1 /* 2 * Copyright (C) 2016 Facebook 3 * Copyright (C) 2013-2014 Jens Axboe 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public 7 * License v2 as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 12 * General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program. If not, see <https://www.gnu.org/licenses/>. 16 */ 17 18 #include <linux/sched.h> 19 #include <linux/random.h> 20 #include <linux/sbitmap.h> 21 #include <linux/seq_file.h> 22 23 /* 24 * See if we have deferred clears that we can batch move 25 */ 26 static inline bool sbitmap_deferred_clear(struct sbitmap *sb, int index) 27 { 28 unsigned long mask, val; 29 bool ret = false; 30 unsigned long flags; 31 32 spin_lock_irqsave(&sb->map[index].swap_lock, flags); 33 34 if (!sb->map[index].cleared) 35 goto out_unlock; 36 37 /* 38 * First get a stable cleared mask, setting the old mask to 0. 39 */ 40 do { 41 mask = sb->map[index].cleared; 42 } while (cmpxchg(&sb->map[index].cleared, mask, 0) != mask); 43 44 /* 45 * Now clear the masked bits in our free word 46 */ 47 do { 48 val = sb->map[index].word; 49 } while (cmpxchg(&sb->map[index].word, val, val & ~mask) != val); 50 51 ret = true; 52 out_unlock: 53 spin_unlock_irqrestore(&sb->map[index].swap_lock, flags); 54 return ret; 55 } 56 57 int sbitmap_init_node(struct sbitmap *sb, unsigned int depth, int shift, 58 gfp_t flags, int node) 59 { 60 unsigned int bits_per_word; 61 unsigned int i; 62 63 if (shift < 0) { 64 shift = ilog2(BITS_PER_LONG); 65 /* 66 * If the bitmap is small, shrink the number of bits per word so 67 * we spread over a few cachelines, at least. If less than 4 68 * bits, just forget about it, it's not going to work optimally 69 * anyway. 70 */ 71 if (depth >= 4) { 72 while ((4U << shift) > depth) 73 shift--; 74 } 75 } 76 bits_per_word = 1U << shift; 77 if (bits_per_word > BITS_PER_LONG) 78 return -EINVAL; 79 80 sb->shift = shift; 81 sb->depth = depth; 82 sb->map_nr = DIV_ROUND_UP(sb->depth, bits_per_word); 83 84 if (depth == 0) { 85 sb->map = NULL; 86 return 0; 87 } 88 89 sb->map = kcalloc_node(sb->map_nr, sizeof(*sb->map), flags, node); 90 if (!sb->map) 91 return -ENOMEM; 92 93 for (i = 0; i < sb->map_nr; i++) { 94 sb->map[i].depth = min(depth, bits_per_word); 95 depth -= sb->map[i].depth; 96 spin_lock_init(&sb->map[i].swap_lock); 97 } 98 return 0; 99 } 100 EXPORT_SYMBOL_GPL(sbitmap_init_node); 101 102 void sbitmap_resize(struct sbitmap *sb, unsigned int depth) 103 { 104 unsigned int bits_per_word = 1U << sb->shift; 105 unsigned int i; 106 107 for (i = 0; i < sb->map_nr; i++) 108 sbitmap_deferred_clear(sb, i); 109 110 sb->depth = depth; 111 sb->map_nr = DIV_ROUND_UP(sb->depth, bits_per_word); 112 113 for (i = 0; i < sb->map_nr; i++) { 114 sb->map[i].depth = min(depth, bits_per_word); 115 depth -= sb->map[i].depth; 116 } 117 } 118 EXPORT_SYMBOL_GPL(sbitmap_resize); 119 120 static int __sbitmap_get_word(unsigned long *word, unsigned long depth, 121 unsigned int hint, bool wrap) 122 { 123 unsigned int orig_hint = hint; 124 int nr; 125 126 while (1) { 127 nr = find_next_zero_bit(word, depth, hint); 128 if (unlikely(nr >= depth)) { 129 /* 130 * We started with an offset, and we didn't reset the 131 * offset to 0 in a failure case, so start from 0 to 132 * exhaust the map. 133 */ 134 if (orig_hint && hint && wrap) { 135 hint = orig_hint = 0; 136 continue; 137 } 138 return -1; 139 } 140 141 if (!test_and_set_bit_lock(nr, word)) 142 break; 143 144 hint = nr + 1; 145 if (hint >= depth - 1) 146 hint = 0; 147 } 148 149 return nr; 150 } 151 152 static int sbitmap_find_bit_in_index(struct sbitmap *sb, int index, 153 unsigned int alloc_hint, bool round_robin) 154 { 155 int nr; 156 157 do { 158 nr = __sbitmap_get_word(&sb->map[index].word, 159 sb->map[index].depth, alloc_hint, 160 !round_robin); 161 if (nr != -1) 162 break; 163 if (!sbitmap_deferred_clear(sb, index)) 164 break; 165 } while (1); 166 167 return nr; 168 } 169 170 int sbitmap_get(struct sbitmap *sb, unsigned int alloc_hint, bool round_robin) 171 { 172 unsigned int i, index; 173 int nr = -1; 174 175 index = SB_NR_TO_INDEX(sb, alloc_hint); 176 177 /* 178 * Unless we're doing round robin tag allocation, just use the 179 * alloc_hint to find the right word index. No point in looping 180 * twice in find_next_zero_bit() for that case. 181 */ 182 if (round_robin) 183 alloc_hint = SB_NR_TO_BIT(sb, alloc_hint); 184 else 185 alloc_hint = 0; 186 187 for (i = 0; i < sb->map_nr; i++) { 188 nr = sbitmap_find_bit_in_index(sb, index, alloc_hint, 189 round_robin); 190 if (nr != -1) { 191 nr += index << sb->shift; 192 break; 193 } 194 195 /* Jump to next index. */ 196 alloc_hint = 0; 197 if (++index >= sb->map_nr) 198 index = 0; 199 } 200 201 return nr; 202 } 203 EXPORT_SYMBOL_GPL(sbitmap_get); 204 205 int sbitmap_get_shallow(struct sbitmap *sb, unsigned int alloc_hint, 206 unsigned long shallow_depth) 207 { 208 unsigned int i, index; 209 int nr = -1; 210 211 index = SB_NR_TO_INDEX(sb, alloc_hint); 212 213 for (i = 0; i < sb->map_nr; i++) { 214 again: 215 nr = __sbitmap_get_word(&sb->map[index].word, 216 min(sb->map[index].depth, shallow_depth), 217 SB_NR_TO_BIT(sb, alloc_hint), true); 218 if (nr != -1) { 219 nr += index << sb->shift; 220 break; 221 } 222 223 if (sbitmap_deferred_clear(sb, index)) 224 goto again; 225 226 /* Jump to next index. */ 227 index++; 228 alloc_hint = index << sb->shift; 229 230 if (index >= sb->map_nr) { 231 index = 0; 232 alloc_hint = 0; 233 } 234 } 235 236 return nr; 237 } 238 EXPORT_SYMBOL_GPL(sbitmap_get_shallow); 239 240 bool sbitmap_any_bit_set(const struct sbitmap *sb) 241 { 242 unsigned int i; 243 244 for (i = 0; i < sb->map_nr; i++) { 245 if (sb->map[i].word & ~sb->map[i].cleared) 246 return true; 247 } 248 return false; 249 } 250 EXPORT_SYMBOL_GPL(sbitmap_any_bit_set); 251 252 bool sbitmap_any_bit_clear(const struct sbitmap *sb) 253 { 254 unsigned int i; 255 256 for (i = 0; i < sb->map_nr; i++) { 257 const struct sbitmap_word *word = &sb->map[i]; 258 unsigned long mask = word->word & ~word->cleared; 259 unsigned long ret; 260 261 ret = find_first_zero_bit(&mask, word->depth); 262 if (ret < word->depth) 263 return true; 264 } 265 return false; 266 } 267 EXPORT_SYMBOL_GPL(sbitmap_any_bit_clear); 268 269 static unsigned int __sbitmap_weight(const struct sbitmap *sb, bool set) 270 { 271 unsigned int i, weight = 0; 272 273 for (i = 0; i < sb->map_nr; i++) { 274 const struct sbitmap_word *word = &sb->map[i]; 275 276 if (set) 277 weight += bitmap_weight(&word->word, word->depth); 278 else 279 weight += bitmap_weight(&word->cleared, word->depth); 280 } 281 return weight; 282 } 283 284 static unsigned int sbitmap_weight(const struct sbitmap *sb) 285 { 286 return __sbitmap_weight(sb, true); 287 } 288 289 static unsigned int sbitmap_cleared(const struct sbitmap *sb) 290 { 291 return __sbitmap_weight(sb, false); 292 } 293 294 void sbitmap_show(struct sbitmap *sb, struct seq_file *m) 295 { 296 seq_printf(m, "depth=%u\n", sb->depth); 297 seq_printf(m, "busy=%u\n", sbitmap_weight(sb) - sbitmap_cleared(sb)); 298 seq_printf(m, "cleared=%u\n", sbitmap_cleared(sb)); 299 seq_printf(m, "bits_per_word=%u\n", 1U << sb->shift); 300 seq_printf(m, "map_nr=%u\n", sb->map_nr); 301 } 302 EXPORT_SYMBOL_GPL(sbitmap_show); 303 304 static inline void emit_byte(struct seq_file *m, unsigned int offset, u8 byte) 305 { 306 if ((offset & 0xf) == 0) { 307 if (offset != 0) 308 seq_putc(m, '\n'); 309 seq_printf(m, "%08x:", offset); 310 } 311 if ((offset & 0x1) == 0) 312 seq_putc(m, ' '); 313 seq_printf(m, "%02x", byte); 314 } 315 316 void sbitmap_bitmap_show(struct sbitmap *sb, struct seq_file *m) 317 { 318 u8 byte = 0; 319 unsigned int byte_bits = 0; 320 unsigned int offset = 0; 321 int i; 322 323 for (i = 0; i < sb->map_nr; i++) { 324 unsigned long word = READ_ONCE(sb->map[i].word); 325 unsigned int word_bits = READ_ONCE(sb->map[i].depth); 326 327 while (word_bits > 0) { 328 unsigned int bits = min(8 - byte_bits, word_bits); 329 330 byte |= (word & (BIT(bits) - 1)) << byte_bits; 331 byte_bits += bits; 332 if (byte_bits == 8) { 333 emit_byte(m, offset, byte); 334 byte = 0; 335 byte_bits = 0; 336 offset++; 337 } 338 word >>= bits; 339 word_bits -= bits; 340 } 341 } 342 if (byte_bits) { 343 emit_byte(m, offset, byte); 344 offset++; 345 } 346 if (offset) 347 seq_putc(m, '\n'); 348 } 349 EXPORT_SYMBOL_GPL(sbitmap_bitmap_show); 350 351 static unsigned int sbq_calc_wake_batch(struct sbitmap_queue *sbq, 352 unsigned int depth) 353 { 354 unsigned int wake_batch; 355 unsigned int shallow_depth; 356 357 /* 358 * For each batch, we wake up one queue. We need to make sure that our 359 * batch size is small enough that the full depth of the bitmap, 360 * potentially limited by a shallow depth, is enough to wake up all of 361 * the queues. 362 * 363 * Each full word of the bitmap has bits_per_word bits, and there might 364 * be a partial word. There are depth / bits_per_word full words and 365 * depth % bits_per_word bits left over. In bitwise arithmetic: 366 * 367 * bits_per_word = 1 << shift 368 * depth / bits_per_word = depth >> shift 369 * depth % bits_per_word = depth & ((1 << shift) - 1) 370 * 371 * Each word can be limited to sbq->min_shallow_depth bits. 372 */ 373 shallow_depth = min(1U << sbq->sb.shift, sbq->min_shallow_depth); 374 depth = ((depth >> sbq->sb.shift) * shallow_depth + 375 min(depth & ((1U << sbq->sb.shift) - 1), shallow_depth)); 376 wake_batch = clamp_t(unsigned int, depth / SBQ_WAIT_QUEUES, 1, 377 SBQ_WAKE_BATCH); 378 379 return wake_batch; 380 } 381 382 int sbitmap_queue_init_node(struct sbitmap_queue *sbq, unsigned int depth, 383 int shift, bool round_robin, gfp_t flags, int node) 384 { 385 int ret; 386 int i; 387 388 ret = sbitmap_init_node(&sbq->sb, depth, shift, flags, node); 389 if (ret) 390 return ret; 391 392 sbq->alloc_hint = alloc_percpu_gfp(unsigned int, flags); 393 if (!sbq->alloc_hint) { 394 sbitmap_free(&sbq->sb); 395 return -ENOMEM; 396 } 397 398 if (depth && !round_robin) { 399 for_each_possible_cpu(i) 400 *per_cpu_ptr(sbq->alloc_hint, i) = prandom_u32() % depth; 401 } 402 403 sbq->min_shallow_depth = UINT_MAX; 404 sbq->wake_batch = sbq_calc_wake_batch(sbq, depth); 405 atomic_set(&sbq->wake_index, 0); 406 atomic_set(&sbq->ws_active, 0); 407 408 sbq->ws = kzalloc_node(SBQ_WAIT_QUEUES * sizeof(*sbq->ws), flags, node); 409 if (!sbq->ws) { 410 free_percpu(sbq->alloc_hint); 411 sbitmap_free(&sbq->sb); 412 return -ENOMEM; 413 } 414 415 for (i = 0; i < SBQ_WAIT_QUEUES; i++) { 416 init_waitqueue_head(&sbq->ws[i].wait); 417 atomic_set(&sbq->ws[i].wait_cnt, sbq->wake_batch); 418 } 419 420 sbq->round_robin = round_robin; 421 return 0; 422 } 423 EXPORT_SYMBOL_GPL(sbitmap_queue_init_node); 424 425 static void sbitmap_queue_update_wake_batch(struct sbitmap_queue *sbq, 426 unsigned int depth) 427 { 428 unsigned int wake_batch = sbq_calc_wake_batch(sbq, depth); 429 int i; 430 431 if (sbq->wake_batch != wake_batch) { 432 WRITE_ONCE(sbq->wake_batch, wake_batch); 433 /* 434 * Pairs with the memory barrier in sbitmap_queue_wake_up() 435 * to ensure that the batch size is updated before the wait 436 * counts. 437 */ 438 smp_mb(); 439 for (i = 0; i < SBQ_WAIT_QUEUES; i++) 440 atomic_set(&sbq->ws[i].wait_cnt, 1); 441 } 442 } 443 444 void sbitmap_queue_resize(struct sbitmap_queue *sbq, unsigned int depth) 445 { 446 sbitmap_queue_update_wake_batch(sbq, depth); 447 sbitmap_resize(&sbq->sb, depth); 448 } 449 EXPORT_SYMBOL_GPL(sbitmap_queue_resize); 450 451 int __sbitmap_queue_get(struct sbitmap_queue *sbq) 452 { 453 unsigned int hint, depth; 454 int nr; 455 456 hint = this_cpu_read(*sbq->alloc_hint); 457 depth = READ_ONCE(sbq->sb.depth); 458 if (unlikely(hint >= depth)) { 459 hint = depth ? prandom_u32() % depth : 0; 460 this_cpu_write(*sbq->alloc_hint, hint); 461 } 462 nr = sbitmap_get(&sbq->sb, hint, sbq->round_robin); 463 464 if (nr == -1) { 465 /* If the map is full, a hint won't do us much good. */ 466 this_cpu_write(*sbq->alloc_hint, 0); 467 } else if (nr == hint || unlikely(sbq->round_robin)) { 468 /* Only update the hint if we used it. */ 469 hint = nr + 1; 470 if (hint >= depth - 1) 471 hint = 0; 472 this_cpu_write(*sbq->alloc_hint, hint); 473 } 474 475 return nr; 476 } 477 EXPORT_SYMBOL_GPL(__sbitmap_queue_get); 478 479 int __sbitmap_queue_get_shallow(struct sbitmap_queue *sbq, 480 unsigned int shallow_depth) 481 { 482 unsigned int hint, depth; 483 int nr; 484 485 WARN_ON_ONCE(shallow_depth < sbq->min_shallow_depth); 486 487 hint = this_cpu_read(*sbq->alloc_hint); 488 depth = READ_ONCE(sbq->sb.depth); 489 if (unlikely(hint >= depth)) { 490 hint = depth ? prandom_u32() % depth : 0; 491 this_cpu_write(*sbq->alloc_hint, hint); 492 } 493 nr = sbitmap_get_shallow(&sbq->sb, hint, shallow_depth); 494 495 if (nr == -1) { 496 /* If the map is full, a hint won't do us much good. */ 497 this_cpu_write(*sbq->alloc_hint, 0); 498 } else if (nr == hint || unlikely(sbq->round_robin)) { 499 /* Only update the hint if we used it. */ 500 hint = nr + 1; 501 if (hint >= depth - 1) 502 hint = 0; 503 this_cpu_write(*sbq->alloc_hint, hint); 504 } 505 506 return nr; 507 } 508 EXPORT_SYMBOL_GPL(__sbitmap_queue_get_shallow); 509 510 void sbitmap_queue_min_shallow_depth(struct sbitmap_queue *sbq, 511 unsigned int min_shallow_depth) 512 { 513 sbq->min_shallow_depth = min_shallow_depth; 514 sbitmap_queue_update_wake_batch(sbq, sbq->sb.depth); 515 } 516 EXPORT_SYMBOL_GPL(sbitmap_queue_min_shallow_depth); 517 518 static struct sbq_wait_state *sbq_wake_ptr(struct sbitmap_queue *sbq) 519 { 520 int i, wake_index; 521 522 if (!atomic_read(&sbq->ws_active)) 523 return NULL; 524 525 wake_index = atomic_read(&sbq->wake_index); 526 for (i = 0; i < SBQ_WAIT_QUEUES; i++) { 527 struct sbq_wait_state *ws = &sbq->ws[wake_index]; 528 529 if (waitqueue_active(&ws->wait)) { 530 int o = atomic_read(&sbq->wake_index); 531 532 if (wake_index != o) 533 atomic_cmpxchg(&sbq->wake_index, o, wake_index); 534 return ws; 535 } 536 537 wake_index = sbq_index_inc(wake_index); 538 } 539 540 return NULL; 541 } 542 543 static bool __sbq_wake_up(struct sbitmap_queue *sbq) 544 { 545 struct sbq_wait_state *ws; 546 unsigned int wake_batch; 547 int wait_cnt; 548 549 ws = sbq_wake_ptr(sbq); 550 if (!ws) 551 return false; 552 553 wait_cnt = atomic_dec_return(&ws->wait_cnt); 554 if (wait_cnt <= 0) { 555 int ret; 556 557 wake_batch = READ_ONCE(sbq->wake_batch); 558 559 /* 560 * Pairs with the memory barrier in sbitmap_queue_resize() to 561 * ensure that we see the batch size update before the wait 562 * count is reset. 563 */ 564 smp_mb__before_atomic(); 565 566 /* 567 * For concurrent callers of this, the one that failed the 568 * atomic_cmpxhcg() race should call this function again 569 * to wakeup a new batch on a different 'ws'. 570 */ 571 ret = atomic_cmpxchg(&ws->wait_cnt, wait_cnt, wake_batch); 572 if (ret == wait_cnt) { 573 sbq_index_atomic_inc(&sbq->wake_index); 574 wake_up_nr(&ws->wait, wake_batch); 575 return false; 576 } 577 578 return true; 579 } 580 581 return false; 582 } 583 584 void sbitmap_queue_wake_up(struct sbitmap_queue *sbq) 585 { 586 while (__sbq_wake_up(sbq)) 587 ; 588 } 589 EXPORT_SYMBOL_GPL(sbitmap_queue_wake_up); 590 591 void sbitmap_queue_clear(struct sbitmap_queue *sbq, unsigned int nr, 592 unsigned int cpu) 593 { 594 /* 595 * Once the clear bit is set, the bit may be allocated out. 596 * 597 * Orders READ/WRITE on the asssociated instance(such as request 598 * of blk_mq) by this bit for avoiding race with re-allocation, 599 * and its pair is the memory barrier implied in __sbitmap_get_word. 600 * 601 * One invariant is that the clear bit has to be zero when the bit 602 * is in use. 603 */ 604 smp_mb__before_atomic(); 605 sbitmap_deferred_clear_bit(&sbq->sb, nr); 606 607 /* 608 * Pairs with the memory barrier in set_current_state() to ensure the 609 * proper ordering of clear_bit_unlock()/waitqueue_active() in the waker 610 * and test_and_set_bit_lock()/prepare_to_wait()/finish_wait() in the 611 * waiter. See the comment on waitqueue_active(). 612 */ 613 smp_mb__after_atomic(); 614 sbitmap_queue_wake_up(sbq); 615 616 if (likely(!sbq->round_robin && nr < sbq->sb.depth)) 617 *per_cpu_ptr(sbq->alloc_hint, cpu) = nr; 618 } 619 EXPORT_SYMBOL_GPL(sbitmap_queue_clear); 620 621 void sbitmap_queue_wake_all(struct sbitmap_queue *sbq) 622 { 623 int i, wake_index; 624 625 /* 626 * Pairs with the memory barrier in set_current_state() like in 627 * sbitmap_queue_wake_up(). 628 */ 629 smp_mb(); 630 wake_index = atomic_read(&sbq->wake_index); 631 for (i = 0; i < SBQ_WAIT_QUEUES; i++) { 632 struct sbq_wait_state *ws = &sbq->ws[wake_index]; 633 634 if (waitqueue_active(&ws->wait)) 635 wake_up(&ws->wait); 636 637 wake_index = sbq_index_inc(wake_index); 638 } 639 } 640 EXPORT_SYMBOL_GPL(sbitmap_queue_wake_all); 641 642 void sbitmap_queue_show(struct sbitmap_queue *sbq, struct seq_file *m) 643 { 644 bool first; 645 int i; 646 647 sbitmap_show(&sbq->sb, m); 648 649 seq_puts(m, "alloc_hint={"); 650 first = true; 651 for_each_possible_cpu(i) { 652 if (!first) 653 seq_puts(m, ", "); 654 first = false; 655 seq_printf(m, "%u", *per_cpu_ptr(sbq->alloc_hint, i)); 656 } 657 seq_puts(m, "}\n"); 658 659 seq_printf(m, "wake_batch=%u\n", sbq->wake_batch); 660 seq_printf(m, "wake_index=%d\n", atomic_read(&sbq->wake_index)); 661 seq_printf(m, "ws_active=%d\n", atomic_read(&sbq->ws_active)); 662 663 seq_puts(m, "ws={\n"); 664 for (i = 0; i < SBQ_WAIT_QUEUES; i++) { 665 struct sbq_wait_state *ws = &sbq->ws[i]; 666 667 seq_printf(m, "\t{.wait_cnt=%d, .wait=%s},\n", 668 atomic_read(&ws->wait_cnt), 669 waitqueue_active(&ws->wait) ? "active" : "inactive"); 670 } 671 seq_puts(m, "}\n"); 672 673 seq_printf(m, "round_robin=%d\n", sbq->round_robin); 674 seq_printf(m, "min_shallow_depth=%u\n", sbq->min_shallow_depth); 675 } 676 EXPORT_SYMBOL_GPL(sbitmap_queue_show); 677 678 void sbitmap_add_wait_queue(struct sbitmap_queue *sbq, 679 struct sbq_wait_state *ws, 680 struct sbq_wait *sbq_wait) 681 { 682 if (!sbq_wait->sbq) { 683 sbq_wait->sbq = sbq; 684 atomic_inc(&sbq->ws_active); 685 } 686 add_wait_queue(&ws->wait, &sbq_wait->wait); 687 } 688 EXPORT_SYMBOL_GPL(sbitmap_add_wait_queue); 689 690 void sbitmap_del_wait_queue(struct sbq_wait *sbq_wait) 691 { 692 list_del_init(&sbq_wait->wait.entry); 693 if (sbq_wait->sbq) { 694 atomic_dec(&sbq_wait->sbq->ws_active); 695 sbq_wait->sbq = NULL; 696 } 697 } 698 EXPORT_SYMBOL_GPL(sbitmap_del_wait_queue); 699 700 void sbitmap_prepare_to_wait(struct sbitmap_queue *sbq, 701 struct sbq_wait_state *ws, 702 struct sbq_wait *sbq_wait, int state) 703 { 704 if (!sbq_wait->sbq) { 705 atomic_inc(&sbq->ws_active); 706 sbq_wait->sbq = sbq; 707 } 708 prepare_to_wait_exclusive(&ws->wait, &sbq_wait->wait, state); 709 } 710 EXPORT_SYMBOL_GPL(sbitmap_prepare_to_wait); 711 712 void sbitmap_finish_wait(struct sbitmap_queue *sbq, struct sbq_wait_state *ws, 713 struct sbq_wait *sbq_wait) 714 { 715 finish_wait(&ws->wait, &sbq_wait->wait); 716 if (sbq_wait->sbq) { 717 atomic_dec(&sbq->ws_active); 718 sbq_wait->sbq = NULL; 719 } 720 } 721 EXPORT_SYMBOL_GPL(sbitmap_finish_wait); 722