xref: /openbmc/linux/lib/sbitmap.c (revision 93696d8f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2016 Facebook
4  * Copyright (C) 2013-2014 Jens Axboe
5  */
6 
7 #include <linux/sched.h>
8 #include <linux/random.h>
9 #include <linux/sbitmap.h>
10 #include <linux/seq_file.h>
11 
12 static int init_alloc_hint(struct sbitmap *sb, gfp_t flags)
13 {
14 	unsigned depth = sb->depth;
15 
16 	sb->alloc_hint = alloc_percpu_gfp(unsigned int, flags);
17 	if (!sb->alloc_hint)
18 		return -ENOMEM;
19 
20 	if (depth && !sb->round_robin) {
21 		int i;
22 
23 		for_each_possible_cpu(i)
24 			*per_cpu_ptr(sb->alloc_hint, i) = get_random_u32_below(depth);
25 	}
26 	return 0;
27 }
28 
29 static inline unsigned update_alloc_hint_before_get(struct sbitmap *sb,
30 						    unsigned int depth)
31 {
32 	unsigned hint;
33 
34 	hint = this_cpu_read(*sb->alloc_hint);
35 	if (unlikely(hint >= depth)) {
36 		hint = depth ? get_random_u32_below(depth) : 0;
37 		this_cpu_write(*sb->alloc_hint, hint);
38 	}
39 
40 	return hint;
41 }
42 
43 static inline void update_alloc_hint_after_get(struct sbitmap *sb,
44 					       unsigned int depth,
45 					       unsigned int hint,
46 					       unsigned int nr)
47 {
48 	if (nr == -1) {
49 		/* If the map is full, a hint won't do us much good. */
50 		this_cpu_write(*sb->alloc_hint, 0);
51 	} else if (nr == hint || unlikely(sb->round_robin)) {
52 		/* Only update the hint if we used it. */
53 		hint = nr + 1;
54 		if (hint >= depth - 1)
55 			hint = 0;
56 		this_cpu_write(*sb->alloc_hint, hint);
57 	}
58 }
59 
60 /*
61  * See if we have deferred clears that we can batch move
62  */
63 static inline bool sbitmap_deferred_clear(struct sbitmap_word *map,
64 		unsigned int depth, unsigned int alloc_hint, bool wrap)
65 {
66 	unsigned long mask, word_mask;
67 
68 	guard(spinlock_irqsave)(&map->swap_lock);
69 
70 	if (!map->cleared) {
71 		if (depth == 0)
72 			return false;
73 
74 		word_mask = (~0UL) >> (BITS_PER_LONG - depth);
75 		/*
76 		 * The current behavior is to always retry after moving
77 		 * ->cleared to word, and we change it to retry in case
78 		 * of any free bits. To avoid an infinite loop, we need
79 		 * to take wrap & alloc_hint into account, otherwise a
80 		 * soft lockup may occur.
81 		 */
82 		if (!wrap && alloc_hint)
83 			word_mask &= ~((1UL << alloc_hint) - 1);
84 
85 		return (READ_ONCE(map->word) & word_mask) != word_mask;
86 	}
87 
88 	/*
89 	 * First get a stable cleared mask, setting the old mask to 0.
90 	 */
91 	mask = xchg(&map->cleared, 0);
92 
93 	/*
94 	 * Now clear the masked bits in our free word
95 	 */
96 	atomic_long_andnot(mask, (atomic_long_t *)&map->word);
97 	BUILD_BUG_ON(sizeof(atomic_long_t) != sizeof(map->word));
98 	return true;
99 }
100 
101 int sbitmap_init_node(struct sbitmap *sb, unsigned int depth, int shift,
102 		      gfp_t flags, int node, bool round_robin,
103 		      bool alloc_hint)
104 {
105 	unsigned int bits_per_word;
106 	int i;
107 
108 	if (shift < 0)
109 		shift = sbitmap_calculate_shift(depth);
110 
111 	bits_per_word = 1U << shift;
112 	if (bits_per_word > BITS_PER_LONG)
113 		return -EINVAL;
114 
115 	sb->shift = shift;
116 	sb->depth = depth;
117 	sb->map_nr = DIV_ROUND_UP(sb->depth, bits_per_word);
118 	sb->round_robin = round_robin;
119 
120 	if (depth == 0) {
121 		sb->map = NULL;
122 		return 0;
123 	}
124 
125 	if (alloc_hint) {
126 		if (init_alloc_hint(sb, flags))
127 			return -ENOMEM;
128 	} else {
129 		sb->alloc_hint = NULL;
130 	}
131 
132 	sb->map = kvzalloc_node(sb->map_nr * sizeof(*sb->map), flags, node);
133 	if (!sb->map) {
134 		free_percpu(sb->alloc_hint);
135 		return -ENOMEM;
136 	}
137 
138 	for (i = 0; i < sb->map_nr; i++)
139 		spin_lock_init(&sb->map[i].swap_lock);
140 
141 	return 0;
142 }
143 EXPORT_SYMBOL_GPL(sbitmap_init_node);
144 
145 void sbitmap_resize(struct sbitmap *sb, unsigned int depth)
146 {
147 	unsigned int bits_per_word = 1U << sb->shift;
148 	unsigned int i;
149 
150 	for (i = 0; i < sb->map_nr; i++)
151 		sbitmap_deferred_clear(&sb->map[i], 0, 0, 0);
152 
153 	sb->depth = depth;
154 	sb->map_nr = DIV_ROUND_UP(sb->depth, bits_per_word);
155 }
156 EXPORT_SYMBOL_GPL(sbitmap_resize);
157 
158 static int __sbitmap_get_word(unsigned long *word, unsigned long depth,
159 			      unsigned int hint, bool wrap)
160 {
161 	int nr;
162 
163 	/* don't wrap if starting from 0 */
164 	wrap = wrap && hint;
165 
166 	while (1) {
167 		nr = find_next_zero_bit(word, depth, hint);
168 		if (unlikely(nr >= depth)) {
169 			/*
170 			 * We started with an offset, and we didn't reset the
171 			 * offset to 0 in a failure case, so start from 0 to
172 			 * exhaust the map.
173 			 */
174 			if (hint && wrap) {
175 				hint = 0;
176 				continue;
177 			}
178 			return -1;
179 		}
180 
181 		if (!test_and_set_bit_lock(nr, word))
182 			break;
183 
184 		hint = nr + 1;
185 		if (hint >= depth - 1)
186 			hint = 0;
187 	}
188 
189 	return nr;
190 }
191 
192 static int sbitmap_find_bit_in_word(struct sbitmap_word *map,
193 				    unsigned int depth,
194 				    unsigned int alloc_hint,
195 				    bool wrap)
196 {
197 	int nr;
198 
199 	do {
200 		nr = __sbitmap_get_word(&map->word, depth,
201 					alloc_hint, wrap);
202 		if (nr != -1)
203 			break;
204 		if (!sbitmap_deferred_clear(map, depth, alloc_hint, wrap))
205 			break;
206 	} while (1);
207 
208 	return nr;
209 }
210 
211 static int sbitmap_find_bit(struct sbitmap *sb,
212 			    unsigned int depth,
213 			    unsigned int index,
214 			    unsigned int alloc_hint,
215 			    bool wrap)
216 {
217 	unsigned int i;
218 	int nr = -1;
219 
220 	for (i = 0; i < sb->map_nr; i++) {
221 		nr = sbitmap_find_bit_in_word(&sb->map[index],
222 					      min_t(unsigned int,
223 						    __map_depth(sb, index),
224 						    depth),
225 					      alloc_hint, wrap);
226 
227 		if (nr != -1) {
228 			nr += index << sb->shift;
229 			break;
230 		}
231 
232 		/* Jump to next index. */
233 		alloc_hint = 0;
234 		if (++index >= sb->map_nr)
235 			index = 0;
236 	}
237 
238 	return nr;
239 }
240 
241 static int __sbitmap_get(struct sbitmap *sb, unsigned int alloc_hint)
242 {
243 	unsigned int index;
244 
245 	index = SB_NR_TO_INDEX(sb, alloc_hint);
246 
247 	/*
248 	 * Unless we're doing round robin tag allocation, just use the
249 	 * alloc_hint to find the right word index. No point in looping
250 	 * twice in find_next_zero_bit() for that case.
251 	 */
252 	if (sb->round_robin)
253 		alloc_hint = SB_NR_TO_BIT(sb, alloc_hint);
254 	else
255 		alloc_hint = 0;
256 
257 	return sbitmap_find_bit(sb, UINT_MAX, index, alloc_hint,
258 				!sb->round_robin);
259 }
260 
261 int sbitmap_get(struct sbitmap *sb)
262 {
263 	int nr;
264 	unsigned int hint, depth;
265 
266 	if (WARN_ON_ONCE(unlikely(!sb->alloc_hint)))
267 		return -1;
268 
269 	depth = READ_ONCE(sb->depth);
270 	hint = update_alloc_hint_before_get(sb, depth);
271 	nr = __sbitmap_get(sb, hint);
272 	update_alloc_hint_after_get(sb, depth, hint, nr);
273 
274 	return nr;
275 }
276 EXPORT_SYMBOL_GPL(sbitmap_get);
277 
278 static int __sbitmap_get_shallow(struct sbitmap *sb,
279 				 unsigned int alloc_hint,
280 				 unsigned long shallow_depth)
281 {
282 	unsigned int index;
283 
284 	index = SB_NR_TO_INDEX(sb, alloc_hint);
285 	alloc_hint = SB_NR_TO_BIT(sb, alloc_hint);
286 
287 	return sbitmap_find_bit(sb, shallow_depth, index, alloc_hint, true);
288 }
289 
290 int sbitmap_get_shallow(struct sbitmap *sb, unsigned long shallow_depth)
291 {
292 	int nr;
293 	unsigned int hint, depth;
294 
295 	if (WARN_ON_ONCE(unlikely(!sb->alloc_hint)))
296 		return -1;
297 
298 	depth = READ_ONCE(sb->depth);
299 	hint = update_alloc_hint_before_get(sb, depth);
300 	nr = __sbitmap_get_shallow(sb, hint, shallow_depth);
301 	update_alloc_hint_after_get(sb, depth, hint, nr);
302 
303 	return nr;
304 }
305 EXPORT_SYMBOL_GPL(sbitmap_get_shallow);
306 
307 bool sbitmap_any_bit_set(const struct sbitmap *sb)
308 {
309 	unsigned int i;
310 
311 	for (i = 0; i < sb->map_nr; i++) {
312 		if (sb->map[i].word & ~sb->map[i].cleared)
313 			return true;
314 	}
315 	return false;
316 }
317 EXPORT_SYMBOL_GPL(sbitmap_any_bit_set);
318 
319 static unsigned int __sbitmap_weight(const struct sbitmap *sb, bool set)
320 {
321 	unsigned int i, weight = 0;
322 
323 	for (i = 0; i < sb->map_nr; i++) {
324 		const struct sbitmap_word *word = &sb->map[i];
325 		unsigned int word_depth = __map_depth(sb, i);
326 
327 		if (set)
328 			weight += bitmap_weight(&word->word, word_depth);
329 		else
330 			weight += bitmap_weight(&word->cleared, word_depth);
331 	}
332 	return weight;
333 }
334 
335 static unsigned int sbitmap_cleared(const struct sbitmap *sb)
336 {
337 	return __sbitmap_weight(sb, false);
338 }
339 
340 unsigned int sbitmap_weight(const struct sbitmap *sb)
341 {
342 	return __sbitmap_weight(sb, true) - sbitmap_cleared(sb);
343 }
344 EXPORT_SYMBOL_GPL(sbitmap_weight);
345 
346 void sbitmap_show(struct sbitmap *sb, struct seq_file *m)
347 {
348 	seq_printf(m, "depth=%u\n", sb->depth);
349 	seq_printf(m, "busy=%u\n", sbitmap_weight(sb));
350 	seq_printf(m, "cleared=%u\n", sbitmap_cleared(sb));
351 	seq_printf(m, "bits_per_word=%u\n", 1U << sb->shift);
352 	seq_printf(m, "map_nr=%u\n", sb->map_nr);
353 }
354 EXPORT_SYMBOL_GPL(sbitmap_show);
355 
356 static inline void emit_byte(struct seq_file *m, unsigned int offset, u8 byte)
357 {
358 	if ((offset & 0xf) == 0) {
359 		if (offset != 0)
360 			seq_putc(m, '\n');
361 		seq_printf(m, "%08x:", offset);
362 	}
363 	if ((offset & 0x1) == 0)
364 		seq_putc(m, ' ');
365 	seq_printf(m, "%02x", byte);
366 }
367 
368 void sbitmap_bitmap_show(struct sbitmap *sb, struct seq_file *m)
369 {
370 	u8 byte = 0;
371 	unsigned int byte_bits = 0;
372 	unsigned int offset = 0;
373 	int i;
374 
375 	for (i = 0; i < sb->map_nr; i++) {
376 		unsigned long word = READ_ONCE(sb->map[i].word);
377 		unsigned long cleared = READ_ONCE(sb->map[i].cleared);
378 		unsigned int word_bits = __map_depth(sb, i);
379 
380 		word &= ~cleared;
381 
382 		while (word_bits > 0) {
383 			unsigned int bits = min(8 - byte_bits, word_bits);
384 
385 			byte |= (word & (BIT(bits) - 1)) << byte_bits;
386 			byte_bits += bits;
387 			if (byte_bits == 8) {
388 				emit_byte(m, offset, byte);
389 				byte = 0;
390 				byte_bits = 0;
391 				offset++;
392 			}
393 			word >>= bits;
394 			word_bits -= bits;
395 		}
396 	}
397 	if (byte_bits) {
398 		emit_byte(m, offset, byte);
399 		offset++;
400 	}
401 	if (offset)
402 		seq_putc(m, '\n');
403 }
404 EXPORT_SYMBOL_GPL(sbitmap_bitmap_show);
405 
406 static unsigned int sbq_calc_wake_batch(struct sbitmap_queue *sbq,
407 					unsigned int depth)
408 {
409 	unsigned int wake_batch;
410 	unsigned int shallow_depth;
411 
412 	/*
413 	 * For each batch, we wake up one queue. We need to make sure that our
414 	 * batch size is small enough that the full depth of the bitmap,
415 	 * potentially limited by a shallow depth, is enough to wake up all of
416 	 * the queues.
417 	 *
418 	 * Each full word of the bitmap has bits_per_word bits, and there might
419 	 * be a partial word. There are depth / bits_per_word full words and
420 	 * depth % bits_per_word bits left over. In bitwise arithmetic:
421 	 *
422 	 * bits_per_word = 1 << shift
423 	 * depth / bits_per_word = depth >> shift
424 	 * depth % bits_per_word = depth & ((1 << shift) - 1)
425 	 *
426 	 * Each word can be limited to sbq->min_shallow_depth bits.
427 	 */
428 	shallow_depth = min(1U << sbq->sb.shift, sbq->min_shallow_depth);
429 	depth = ((depth >> sbq->sb.shift) * shallow_depth +
430 		 min(depth & ((1U << sbq->sb.shift) - 1), shallow_depth));
431 	wake_batch = clamp_t(unsigned int, depth / SBQ_WAIT_QUEUES, 1,
432 			     SBQ_WAKE_BATCH);
433 
434 	return wake_batch;
435 }
436 
437 int sbitmap_queue_init_node(struct sbitmap_queue *sbq, unsigned int depth,
438 			    int shift, bool round_robin, gfp_t flags, int node)
439 {
440 	int ret;
441 	int i;
442 
443 	ret = sbitmap_init_node(&sbq->sb, depth, shift, flags, node,
444 				round_robin, true);
445 	if (ret)
446 		return ret;
447 
448 	sbq->min_shallow_depth = UINT_MAX;
449 	sbq->wake_batch = sbq_calc_wake_batch(sbq, depth);
450 	atomic_set(&sbq->wake_index, 0);
451 	atomic_set(&sbq->ws_active, 0);
452 	atomic_set(&sbq->completion_cnt, 0);
453 	atomic_set(&sbq->wakeup_cnt, 0);
454 
455 	sbq->ws = kzalloc_node(SBQ_WAIT_QUEUES * sizeof(*sbq->ws), flags, node);
456 	if (!sbq->ws) {
457 		sbitmap_free(&sbq->sb);
458 		return -ENOMEM;
459 	}
460 
461 	for (i = 0; i < SBQ_WAIT_QUEUES; i++)
462 		init_waitqueue_head(&sbq->ws[i].wait);
463 
464 	return 0;
465 }
466 EXPORT_SYMBOL_GPL(sbitmap_queue_init_node);
467 
468 static void sbitmap_queue_update_wake_batch(struct sbitmap_queue *sbq,
469 					    unsigned int depth)
470 {
471 	unsigned int wake_batch;
472 
473 	wake_batch = sbq_calc_wake_batch(sbq, depth);
474 	if (sbq->wake_batch != wake_batch)
475 		WRITE_ONCE(sbq->wake_batch, wake_batch);
476 }
477 
478 void sbitmap_queue_recalculate_wake_batch(struct sbitmap_queue *sbq,
479 					    unsigned int users)
480 {
481 	unsigned int wake_batch;
482 	unsigned int depth = (sbq->sb.depth + users - 1) / users;
483 
484 	wake_batch = clamp_val(depth / SBQ_WAIT_QUEUES,
485 			1, SBQ_WAKE_BATCH);
486 
487 	WRITE_ONCE(sbq->wake_batch, wake_batch);
488 }
489 EXPORT_SYMBOL_GPL(sbitmap_queue_recalculate_wake_batch);
490 
491 void sbitmap_queue_resize(struct sbitmap_queue *sbq, unsigned int depth)
492 {
493 	sbitmap_queue_update_wake_batch(sbq, depth);
494 	sbitmap_resize(&sbq->sb, depth);
495 }
496 EXPORT_SYMBOL_GPL(sbitmap_queue_resize);
497 
498 int __sbitmap_queue_get(struct sbitmap_queue *sbq)
499 {
500 	return sbitmap_get(&sbq->sb);
501 }
502 EXPORT_SYMBOL_GPL(__sbitmap_queue_get);
503 
504 unsigned long __sbitmap_queue_get_batch(struct sbitmap_queue *sbq, int nr_tags,
505 					unsigned int *offset)
506 {
507 	struct sbitmap *sb = &sbq->sb;
508 	unsigned int hint, depth;
509 	unsigned long index, nr;
510 	int i;
511 
512 	if (unlikely(sb->round_robin))
513 		return 0;
514 
515 	depth = READ_ONCE(sb->depth);
516 	hint = update_alloc_hint_before_get(sb, depth);
517 
518 	index = SB_NR_TO_INDEX(sb, hint);
519 
520 	for (i = 0; i < sb->map_nr; i++) {
521 		struct sbitmap_word *map = &sb->map[index];
522 		unsigned long get_mask;
523 		unsigned int map_depth = __map_depth(sb, index);
524 		unsigned long val;
525 
526 		sbitmap_deferred_clear(map, 0, 0, 0);
527 		val = READ_ONCE(map->word);
528 		if (val == (1UL << (map_depth - 1)) - 1)
529 			goto next;
530 
531 		nr = find_first_zero_bit(&val, map_depth);
532 		if (nr + nr_tags <= map_depth) {
533 			atomic_long_t *ptr = (atomic_long_t *) &map->word;
534 
535 			get_mask = ((1UL << nr_tags) - 1) << nr;
536 			while (!atomic_long_try_cmpxchg(ptr, &val,
537 							  get_mask | val))
538 				;
539 			get_mask = (get_mask & ~val) >> nr;
540 			if (get_mask) {
541 				*offset = nr + (index << sb->shift);
542 				update_alloc_hint_after_get(sb, depth, hint,
543 							*offset + nr_tags - 1);
544 				return get_mask;
545 			}
546 		}
547 next:
548 		/* Jump to next index. */
549 		if (++index >= sb->map_nr)
550 			index = 0;
551 	}
552 
553 	return 0;
554 }
555 
556 int sbitmap_queue_get_shallow(struct sbitmap_queue *sbq,
557 			      unsigned int shallow_depth)
558 {
559 	WARN_ON_ONCE(shallow_depth < sbq->min_shallow_depth);
560 
561 	return sbitmap_get_shallow(&sbq->sb, shallow_depth);
562 }
563 EXPORT_SYMBOL_GPL(sbitmap_queue_get_shallow);
564 
565 void sbitmap_queue_min_shallow_depth(struct sbitmap_queue *sbq,
566 				     unsigned int min_shallow_depth)
567 {
568 	sbq->min_shallow_depth = min_shallow_depth;
569 	sbitmap_queue_update_wake_batch(sbq, sbq->sb.depth);
570 }
571 EXPORT_SYMBOL_GPL(sbitmap_queue_min_shallow_depth);
572 
573 static void __sbitmap_queue_wake_up(struct sbitmap_queue *sbq, int nr)
574 {
575 	int i, wake_index, woken;
576 
577 	if (!atomic_read(&sbq->ws_active))
578 		return;
579 
580 	wake_index = atomic_read(&sbq->wake_index);
581 	for (i = 0; i < SBQ_WAIT_QUEUES; i++) {
582 		struct sbq_wait_state *ws = &sbq->ws[wake_index];
583 
584 		/*
585 		 * Advance the index before checking the current queue.
586 		 * It improves fairness, by ensuring the queue doesn't
587 		 * need to be fully emptied before trying to wake up
588 		 * from the next one.
589 		 */
590 		wake_index = sbq_index_inc(wake_index);
591 
592 		if (waitqueue_active(&ws->wait)) {
593 			woken = wake_up_nr(&ws->wait, nr);
594 			if (woken == nr)
595 				break;
596 			nr -= woken;
597 		}
598 	}
599 
600 	if (wake_index != atomic_read(&sbq->wake_index))
601 		atomic_set(&sbq->wake_index, wake_index);
602 }
603 
604 void sbitmap_queue_wake_up(struct sbitmap_queue *sbq, int nr)
605 {
606 	unsigned int wake_batch = READ_ONCE(sbq->wake_batch);
607 	unsigned int wakeups;
608 
609 	if (!atomic_read(&sbq->ws_active))
610 		return;
611 
612 	atomic_add(nr, &sbq->completion_cnt);
613 	wakeups = atomic_read(&sbq->wakeup_cnt);
614 
615 	do {
616 		if (atomic_read(&sbq->completion_cnt) - wakeups < wake_batch)
617 			return;
618 	} while (!atomic_try_cmpxchg(&sbq->wakeup_cnt,
619 				     &wakeups, wakeups + wake_batch));
620 
621 	__sbitmap_queue_wake_up(sbq, wake_batch);
622 }
623 EXPORT_SYMBOL_GPL(sbitmap_queue_wake_up);
624 
625 static inline void sbitmap_update_cpu_hint(struct sbitmap *sb, int cpu, int tag)
626 {
627 	if (likely(!sb->round_robin && tag < sb->depth))
628 		data_race(*per_cpu_ptr(sb->alloc_hint, cpu) = tag);
629 }
630 
631 void sbitmap_queue_clear_batch(struct sbitmap_queue *sbq, int offset,
632 				int *tags, int nr_tags)
633 {
634 	struct sbitmap *sb = &sbq->sb;
635 	unsigned long *addr = NULL;
636 	unsigned long mask = 0;
637 	int i;
638 
639 	smp_mb__before_atomic();
640 	for (i = 0; i < nr_tags; i++) {
641 		const int tag = tags[i] - offset;
642 		unsigned long *this_addr;
643 
644 		/* since we're clearing a batch, skip the deferred map */
645 		this_addr = &sb->map[SB_NR_TO_INDEX(sb, tag)].word;
646 		if (!addr) {
647 			addr = this_addr;
648 		} else if (addr != this_addr) {
649 			atomic_long_andnot(mask, (atomic_long_t *) addr);
650 			mask = 0;
651 			addr = this_addr;
652 		}
653 		mask |= (1UL << SB_NR_TO_BIT(sb, tag));
654 	}
655 
656 	if (mask)
657 		atomic_long_andnot(mask, (atomic_long_t *) addr);
658 
659 	smp_mb__after_atomic();
660 	sbitmap_queue_wake_up(sbq, nr_tags);
661 	sbitmap_update_cpu_hint(&sbq->sb, raw_smp_processor_id(),
662 					tags[nr_tags - 1] - offset);
663 }
664 
665 void sbitmap_queue_clear(struct sbitmap_queue *sbq, unsigned int nr,
666 			 unsigned int cpu)
667 {
668 	/*
669 	 * Once the clear bit is set, the bit may be allocated out.
670 	 *
671 	 * Orders READ/WRITE on the associated instance(such as request
672 	 * of blk_mq) by this bit for avoiding race with re-allocation,
673 	 * and its pair is the memory barrier implied in __sbitmap_get_word.
674 	 *
675 	 * One invariant is that the clear bit has to be zero when the bit
676 	 * is in use.
677 	 */
678 	smp_mb__before_atomic();
679 	sbitmap_deferred_clear_bit(&sbq->sb, nr);
680 
681 	/*
682 	 * Pairs with the memory barrier in set_current_state() to ensure the
683 	 * proper ordering of clear_bit_unlock()/waitqueue_active() in the waker
684 	 * and test_and_set_bit_lock()/prepare_to_wait()/finish_wait() in the
685 	 * waiter. See the comment on waitqueue_active().
686 	 */
687 	smp_mb__after_atomic();
688 	sbitmap_queue_wake_up(sbq, 1);
689 	sbitmap_update_cpu_hint(&sbq->sb, cpu, nr);
690 }
691 EXPORT_SYMBOL_GPL(sbitmap_queue_clear);
692 
693 void sbitmap_queue_wake_all(struct sbitmap_queue *sbq)
694 {
695 	int i, wake_index;
696 
697 	/*
698 	 * Pairs with the memory barrier in set_current_state() like in
699 	 * sbitmap_queue_wake_up().
700 	 */
701 	smp_mb();
702 	wake_index = atomic_read(&sbq->wake_index);
703 	for (i = 0; i < SBQ_WAIT_QUEUES; i++) {
704 		struct sbq_wait_state *ws = &sbq->ws[wake_index];
705 
706 		if (waitqueue_active(&ws->wait))
707 			wake_up(&ws->wait);
708 
709 		wake_index = sbq_index_inc(wake_index);
710 	}
711 }
712 EXPORT_SYMBOL_GPL(sbitmap_queue_wake_all);
713 
714 void sbitmap_queue_show(struct sbitmap_queue *sbq, struct seq_file *m)
715 {
716 	bool first;
717 	int i;
718 
719 	sbitmap_show(&sbq->sb, m);
720 
721 	seq_puts(m, "alloc_hint={");
722 	first = true;
723 	for_each_possible_cpu(i) {
724 		if (!first)
725 			seq_puts(m, ", ");
726 		first = false;
727 		seq_printf(m, "%u", *per_cpu_ptr(sbq->sb.alloc_hint, i));
728 	}
729 	seq_puts(m, "}\n");
730 
731 	seq_printf(m, "wake_batch=%u\n", sbq->wake_batch);
732 	seq_printf(m, "wake_index=%d\n", atomic_read(&sbq->wake_index));
733 	seq_printf(m, "ws_active=%d\n", atomic_read(&sbq->ws_active));
734 
735 	seq_puts(m, "ws={\n");
736 	for (i = 0; i < SBQ_WAIT_QUEUES; i++) {
737 		struct sbq_wait_state *ws = &sbq->ws[i];
738 		seq_printf(m, "\t{.wait=%s},\n",
739 			   waitqueue_active(&ws->wait) ? "active" : "inactive");
740 	}
741 	seq_puts(m, "}\n");
742 
743 	seq_printf(m, "round_robin=%d\n", sbq->sb.round_robin);
744 	seq_printf(m, "min_shallow_depth=%u\n", sbq->min_shallow_depth);
745 }
746 EXPORT_SYMBOL_GPL(sbitmap_queue_show);
747 
748 void sbitmap_add_wait_queue(struct sbitmap_queue *sbq,
749 			    struct sbq_wait_state *ws,
750 			    struct sbq_wait *sbq_wait)
751 {
752 	if (!sbq_wait->sbq) {
753 		sbq_wait->sbq = sbq;
754 		atomic_inc(&sbq->ws_active);
755 		add_wait_queue(&ws->wait, &sbq_wait->wait);
756 	}
757 }
758 EXPORT_SYMBOL_GPL(sbitmap_add_wait_queue);
759 
760 void sbitmap_del_wait_queue(struct sbq_wait *sbq_wait)
761 {
762 	list_del_init(&sbq_wait->wait.entry);
763 	if (sbq_wait->sbq) {
764 		atomic_dec(&sbq_wait->sbq->ws_active);
765 		sbq_wait->sbq = NULL;
766 	}
767 }
768 EXPORT_SYMBOL_GPL(sbitmap_del_wait_queue);
769 
770 void sbitmap_prepare_to_wait(struct sbitmap_queue *sbq,
771 			     struct sbq_wait_state *ws,
772 			     struct sbq_wait *sbq_wait, int state)
773 {
774 	if (!sbq_wait->sbq) {
775 		atomic_inc(&sbq->ws_active);
776 		sbq_wait->sbq = sbq;
777 	}
778 	prepare_to_wait_exclusive(&ws->wait, &sbq_wait->wait, state);
779 }
780 EXPORT_SYMBOL_GPL(sbitmap_prepare_to_wait);
781 
782 void sbitmap_finish_wait(struct sbitmap_queue *sbq, struct sbq_wait_state *ws,
783 			 struct sbq_wait *sbq_wait)
784 {
785 	finish_wait(&ws->wait, &sbq_wait->wait);
786 	if (sbq_wait->sbq) {
787 		atomic_dec(&sbq->ws_active);
788 		sbq_wait->sbq = NULL;
789 	}
790 }
791 EXPORT_SYMBOL_GPL(sbitmap_finish_wait);
792