Potential end adjustment for hugetlb vma is OK as 862 * the check below keeps end within vma. 863 */ 864 if (!madvise_dontneed_free_valid_vma(vma, start, &end, 865 behavior)) 866 return -EINVAL; 867 if (end > vma->vm_end) { 868 /* 869 * Don't fail if end > vma->vm_end. If the old 870 * vma was split while the mmap_lock was 871 * released the effect of the concurrent 872 * operation may not cause madvise() to 873 * have an undefined result. There may be an 874 * adjacent next vma that we'll walk 875 * next. userfaultfd_remove() will generate an 876 * UFFD_EVENT_REMOVE repetition on the 877 * end-vma->vm_end range, but the manager can 878 * handle a repetition fine. 879 */ 880 end = vma->vm_end; 881 } 882 VM_WARN_ON(start >= end); 883 } 884 885 if (behavior == MADV_DONTNEED || behavior == MADV_DONTNEED_LOCKED) 886 return madvise_dontneed_single_vma(vma, start, end); 887 else if (behavior == MADV_FREE) 888 return madvise_free_single_vma(vma, start, end); 889 else 890 return -EINVAL; 891 } 892 893 static long madvise_populate(struct vm_area_struct *vma, 894 struct vm_area_struct **prev, 895 unsigned long start, unsigned long end, 896 int behavior) 897 { 898 const bool write = behavior == MADV_POPULATE_WRITE; 899 struct mm_struct *mm = vma->vm_mm; 900 unsigned long tmp_end; 901 int locked = 1; 902 long pages; 903 904 *prev = vma; 905 906 while (start < end) { 907 /* 908 * We might have temporarily dropped the lock. For example, 909 * our VMA might have been split. 910 */ 911 if (!vma || start >= vma->vm_end) { 912 vma = vma_lookup(mm, start); 913 if (!vma) 914 return -ENOMEM; 915 } 916 917 tmp_end = min_t(unsigned long, end, vma->vm_end); 918 /* Populate (prefault) page tables readable/writable. */ 919 pages = faultin_vma_page_range(vma, start, tmp_end, write, 920 &locked); 921 if (!locked) { 922 mmap_read_lock(mm); 923 locked = 1; 924 *prev = NULL; 925 vma = NULL; 926 } 927 if (pages < 0) { 928 switch (pages) { 929 case -EINTR: 930 return -EINTR; 931 case -EINVAL: /* Incompatible mappings / permissions. */ 932 return -EINVAL; 933 case -EHWPOISON: 934 return -EHWPOISON; 935 case -EFAULT: /* VM_FAULT_SIGBUS or VM_FAULT_SIGSEGV */ 936 return -EFAULT; 937 default: 938 pr_warn_once("%s: unhandled return value: %ld\n", 939 __func__, pages); 940 fallthrough; 941 case -ENOMEM: 942 return -ENOMEM; 943 } 944 } 945 start += pages * PAGE_SIZE; 946 } 947 return 0; 948 } 949 950 /* 951 * Application wants to free up the pages and associated backing store. 952 * This is effectively punching a hole into the middle of a file. 953 */ 954 static long madvise_remove(struct vm_area_struct *vma, 955 struct vm_area_struct **prev, 956 unsigned long start, unsigned long end) 957 { 958 loff_t offset; 959 int error; 960 struct file *f; 961 struct mm_struct *mm = vma->vm_mm; 962 963 *prev = NULL; /* tell sys_madvise we drop mmap_lock */ 964 965 if (vma->vm_flags & VM_LOCKED) 966 return -EINVAL; 967 968 f = vma->vm_file; 969 970 if (!f || !f->f_mapping || !f->f_mapping->host) { 971 return -EINVAL; 972 } 973 974 if ((vma->vm_flags & (VM_SHARED|VM_WRITE)) != (VM_SHARED|VM_WRITE)) 975 return -EACCES; 976 977 offset = (loff_t)(start - vma->vm_start) 978 + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 979 980 /* 981 * Filesystem's fallocate may need to take i_rwsem. We need to 982 * explicitly grab a reference because the vma (and hence the 983 * vma's reference to the file) can go away as soon as we drop 984 * mmap_lock. 985 */ 986 get_file(f); 987 if (userfaultfd_remove(vma, start, end)) { 988 /* mmap_lock was not released by userfaultfd_remove() */ 989 mmap_read_unlock(mm); 990 } 991 error = vfs_fallocate(f, 992 FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 993 offset, end - start); 994 fput(f); 995 mmap_read_lock(mm); 996 return error; 997 } 998 999 /* 1000 * Apply an madvise behavior to a region of a vma. madvise_update_vma 1001 * will handle splitting a vm area into separate areas, each area with its own 1002 * behavior. 1003 */ 1004 static int madvise_vma_behavior(struct vm_area_struct *vma, 1005 struct vm_area_struct **prev, 1006 unsigned long start, unsigned long end, 1007 unsigned long behavior) 1008 { 1009 int error; 1010 struct anon_vma_name *anon_name; 1011 unsigned long new_flags = vma->vm_flags; 1012 1013 switch (behavior) { 1014 case MADV_REMOVE: 1015 return madvise_remove(vma, prev, start, end); 1016 case MADV_WILLNEED: 1017 return madvise_willneed(vma, prev, start, end); 1018 case MADV_COLD: 1019 return madvise_cold(vma, prev, start, end); 1020 case MADV_PAGEOUT: 1021 return madvise_pageout(vma, prev, start, end); 1022 case MADV_FREE: 1023 case MADV_DONTNEED: 1024 case MADV_DONTNEED_LOCKED: 1025 return madvise_dontneed_free(vma, prev, start, end, behavior); 1026 case MADV_POPULATE_READ: 1027 case MADV_POPULATE_WRITE: 1028 return madvise_populate(vma, prev, start, end, behavior); 1029 case MADV_NORMAL: 1030 new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ; 1031 break; 1032 case MADV_SEQUENTIAL: 1033 new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ; 1034 break; 1035 case MADV_RANDOM: 1036 new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ; 1037 break; 1038 case MADV_DONTFORK: 1039 new_flags |= VM_DONTCOPY; 1040 break; 1041 case MADV_DOFORK: 1042 if (vma->vm_flags & VM_IO) 1043 return -EINVAL; 1044 new_flags &= ~VM_DONTCOPY; 1045 break; 1046 case MADV_WIPEONFORK: 1047 /* MADV_WIPEONFORK is only supported on anonymous memory. */ 1048 if (vma->vm_file || vma->vm_flags & VM_SHARED) 1049 return -EINVAL; 1050 new_flags |= VM_WIPEONFORK; 1051 break; 1052 case MADV_KEEPONFORK: 1053 new_flags &= ~VM_WIPEONFORK; 1054 break; 1055 case MADV_DONTDUMP: 1056 new_flags |= VM_DONTDUMP; 1057 break; 1058 case MADV_DODUMP: 1059 if (!is_vm_hugetlb_page(vma) && new_flags & VM_SPECIAL) 1060 return -EINVAL; 1061 new_flags &= ~VM_DONTDUMP; 1062 break; 1063 case MADV_MERGEABLE: 1064 case MADV_UNMERGEABLE: 1065 error = ksm_madvise(vma, start, end, behavior, &new_flags); 1066 if (error) 1067 goto out; 1068 break; 1069 case MADV_HUGEPAGE: 1070 case MADV_NOHUGEPAGE: 1071 error = hugepage_madvise(vma, &new_flags, behavior); 1072 if (error) 1073 goto out; 1074 break; 1075 case MADV_COLLAPSE: 1076 return madvise_collapse(vma, prev, start, end); 1077 } 1078 1079 anon_name = anon_vma_name(vma); 1080 anon_vma_name_get(anon_name); 1081 error = madvise_update_vma(vma, prev, start, end, new_flags, 1082 anon_name); 1083 anon_vma_name_put(anon_name); 1084 1085 out: 1086 /* 1087 * madvise() returns EAGAIN if kernel resources, such as 1088 * slab, are temporarily unavailable. 1089 */ 1090 if (error == -ENOMEM) 1091 error = -EAGAIN; 1092 return error; 1093 } 1094 1095 #ifdef CONFIG_MEMORY_FAILURE 1096 /* 1097 * Error injection support for memory error handling. 1098 */ 1099 static int madvise_inject_error(int behavior, 1100 unsigned long start, unsigned long end) 1101 { 1102 unsigned long size; 1103 1104 if (!capable(CAP_SYS_ADMIN)) 1105 return -EPERM; 1106 1107 1108 for (; start < end; start += size) { 1109 unsigned long pfn; 1110 struct page *page; 1111 int ret; 1112 1113 ret = get_user_pages_fast(start, 1, 0, &page); 1114 if (ret != 1) 1115 return ret; 1116 pfn = page_to_pfn(page); 1117 1118 /* 1119 * When soft offlining hugepages, after migrating the page 1120 * we dissolve it, therefore in the second loop "page" will 1121 * no longer be a compound page. 1122 */ 1123 size = page_size(compound_head(page)); 1124 1125 if (behavior == MADV_SOFT_OFFLINE) { 1126 pr_info("Soft offlining pfn %#lx at process virtual address %#lx\n", 1127 pfn, start); 1128 ret = soft_offline_page(pfn, MF_COUNT_INCREASED); 1129 } else { 1130 pr_info("Injecting memory failure for pfn %#lx at process virtual address %#lx\n", 1131 pfn, start); 1132 ret = memory_failure(pfn, MF_COUNT_INCREASED | MF_SW_SIMULATED); 1133 if (ret == -EOPNOTSUPP) 1134 ret = 0; 1135 } 1136 1137 if (ret) 1138 return ret; 1139 } 1140 1141 return 0; 1142 } 1143 #endif 1144 1145 static bool 1146 madvise_behavior_valid(int behavior) 1147 { 1148 switch (behavior) { 1149 case MADV_DOFORK: 1150 case MADV_DONTFORK: 1151 case MADV_NORMAL: 1152 case MADV_SEQUENTIAL: 1153 case MADV_RANDOM: 1154 case MADV_REMOVE: 1155 case MADV_WILLNEED: 1156 case MADV_DONTNEED: 1157 case MADV_DONTNEED_LOCKED: 1158 case MADV_FREE: 1159 case MADV_COLD: 1160 case MADV_PAGEOUT: 1161 case MADV_POPULATE_READ: 1162 case MADV_POPULATE_WRITE: 1163 #ifdef CONFIG_KSM 1164 case MADV_MERGEABLE: 1165 case MADV_UNMERGEABLE: 1166 #endif 1167 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1168 case MADV_HUGEPAGE: 1169 case MADV_NOHUGEPAGE: 1170 case MADV_COLLAPSE: 1171 #endif 1172 case MADV_DONTDUMP: 1173 case MADV_DODUMP: 1174 case MADV_WIPEONFORK: 1175 case MADV_KEEPONFORK: 1176 #ifdef CONFIG_MEMORY_FAILURE 1177 case MADV_SOFT_OFFLINE: 1178 case MADV_HWPOISON: 1179 #endif 1180 return true; 1181 1182 default: 1183 return false; 1184 } 1185 } 1186 1187 static bool process_madvise_behavior_valid(int behavior) 1188 { 1189 switch (behavior) { 1190 case MADV_COLD: 1191 case MADV_PAGEOUT: 1192 case MADV_WILLNEED: 1193 case MADV_COLLAPSE: 1194 return true; 1195 default: 1196 return false; 1197 } 1198 } 1199 1200 /* 1201 * Walk the vmas in range [start,end), and call the visit function on each one. 1202 * The visit function will get start and end parameters that cover the overlap 1203 * between the current vma and the original range. Any unmapped regions in the 1204 * original range will result in this function returning -ENOMEM while still 1205 * calling the visit function on all of the existing vmas in the range. 1206 * Must be called with the mmap_lock held for reading or writing. 1207 */ 1208 static 1209 int madvise_walk_vmas(struct mm_struct *mm, unsigned long start, 1210 unsigned long end, unsigned long arg, 1211 int (*visit)(struct vm_area_struct *vma, 1212 struct vm_area_struct **prev, unsigned long start, 1213 unsigned long end, unsigned long arg)) 1214 { 1215 struct vm_area_struct *vma; 1216 struct vm_area_struct *prev; 1217 unsigned long tmp; 1218 int unmapped_error = 0; 1219 1220 /* 1221 * If the interval [start,end) covers some unmapped address 1222 * ranges, just ignore them, but return -ENOMEM at the end. 1223 * - different from the way of handling in mlock etc. 1224 */ 1225 vma = find_vma_prev(mm, start, &prev); 1226 if (vma && start > vma->vm_start) 1227 prev = vma; 1228 1229 for (;;) { 1230 int error; 1231 1232 /* Still start < end. */ 1233 if (!vma) 1234 return -ENOMEM; 1235 1236 /* Here start < (end|vma->vm_end). */ 1237 if (start < vma->vm_start) { 1238 unmapped_error = -ENOMEM; 1239 start = vma->vm_start; 1240 if (start >= end) 1241 break; 1242 } 1243 1244 /* Here vma->vm_start <= start < (end|vma->vm_end) */ 1245 tmp = vma->vm_end; 1246 if (end < tmp) 1247 tmp = end; 1248 1249 /* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */ 1250 error = visit(vma, &prev, start, tmp, arg); 1251 if (error) 1252 return error; 1253 start = tmp; 1254 if (prev && start < prev->vm_end) 1255 start = prev->vm_end; 1256 if (start >= end) 1257 break; 1258 if (prev) 1259 vma = find_vma(mm, prev->vm_end); 1260 else /* madvise_remove dropped mmap_lock */ 1261 vma = find_vma(mm, start); 1262 } 1263 1264 return unmapped_error; 1265 } 1266 1267 #ifdef CONFIG_ANON_VMA_NAME 1268 static int madvise_vma_anon_name(struct vm_area_struct *vma, 1269 struct vm_area_struct **prev, 1270 unsigned long start, unsigned long end, 1271 unsigned long anon_name) 1272 { 1273 int error; 1274 1275 /* Only anonymous mappings can be named */ 1276 if (vma->vm_file) 1277 return -EBADF; 1278 1279 error = madvise_update_vma(vma, prev, start, end, vma->vm_flags, 1280 (struct anon_vma_name *)anon_name); 1281 1282 /* 1283 * madvise() returns EAGAIN if kernel resources, such as 1284 * slab, are temporarily unavailable. 1285 */ 1286 if (error == -ENOMEM) 1287 error = -EAGAIN; 1288 return error; 1289 } 1290 1291 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 1292 unsigned long len_in, struct anon_vma_name *anon_name) 1293 { 1294 unsigned long end; 1295 unsigned long len; 1296 1297 if (start & ~PAGE_MASK) 1298 return -EINVAL; 1299 len = (len_in + ~PAGE_MASK) & PAGE_MASK; 1300 1301 /* Check to see whether len was rounded up from small -ve to zero */ 1302 if (len_in && !len) 1303 return -EINVAL; 1304 1305 end = start + len; 1306 if (end < start) 1307 return -EINVAL; 1308 1309 if (end == start) 1310 return 0; 1311 1312 return madvise_walk_vmas(mm, start, end, (unsigned long)anon_name, 1313 madvise_vma_anon_name); 1314 } 1315 #endif /* CONFIG_ANON_VMA_NAME */ 1316 /* 1317 * The madvise(2) system call. 1318 * 1319 * Applications can use madvise() to advise the kernel how it should 1320 * handle paging I/O in this VM area. The idea is to help the kernel 1321 * use appropriate read-ahead and caching techniques. The information 1322 * provided is advisory only, and can be safely disregarded by the 1323 * kernel without affecting the correct operation of the application. 1324 * 1325 * behavior values: 1326 * MADV_NORMAL - the default behavior is to read clusters. This 1327 * results in some read-ahead and read-behind. 1328 * MADV_RANDOM - the system should read the minimum amount of data 1329 * on any access, since it is unlikely that the appli- 1330 * cation will need more than what it asks for. 1331 * MADV_SEQUENTIAL - pages in the given range will probably be accessed 1332 * once, so they can be aggressively read ahead, and 1333 * can be freed soon after they are accessed. 1334 * MADV_WILLNEED - the application is notifying the system to read 1335 * some pages ahead. 1336 * MADV_DONTNEED - the application is finished with the given range, 1337 * so the kernel can free resources associated with it. 1338 * MADV_FREE - the application marks pages in the given range as lazy free, 1339 * where actual purges are postponed until memory pressure happens. 1340 * MADV_REMOVE - the application wants to free up the given range of 1341 * pages and associated backing store. 1342 * MADV_DONTFORK - omit this area from child's address space when forking: 1343 * typically, to avoid COWing pages pinned by get_user_pages(). 1344 * MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking. 1345 * MADV_WIPEONFORK - present the child process with zero-filled memory in this 1346 * range after a fork. 1347 * MADV_KEEPONFORK - undo the effect of MADV_WIPEONFORK 1348 * MADV_HWPOISON - trigger memory error handler as if the given memory range 1349 * were corrupted by unrecoverable hardware memory failure. 1350 * MADV_SOFT_OFFLINE - try to soft-offline the given range of memory. 1351 * MADV_MERGEABLE - the application recommends that KSM try to merge pages in 1352 * this area with pages of identical content from other such areas. 1353 * MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others. 1354 * MADV_HUGEPAGE - the application wants to back the given range by transparent 1355 * huge pages in the future. Existing pages might be coalesced and 1356 * new pages might be allocated as THP. 1357 * MADV_NOHUGEPAGE - mark the given range as not worth being backed by 1358 * transparent huge pages so the existing pages will not be 1359 * coalesced into THP and new pages will not be allocated as THP. 1360 * MADV_COLLAPSE - synchronously coalesce pages into new THP. 1361 * MADV_DONTDUMP - the application wants to prevent pages in the given range 1362 * from being included in its core dump. 1363 * MADV_DODUMP - cancel MADV_DONTDUMP: no longer exclude from core dump. 1364 * MADV_COLD - the application is not expected to use this memory soon, 1365 * deactivate pages in this range so that they can be reclaimed 1366 * easily if memory pressure happens. 1367 * MADV_PAGEOUT - the application is not expected to use this memory soon, 1368 * page out the pages in this range immediately. 1369 * MADV_POPULATE_READ - populate (prefault) page tables readable by 1370 * triggering read faults if required 1371 * MADV_POPULATE_WRITE - populate (prefault) page tables writable by 1372 * triggering write faults if required 1373 * 1374 * return values: 1375 * zero - success 1376 * -EINVAL - start + len < 0, start is not page-aligned, 1377 * "behavior" is not a valid value, or application 1378 * is attempting to release locked or shared pages, 1379 * or the specified address range includes file, Huge TLB, 1380 * MAP_SHARED or VMPFNMAP range. 1381 * -ENOMEM - addresses in the specified range are not currently 1382 * mapped, or are outside the AS of the process. 1383 * -EIO - an I/O error occurred while paging in data. 1384 * -EBADF - map exists, but area maps something that isn't a file. 1385 * -EAGAIN - a kernel resource was temporarily unavailable. 1386 */ 1387 int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior) 1388 { 1389 unsigned long end; 1390 int error; 1391 int write; 1392 size_t len; 1393 struct blk_plug plug; 1394 1395 start = untagged_addr(start); 1396 1397 if (!madvise_behavior_valid(behavior)) 1398 return -EINVAL; 1399 1400 if (!PAGE_ALIGNED(start)) 1401 return -EINVAL; 1402 len = PAGE_ALIGN(len_in); 1403 1404 /* Check to see whether len was rounded up from small -ve to zero */ 1405 if (len_in && !len) 1406 return -EINVAL; 1407 1408 end = start + len; 1409 if (end < start) 1410 return -EINVAL; 1411 1412 if (end == start) 1413 return 0; 1414 1415 #ifdef CONFIG_MEMORY_FAILURE 1416 if (behavior == MADV_HWPOISON || behavior == MADV_SOFT_OFFLINE) 1417 return madvise_inject_error(behavior, start, start + len_in); 1418 #endif 1419 1420 write = madvise_need_mmap_write(behavior); 1421 if (write) { 1422 if (mmap_write_lock_killable(mm)) 1423 return -EINTR; 1424 } else { 1425 mmap_read_lock(mm); 1426 } 1427 1428 blk_start_plug(&plug); 1429 error = madvise_walk_vmas(mm, start, end, behavior, 1430 madvise_vma_behavior); 1431 blk_finish_plug(&plug); 1432 if (write) 1433 mmap_write_unlock(mm); 1434 else 1435 mmap_read_unlock(mm); 1436 1437 return error; 1438 } 1439 1440 SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior) 1441 { 1442 return do_madvise(current->mm, start, len_in, behavior); 1443 } 1444 1445 SYSCALL_DEFINE5(process_madvise, int, pidfd, const struct iovec __user *, vec, 1446 size_t, vlen, int, behavior, unsigned int, flags) 1447 { 1448 ssize_t ret; 1449 struct iovec iovstack[UIO_FASTIOV], iovec; 1450 struct iovec *iov = iovstack; 1451 struct iov_iter iter; 1452 struct task_struct *task; 1453 struct mm_struct *mm; 1454 size_t total_len; 1455 unsigned int f_flags; 1456 1457 if (flags != 0) { 1458 ret = -EINVAL; 1459 goto out; 1460 } 1461 1462 ret = import_iovec(READ, vec, vlen, ARRAY_SIZE(iovstack), &iov, &iter); 1463 if (ret < 0) 1464 goto out; 1465 1466 task = pidfd_get_task(pidfd, &f_flags); 1467 if (IS_ERR(task)) { 1468 ret = PTR_ERR(task); 1469 goto free_iov; 1470 } 1471 1472 if (!process_madvise_behavior_valid(behavior)) { 1473 ret = -EINVAL; 1474 goto release_task; 1475 } 1476 1477 /* Require PTRACE_MODE_READ to avoid leaking ASLR metadata. */ 1478 mm = mm_access(task, PTRACE_MODE_READ_FSCREDS); 1479 if (IS_ERR_OR_NULL(mm)) { 1480 ret = IS_ERR(mm) ? PTR_ERR(mm) : -ESRCH; 1481 goto release_task; 1482 } 1483 1484 /* 1485 * Require CAP_SYS_NICE for influencing process performance. Note that 1486 * only non-destructive hints are currently supported. 1487 */ 1488 if (!capable(CAP_SYS_NICE)) { 1489 ret = -EPERM; 1490 goto release_mm; 1491 } 1492 1493 total_len = iov_iter_count(&iter); 1494 1495 while (iov_iter_count(&iter)) { 1496 iovec = iov_iter_iovec(&iter); 1497 ret = do_madvise(mm, (unsigned long)iovec.iov_base, 1498 iovec.iov_len, behavior); 1499 if (ret < 0) 1500 break; 1501 iov_iter_advance(&iter, iovec.iov_len); 1502 } 1503 1504 ret = (total_len - iov_iter_count(&iter)) ? : ret; 1505 1506 release_mm: 1507 mmput(mm); 1508 release_task: 1509 put_task_struct(task); 1510 free_iov: 1511 kfree(iov); 1512 out: 1513 return ret; 1514 } 1515