1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2016 Facebook 4 * Copyright (C) 2013-2014 Jens Axboe 5 */ 6 7 #include <linux/sched.h> 8 #include <linux/random.h> 9 #include <linux/sbitmap.h> 10 #include <linux/seq_file.h> 11 12 static int init_alloc_hint(struct sbitmap *sb, gfp_t flags) 13 { 14 unsigned depth = sb->depth; 15 16 sb->alloc_hint = alloc_percpu_gfp(unsigned int, flags); 17 if (!sb->alloc_hint) 18 return -ENOMEM; 19 20 if (depth && !sb->round_robin) { 21 int i; 22 23 for_each_possible_cpu(i) 24 *per_cpu_ptr(sb->alloc_hint, i) = prandom_u32() % depth; 25 } 26 return 0; 27 } 28 29 static inline unsigned update_alloc_hint_before_get(struct sbitmap *sb, 30 unsigned int depth) 31 { 32 unsigned hint; 33 34 hint = this_cpu_read(*sb->alloc_hint); 35 if (unlikely(hint >= depth)) { 36 hint = depth ? prandom_u32() % depth : 0; 37 this_cpu_write(*sb->alloc_hint, hint); 38 } 39 40 return hint; 41 } 42 43 static inline void update_alloc_hint_after_get(struct sbitmap *sb, 44 unsigned int depth, 45 unsigned int hint, 46 unsigned int nr) 47 { 48 if (nr == -1) { 49 /* If the map is full, a hint won't do us much good. */ 50 this_cpu_write(*sb->alloc_hint, 0); 51 } else if (nr == hint || unlikely(sb->round_robin)) { 52 /* Only update the hint if we used it. */ 53 hint = nr + 1; 54 if (hint >= depth - 1) 55 hint = 0; 56 this_cpu_write(*sb->alloc_hint, hint); 57 } 58 } 59 60 /* 61 * See if we have deferred clears that we can batch move 62 */ 63 static inline bool sbitmap_deferred_clear(struct sbitmap_word *map) 64 { 65 unsigned long mask; 66 67 if (!READ_ONCE(map->cleared)) 68 return false; 69 70 /* 71 * First get a stable cleared mask, setting the old mask to 0. 72 */ 73 mask = xchg(&map->cleared, 0); 74 75 /* 76 * Now clear the masked bits in our free word 77 */ 78 atomic_long_andnot(mask, (atomic_long_t *)&map->word); 79 BUILD_BUG_ON(sizeof(atomic_long_t) != sizeof(map->word)); 80 return true; 81 } 82 83 int sbitmap_init_node(struct sbitmap *sb, unsigned int depth, int shift, 84 gfp_t flags, int node, bool round_robin, 85 bool alloc_hint) 86 { 87 unsigned int bits_per_word; 88 89 if (shift < 0) 90 shift = sbitmap_calculate_shift(depth); 91 92 bits_per_word = 1U << shift; 93 if (bits_per_word > BITS_PER_LONG) 94 return -EINVAL; 95 96 sb->shift = shift; 97 sb->depth = depth; 98 sb->map_nr = DIV_ROUND_UP(sb->depth, bits_per_word); 99 sb->round_robin = round_robin; 100 101 if (depth == 0) { 102 sb->map = NULL; 103 return 0; 104 } 105 106 if (alloc_hint) { 107 if (init_alloc_hint(sb, flags)) 108 return -ENOMEM; 109 } else { 110 sb->alloc_hint = NULL; 111 } 112 113 sb->map = kvzalloc_node(sb->map_nr * sizeof(*sb->map), flags, node); 114 if (!sb->map) { 115 free_percpu(sb->alloc_hint); 116 return -ENOMEM; 117 } 118 119 return 0; 120 } 121 EXPORT_SYMBOL_GPL(sbitmap_init_node); 122 123 void sbitmap_resize(struct sbitmap *sb, unsigned int depth) 124 { 125 unsigned int bits_per_word = 1U << sb->shift; 126 unsigned int i; 127 128 for (i = 0; i < sb->map_nr; i++) 129 sbitmap_deferred_clear(&sb->map[i]); 130 131 sb->depth = depth; 132 sb->map_nr = DIV_ROUND_UP(sb->depth, bits_per_word); 133 } 134 EXPORT_SYMBOL_GPL(sbitmap_resize); 135 136 static int __sbitmap_get_word(unsigned long *word, unsigned long depth, 137 unsigned int hint, bool wrap) 138 { 139 int nr; 140 141 /* don't wrap if starting from 0 */ 142 wrap = wrap && hint; 143 144 while (1) { 145 nr = find_next_zero_bit(word, depth, hint); 146 if (unlikely(nr >= depth)) { 147 /* 148 * We started with an offset, and we didn't reset the 149 * offset to 0 in a failure case, so start from 0 to 150 * exhaust the map. 151 */ 152 if (hint && wrap) { 153 hint = 0; 154 continue; 155 } 156 return -1; 157 } 158 159 if (!test_and_set_bit_lock(nr, word)) 160 break; 161 162 hint = nr + 1; 163 if (hint >= depth - 1) 164 hint = 0; 165 } 166 167 return nr; 168 } 169 170 static int sbitmap_find_bit_in_index(struct sbitmap *sb, int index, 171 unsigned int alloc_hint) 172 { 173 struct sbitmap_word *map = &sb->map[index]; 174 int nr; 175 176 do { 177 nr = __sbitmap_get_word(&map->word, __map_depth(sb, index), 178 alloc_hint, !sb->round_robin); 179 if (nr != -1) 180 break; 181 if (!sbitmap_deferred_clear(map)) 182 break; 183 } while (1); 184 185 return nr; 186 } 187 188 static int __sbitmap_get(struct sbitmap *sb, unsigned int alloc_hint) 189 { 190 unsigned int i, index; 191 int nr = -1; 192 193 index = SB_NR_TO_INDEX(sb, alloc_hint); 194 195 /* 196 * Unless we're doing round robin tag allocation, just use the 197 * alloc_hint to find the right word index. No point in looping 198 * twice in find_next_zero_bit() for that case. 199 */ 200 if (sb->round_robin) 201 alloc_hint = SB_NR_TO_BIT(sb, alloc_hint); 202 else 203 alloc_hint = 0; 204 205 for (i = 0; i < sb->map_nr; i++) { 206 nr = sbitmap_find_bit_in_index(sb, index, alloc_hint); 207 if (nr != -1) { 208 nr += index << sb->shift; 209 break; 210 } 211 212 /* Jump to next index. */ 213 alloc_hint = 0; 214 if (++index >= sb->map_nr) 215 index = 0; 216 } 217 218 return nr; 219 } 220 221 int sbitmap_get(struct sbitmap *sb) 222 { 223 int nr; 224 unsigned int hint, depth; 225 226 if (WARN_ON_ONCE(unlikely(!sb->alloc_hint))) 227 return -1; 228 229 depth = READ_ONCE(sb->depth); 230 hint = update_alloc_hint_before_get(sb, depth); 231 nr = __sbitmap_get(sb, hint); 232 update_alloc_hint_after_get(sb, depth, hint, nr); 233 234 return nr; 235 } 236 EXPORT_SYMBOL_GPL(sbitmap_get); 237 238 static int __sbitmap_get_shallow(struct sbitmap *sb, 239 unsigned int alloc_hint, 240 unsigned long shallow_depth) 241 { 242 unsigned int i, index; 243 int nr = -1; 244 245 index = SB_NR_TO_INDEX(sb, alloc_hint); 246 247 for (i = 0; i < sb->map_nr; i++) { 248 again: 249 nr = __sbitmap_get_word(&sb->map[index].word, 250 min_t(unsigned int, 251 __map_depth(sb, index), 252 shallow_depth), 253 SB_NR_TO_BIT(sb, alloc_hint), true); 254 if (nr != -1) { 255 nr += index << sb->shift; 256 break; 257 } 258 259 if (sbitmap_deferred_clear(&sb->map[index])) 260 goto again; 261 262 /* Jump to next index. */ 263 index++; 264 alloc_hint = index << sb->shift; 265 266 if (index >= sb->map_nr) { 267 index = 0; 268 alloc_hint = 0; 269 } 270 } 271 272 return nr; 273 } 274 275 int sbitmap_get_shallow(struct sbitmap *sb, unsigned long shallow_depth) 276 { 277 int nr; 278 unsigned int hint, depth; 279 280 if (WARN_ON_ONCE(unlikely(!sb->alloc_hint))) 281 return -1; 282 283 depth = READ_ONCE(sb->depth); 284 hint = update_alloc_hint_before_get(sb, depth); 285 nr = __sbitmap_get_shallow(sb, hint, shallow_depth); 286 update_alloc_hint_after_get(sb, depth, hint, nr); 287 288 return nr; 289 } 290 EXPORT_SYMBOL_GPL(sbitmap_get_shallow); 291 292 bool sbitmap_any_bit_set(const struct sbitmap *sb) 293 { 294 unsigned int i; 295 296 for (i = 0; i < sb->map_nr; i++) { 297 if (sb->map[i].word & ~sb->map[i].cleared) 298 return true; 299 } 300 return false; 301 } 302 EXPORT_SYMBOL_GPL(sbitmap_any_bit_set); 303 304 static unsigned int __sbitmap_weight(const struct sbitmap *sb, bool set) 305 { 306 unsigned int i, weight = 0; 307 308 for (i = 0; i < sb->map_nr; i++) { 309 const struct sbitmap_word *word = &sb->map[i]; 310 unsigned int word_depth = __map_depth(sb, i); 311 312 if (set) 313 weight += bitmap_weight(&word->word, word_depth); 314 else 315 weight += bitmap_weight(&word->cleared, word_depth); 316 } 317 return weight; 318 } 319 320 static unsigned int sbitmap_cleared(const struct sbitmap *sb) 321 { 322 return __sbitmap_weight(sb, false); 323 } 324 325 unsigned int sbitmap_weight(const struct sbitmap *sb) 326 { 327 return __sbitmap_weight(sb, true) - sbitmap_cleared(sb); 328 } 329 EXPORT_SYMBOL_GPL(sbitmap_weight); 330 331 void sbitmap_show(struct sbitmap *sb, struct seq_file *m) 332 { 333 seq_printf(m, "depth=%u\n", sb->depth); 334 seq_printf(m, "busy=%u\n", sbitmap_weight(sb)); 335 seq_printf(m, "cleared=%u\n", sbitmap_cleared(sb)); 336 seq_printf(m, "bits_per_word=%u\n", 1U << sb->shift); 337 seq_printf(m, "map_nr=%u\n", sb->map_nr); 338 } 339 EXPORT_SYMBOL_GPL(sbitmap_show); 340 341 static inline void emit_byte(struct seq_file *m, unsigned int offset, u8 byte) 342 { 343 if ((offset & 0xf) == 0) { 344 if (offset != 0) 345 seq_putc(m, '\n'); 346 seq_printf(m, "%08x:", offset); 347 } 348 if ((offset & 0x1) == 0) 349 seq_putc(m, ' '); 350 seq_printf(m, "%02x", byte); 351 } 352 353 void sbitmap_bitmap_show(struct sbitmap *sb, struct seq_file *m) 354 { 355 u8 byte = 0; 356 unsigned int byte_bits = 0; 357 unsigned int offset = 0; 358 int i; 359 360 for (i = 0; i < sb->map_nr; i++) { 361 unsigned long word = READ_ONCE(sb->map[i].word); 362 unsigned long cleared = READ_ONCE(sb->map[i].cleared); 363 unsigned int word_bits = __map_depth(sb, i); 364 365 word &= ~cleared; 366 367 while (word_bits > 0) { 368 unsigned int bits = min(8 - byte_bits, word_bits); 369 370 byte |= (word & (BIT(bits) - 1)) << byte_bits; 371 byte_bits += bits; 372 if (byte_bits == 8) { 373 emit_byte(m, offset, byte); 374 byte = 0; 375 byte_bits = 0; 376 offset++; 377 } 378 word >>= bits; 379 word_bits -= bits; 380 } 381 } 382 if (byte_bits) { 383 emit_byte(m, offset, byte); 384 offset++; 385 } 386 if (offset) 387 seq_putc(m, '\n'); 388 } 389 EXPORT_SYMBOL_GPL(sbitmap_bitmap_show); 390 391 static unsigned int sbq_calc_wake_batch(struct sbitmap_queue *sbq, 392 unsigned int depth) 393 { 394 unsigned int wake_batch; 395 unsigned int shallow_depth; 396 397 /* 398 * For each batch, we wake up one queue. We need to make sure that our 399 * batch size is small enough that the full depth of the bitmap, 400 * potentially limited by a shallow depth, is enough to wake up all of 401 * the queues. 402 * 403 * Each full word of the bitmap has bits_per_word bits, and there might 404 * be a partial word. There are depth / bits_per_word full words and 405 * depth % bits_per_word bits left over. In bitwise arithmetic: 406 * 407 * bits_per_word = 1 << shift 408 * depth / bits_per_word = depth >> shift 409 * depth % bits_per_word = depth & ((1 << shift) - 1) 410 * 411 * Each word can be limited to sbq->min_shallow_depth bits. 412 */ 413 shallow_depth = min(1U << sbq->sb.shift, sbq->min_shallow_depth); 414 depth = ((depth >> sbq->sb.shift) * shallow_depth + 415 min(depth & ((1U << sbq->sb.shift) - 1), shallow_depth)); 416 wake_batch = clamp_t(unsigned int, depth / SBQ_WAIT_QUEUES, 1, 417 SBQ_WAKE_BATCH); 418 419 return wake_batch; 420 } 421 422 int sbitmap_queue_init_node(struct sbitmap_queue *sbq, unsigned int depth, 423 int shift, bool round_robin, gfp_t flags, int node) 424 { 425 int ret; 426 int i; 427 428 ret = sbitmap_init_node(&sbq->sb, depth, shift, flags, node, 429 round_robin, true); 430 if (ret) 431 return ret; 432 433 sbq->min_shallow_depth = UINT_MAX; 434 sbq->wake_batch = sbq_calc_wake_batch(sbq, depth); 435 atomic_set(&sbq->wake_index, 0); 436 atomic_set(&sbq->ws_active, 0); 437 438 sbq->ws = kzalloc_node(SBQ_WAIT_QUEUES * sizeof(*sbq->ws), flags, node); 439 if (!sbq->ws) { 440 sbitmap_free(&sbq->sb); 441 return -ENOMEM; 442 } 443 444 for (i = 0; i < SBQ_WAIT_QUEUES; i++) { 445 init_waitqueue_head(&sbq->ws[i].wait); 446 atomic_set(&sbq->ws[i].wait_cnt, sbq->wake_batch); 447 } 448 449 return 0; 450 } 451 EXPORT_SYMBOL_GPL(sbitmap_queue_init_node); 452 453 static inline void __sbitmap_queue_update_wake_batch(struct sbitmap_queue *sbq, 454 unsigned int wake_batch) 455 { 456 int i; 457 458 if (sbq->wake_batch != wake_batch) { 459 WRITE_ONCE(sbq->wake_batch, wake_batch); 460 /* 461 * Pairs with the memory barrier in sbitmap_queue_wake_up() 462 * to ensure that the batch size is updated before the wait 463 * counts. 464 */ 465 smp_mb(); 466 for (i = 0; i < SBQ_WAIT_QUEUES; i++) 467 atomic_set(&sbq->ws[i].wait_cnt, 1); 468 } 469 } 470 471 static void sbitmap_queue_update_wake_batch(struct sbitmap_queue *sbq, 472 unsigned int depth) 473 { 474 unsigned int wake_batch; 475 476 wake_batch = sbq_calc_wake_batch(sbq, depth); 477 __sbitmap_queue_update_wake_batch(sbq, wake_batch); 478 } 479 480 void sbitmap_queue_recalculate_wake_batch(struct sbitmap_queue *sbq, 481 unsigned int users) 482 { 483 unsigned int wake_batch; 484 unsigned int min_batch; 485 unsigned int depth = (sbq->sb.depth + users - 1) / users; 486 487 min_batch = sbq->sb.depth >= (4 * SBQ_WAIT_QUEUES) ? 4 : 1; 488 489 wake_batch = clamp_val(depth / SBQ_WAIT_QUEUES, 490 min_batch, SBQ_WAKE_BATCH); 491 __sbitmap_queue_update_wake_batch(sbq, wake_batch); 492 } 493 EXPORT_SYMBOL_GPL(sbitmap_queue_recalculate_wake_batch); 494 495 void sbitmap_queue_resize(struct sbitmap_queue *sbq, unsigned int depth) 496 { 497 sbitmap_queue_update_wake_batch(sbq, depth); 498 sbitmap_resize(&sbq->sb, depth); 499 } 500 EXPORT_SYMBOL_GPL(sbitmap_queue_resize); 501 502 int __sbitmap_queue_get(struct sbitmap_queue *sbq) 503 { 504 return sbitmap_get(&sbq->sb); 505 } 506 EXPORT_SYMBOL_GPL(__sbitmap_queue_get); 507 508 unsigned long __sbitmap_queue_get_batch(struct sbitmap_queue *sbq, int nr_tags, 509 unsigned int *offset) 510 { 511 struct sbitmap *sb = &sbq->sb; 512 unsigned int hint, depth; 513 unsigned long index, nr; 514 int i; 515 516 if (unlikely(sb->round_robin)) 517 return 0; 518 519 depth = READ_ONCE(sb->depth); 520 hint = update_alloc_hint_before_get(sb, depth); 521 522 index = SB_NR_TO_INDEX(sb, hint); 523 524 for (i = 0; i < sb->map_nr; i++) { 525 struct sbitmap_word *map = &sb->map[index]; 526 unsigned long get_mask; 527 unsigned int map_depth = __map_depth(sb, index); 528 529 sbitmap_deferred_clear(map); 530 if (map->word == (1UL << (map_depth - 1)) - 1) 531 continue; 532 533 nr = find_first_zero_bit(&map->word, map_depth); 534 if (nr + nr_tags <= map_depth) { 535 atomic_long_t *ptr = (atomic_long_t *) &map->word; 536 int map_tags = min_t(int, nr_tags, map_depth); 537 unsigned long val, ret; 538 539 get_mask = ((1UL << map_tags) - 1) << nr; 540 do { 541 val = READ_ONCE(map->word); 542 ret = atomic_long_cmpxchg(ptr, val, get_mask | val); 543 } while (ret != val); 544 get_mask = (get_mask & ~ret) >> nr; 545 if (get_mask) { 546 *offset = nr + (index << sb->shift); 547 update_alloc_hint_after_get(sb, depth, hint, 548 *offset + map_tags - 1); 549 return get_mask; 550 } 551 } 552 /* Jump to next index. */ 553 if (++index >= sb->map_nr) 554 index = 0; 555 } 556 557 return 0; 558 } 559 560 int sbitmap_queue_get_shallow(struct sbitmap_queue *sbq, 561 unsigned int shallow_depth) 562 { 563 WARN_ON_ONCE(shallow_depth < sbq->min_shallow_depth); 564 565 return sbitmap_get_shallow(&sbq->sb, shallow_depth); 566 } 567 EXPORT_SYMBOL_GPL(sbitmap_queue_get_shallow); 568 569 void sbitmap_queue_min_shallow_depth(struct sbitmap_queue *sbq, 570 unsigned int min_shallow_depth) 571 { 572 sbq->min_shallow_depth = min_shallow_depth; 573 sbitmap_queue_update_wake_batch(sbq, sbq->sb.depth); 574 } 575 EXPORT_SYMBOL_GPL(sbitmap_queue_min_shallow_depth); 576 577 static struct sbq_wait_state *sbq_wake_ptr(struct sbitmap_queue *sbq) 578 { 579 int i, wake_index; 580 581 if (!atomic_read(&sbq->ws_active)) 582 return NULL; 583 584 wake_index = atomic_read(&sbq->wake_index); 585 for (i = 0; i < SBQ_WAIT_QUEUES; i++) { 586 struct sbq_wait_state *ws = &sbq->ws[wake_index]; 587 588 if (waitqueue_active(&ws->wait)) { 589 if (wake_index != atomic_read(&sbq->wake_index)) 590 atomic_set(&sbq->wake_index, wake_index); 591 return ws; 592 } 593 594 wake_index = sbq_index_inc(wake_index); 595 } 596 597 return NULL; 598 } 599 600 static bool __sbq_wake_up(struct sbitmap_queue *sbq) 601 { 602 struct sbq_wait_state *ws; 603 unsigned int wake_batch; 604 int wait_cnt; 605 606 ws = sbq_wake_ptr(sbq); 607 if (!ws) 608 return false; 609 610 wait_cnt = atomic_dec_return(&ws->wait_cnt); 611 if (wait_cnt <= 0) { 612 int ret; 613 614 wake_batch = READ_ONCE(sbq->wake_batch); 615 616 /* 617 * Pairs with the memory barrier in sbitmap_queue_resize() to 618 * ensure that we see the batch size update before the wait 619 * count is reset. 620 */ 621 smp_mb__before_atomic(); 622 623 /* 624 * For concurrent callers of this, the one that failed the 625 * atomic_cmpxhcg() race should call this function again 626 * to wakeup a new batch on a different 'ws'. 627 */ 628 ret = atomic_cmpxchg(&ws->wait_cnt, wait_cnt, wake_batch); 629 if (ret == wait_cnt) { 630 sbq_index_atomic_inc(&sbq->wake_index); 631 wake_up_nr(&ws->wait, wake_batch); 632 return false; 633 } 634 635 return true; 636 } 637 638 return false; 639 } 640 641 void sbitmap_queue_wake_up(struct sbitmap_queue *sbq) 642 { 643 while (__sbq_wake_up(sbq)) 644 ; 645 } 646 EXPORT_SYMBOL_GPL(sbitmap_queue_wake_up); 647 648 static inline void sbitmap_update_cpu_hint(struct sbitmap *sb, int cpu, int tag) 649 { 650 if (likely(!sb->round_robin && tag < sb->depth)) 651 data_race(*per_cpu_ptr(sb->alloc_hint, cpu) = tag); 652 } 653 654 void sbitmap_queue_clear_batch(struct sbitmap_queue *sbq, int offset, 655 int *tags, int nr_tags) 656 { 657 struct sbitmap *sb = &sbq->sb; 658 unsigned long *addr = NULL; 659 unsigned long mask = 0; 660 int i; 661 662 smp_mb__before_atomic(); 663 for (i = 0; i < nr_tags; i++) { 664 const int tag = tags[i] - offset; 665 unsigned long *this_addr; 666 667 /* since we're clearing a batch, skip the deferred map */ 668 this_addr = &sb->map[SB_NR_TO_INDEX(sb, tag)].word; 669 if (!addr) { 670 addr = this_addr; 671 } else if (addr != this_addr) { 672 atomic_long_andnot(mask, (atomic_long_t *) addr); 673 mask = 0; 674 addr = this_addr; 675 } 676 mask |= (1UL << SB_NR_TO_BIT(sb, tag)); 677 } 678 679 if (mask) 680 atomic_long_andnot(mask, (atomic_long_t *) addr); 681 682 smp_mb__after_atomic(); 683 sbitmap_queue_wake_up(sbq); 684 sbitmap_update_cpu_hint(&sbq->sb, raw_smp_processor_id(), 685 tags[nr_tags - 1] - offset); 686 } 687 688 void sbitmap_queue_clear(struct sbitmap_queue *sbq, unsigned int nr, 689 unsigned int cpu) 690 { 691 /* 692 * Once the clear bit is set, the bit may be allocated out. 693 * 694 * Orders READ/WRITE on the associated instance(such as request 695 * of blk_mq) by this bit for avoiding race with re-allocation, 696 * and its pair is the memory barrier implied in __sbitmap_get_word. 697 * 698 * One invariant is that the clear bit has to be zero when the bit 699 * is in use. 700 */ 701 smp_mb__before_atomic(); 702 sbitmap_deferred_clear_bit(&sbq->sb, nr); 703 704 /* 705 * Pairs with the memory barrier in set_current_state() to ensure the 706 * proper ordering of clear_bit_unlock()/waitqueue_active() in the waker 707 * and test_and_set_bit_lock()/prepare_to_wait()/finish_wait() in the 708 * waiter. See the comment on waitqueue_active(). 709 */ 710 smp_mb__after_atomic(); 711 sbitmap_queue_wake_up(sbq); 712 sbitmap_update_cpu_hint(&sbq->sb, cpu, nr); 713 } 714 EXPORT_SYMBOL_GPL(sbitmap_queue_clear); 715 716 void sbitmap_queue_wake_all(struct sbitmap_queue *sbq) 717 { 718 int i, wake_index; 719 720 /* 721 * Pairs with the memory barrier in set_current_state() like in 722 * sbitmap_queue_wake_up(). 723 */ 724 smp_mb(); 725 wake_index = atomic_read(&sbq->wake_index); 726 for (i = 0; i < SBQ_WAIT_QUEUES; i++) { 727 struct sbq_wait_state *ws = &sbq->ws[wake_index]; 728 729 if (waitqueue_active(&ws->wait)) 730 wake_up(&ws->wait); 731 732 wake_index = sbq_index_inc(wake_index); 733 } 734 } 735 EXPORT_SYMBOL_GPL(sbitmap_queue_wake_all); 736 737 void sbitmap_queue_show(struct sbitmap_queue *sbq, struct seq_file *m) 738 { 739 bool first; 740 int i; 741 742 sbitmap_show(&sbq->sb, m); 743 744 seq_puts(m, "alloc_hint={"); 745 first = true; 746 for_each_possible_cpu(i) { 747 if (!first) 748 seq_puts(m, ", "); 749 first = false; 750 seq_printf(m, "%u", *per_cpu_ptr(sbq->sb.alloc_hint, i)); 751 } 752 seq_puts(m, "}\n"); 753 754 seq_printf(m, "wake_batch=%u\n", sbq->wake_batch); 755 seq_printf(m, "wake_index=%d\n", atomic_read(&sbq->wake_index)); 756 seq_printf(m, "ws_active=%d\n", atomic_read(&sbq->ws_active)); 757 758 seq_puts(m, "ws={\n"); 759 for (i = 0; i < SBQ_WAIT_QUEUES; i++) { 760 struct sbq_wait_state *ws = &sbq->ws[i]; 761 762 seq_printf(m, "\t{.wait_cnt=%d, .wait=%s},\n", 763 atomic_read(&ws->wait_cnt), 764 waitqueue_active(&ws->wait) ? "active" : "inactive"); 765 } 766 seq_puts(m, "}\n"); 767 768 seq_printf(m, "round_robin=%d\n", sbq->sb.round_robin); 769 seq_printf(m, "min_shallow_depth=%u\n", sbq->min_shallow_depth); 770 } 771 EXPORT_SYMBOL_GPL(sbitmap_queue_show); 772 773 void sbitmap_add_wait_queue(struct sbitmap_queue *sbq, 774 struct sbq_wait_state *ws, 775 struct sbq_wait *sbq_wait) 776 { 777 if (!sbq_wait->sbq) { 778 sbq_wait->sbq = sbq; 779 atomic_inc(&sbq->ws_active); 780 add_wait_queue(&ws->wait, &sbq_wait->wait); 781 } 782 } 783 EXPORT_SYMBOL_GPL(sbitmap_add_wait_queue); 784 785 void sbitmap_del_wait_queue(struct sbq_wait *sbq_wait) 786 { 787 list_del_init(&sbq_wait->wait.entry); 788 if (sbq_wait->sbq) { 789 atomic_dec(&sbq_wait->sbq->ws_active); 790 sbq_wait->sbq = NULL; 791 } 792 } 793 EXPORT_SYMBOL_GPL(sbitmap_del_wait_queue); 794 795 void sbitmap_prepare_to_wait(struct sbitmap_queue *sbq, 796 struct sbq_wait_state *ws, 797 struct sbq_wait *sbq_wait, int state) 798 { 799 if (!sbq_wait->sbq) { 800 atomic_inc(&sbq->ws_active); 801 sbq_wait->sbq = sbq; 802 } 803 prepare_to_wait_exclusive(&ws->wait, &sbq_wait->wait, state); 804 } 805 EXPORT_SYMBOL_GPL(sbitmap_prepare_to_wait); 806 807 void sbitmap_finish_wait(struct sbitmap_queue *sbq, struct sbq_wait_state *ws, 808 struct sbq_wait *sbq_wait) 809 { 810 finish_wait(&ws->wait, &sbq_wait->wait); 811 if (sbq_wait->sbq) { 812 atomic_dec(&sbq->ws_active); 813 sbq_wait->sbq = NULL; 814 } 815 } 816 EXPORT_SYMBOL_GPL(sbitmap_finish_wait); 817