xref: /openbmc/linux/lib/sbitmap.c (revision 87fcfa7b7fe6bf819033fe827a27f710e38639b5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2016 Facebook
4  * Copyright (C) 2013-2014 Jens Axboe
5  */
6 
7 #include <linux/sched.h>
8 #include <linux/random.h>
9 #include <linux/sbitmap.h>
10 #include <linux/seq_file.h>
11 
12 /*
13  * See if we have deferred clears that we can batch move
14  */
15 static inline bool sbitmap_deferred_clear(struct sbitmap *sb, int index)
16 {
17 	unsigned long mask, val;
18 	bool ret = false;
19 	unsigned long flags;
20 
21 	spin_lock_irqsave(&sb->map[index].swap_lock, flags);
22 
23 	if (!sb->map[index].cleared)
24 		goto out_unlock;
25 
26 	/*
27 	 * First get a stable cleared mask, setting the old mask to 0.
28 	 */
29 	mask = xchg(&sb->map[index].cleared, 0);
30 
31 	/*
32 	 * Now clear the masked bits in our free word
33 	 */
34 	do {
35 		val = sb->map[index].word;
36 	} while (cmpxchg(&sb->map[index].word, val, val & ~mask) != val);
37 
38 	ret = true;
39 out_unlock:
40 	spin_unlock_irqrestore(&sb->map[index].swap_lock, flags);
41 	return ret;
42 }
43 
44 int sbitmap_init_node(struct sbitmap *sb, unsigned int depth, int shift,
45 		      gfp_t flags, int node)
46 {
47 	unsigned int bits_per_word;
48 	unsigned int i;
49 
50 	if (shift < 0) {
51 		shift = ilog2(BITS_PER_LONG);
52 		/*
53 		 * If the bitmap is small, shrink the number of bits per word so
54 		 * we spread over a few cachelines, at least. If less than 4
55 		 * bits, just forget about it, it's not going to work optimally
56 		 * anyway.
57 		 */
58 		if (depth >= 4) {
59 			while ((4U << shift) > depth)
60 				shift--;
61 		}
62 	}
63 	bits_per_word = 1U << shift;
64 	if (bits_per_word > BITS_PER_LONG)
65 		return -EINVAL;
66 
67 	sb->shift = shift;
68 	sb->depth = depth;
69 	sb->map_nr = DIV_ROUND_UP(sb->depth, bits_per_word);
70 
71 	if (depth == 0) {
72 		sb->map = NULL;
73 		return 0;
74 	}
75 
76 	sb->map = kcalloc_node(sb->map_nr, sizeof(*sb->map), flags, node);
77 	if (!sb->map)
78 		return -ENOMEM;
79 
80 	for (i = 0; i < sb->map_nr; i++) {
81 		sb->map[i].depth = min(depth, bits_per_word);
82 		depth -= sb->map[i].depth;
83 		spin_lock_init(&sb->map[i].swap_lock);
84 	}
85 	return 0;
86 }
87 EXPORT_SYMBOL_GPL(sbitmap_init_node);
88 
89 void sbitmap_resize(struct sbitmap *sb, unsigned int depth)
90 {
91 	unsigned int bits_per_word = 1U << sb->shift;
92 	unsigned int i;
93 
94 	for (i = 0; i < sb->map_nr; i++)
95 		sbitmap_deferred_clear(sb, i);
96 
97 	sb->depth = depth;
98 	sb->map_nr = DIV_ROUND_UP(sb->depth, bits_per_word);
99 
100 	for (i = 0; i < sb->map_nr; i++) {
101 		sb->map[i].depth = min(depth, bits_per_word);
102 		depth -= sb->map[i].depth;
103 	}
104 }
105 EXPORT_SYMBOL_GPL(sbitmap_resize);
106 
107 static int __sbitmap_get_word(unsigned long *word, unsigned long depth,
108 			      unsigned int hint, bool wrap)
109 {
110 	unsigned int orig_hint = hint;
111 	int nr;
112 
113 	while (1) {
114 		nr = find_next_zero_bit(word, depth, hint);
115 		if (unlikely(nr >= depth)) {
116 			/*
117 			 * We started with an offset, and we didn't reset the
118 			 * offset to 0 in a failure case, so start from 0 to
119 			 * exhaust the map.
120 			 */
121 			if (orig_hint && hint && wrap) {
122 				hint = orig_hint = 0;
123 				continue;
124 			}
125 			return -1;
126 		}
127 
128 		if (!test_and_set_bit_lock(nr, word))
129 			break;
130 
131 		hint = nr + 1;
132 		if (hint >= depth - 1)
133 			hint = 0;
134 	}
135 
136 	return nr;
137 }
138 
139 static int sbitmap_find_bit_in_index(struct sbitmap *sb, int index,
140 				     unsigned int alloc_hint, bool round_robin)
141 {
142 	int nr;
143 
144 	do {
145 		nr = __sbitmap_get_word(&sb->map[index].word,
146 					sb->map[index].depth, alloc_hint,
147 					!round_robin);
148 		if (nr != -1)
149 			break;
150 		if (!sbitmap_deferred_clear(sb, index))
151 			break;
152 	} while (1);
153 
154 	return nr;
155 }
156 
157 int sbitmap_get(struct sbitmap *sb, unsigned int alloc_hint, bool round_robin)
158 {
159 	unsigned int i, index;
160 	int nr = -1;
161 
162 	index = SB_NR_TO_INDEX(sb, alloc_hint);
163 
164 	/*
165 	 * Unless we're doing round robin tag allocation, just use the
166 	 * alloc_hint to find the right word index. No point in looping
167 	 * twice in find_next_zero_bit() for that case.
168 	 */
169 	if (round_robin)
170 		alloc_hint = SB_NR_TO_BIT(sb, alloc_hint);
171 	else
172 		alloc_hint = 0;
173 
174 	for (i = 0; i < sb->map_nr; i++) {
175 		nr = sbitmap_find_bit_in_index(sb, index, alloc_hint,
176 						round_robin);
177 		if (nr != -1) {
178 			nr += index << sb->shift;
179 			break;
180 		}
181 
182 		/* Jump to next index. */
183 		alloc_hint = 0;
184 		if (++index >= sb->map_nr)
185 			index = 0;
186 	}
187 
188 	return nr;
189 }
190 EXPORT_SYMBOL_GPL(sbitmap_get);
191 
192 int sbitmap_get_shallow(struct sbitmap *sb, unsigned int alloc_hint,
193 			unsigned long shallow_depth)
194 {
195 	unsigned int i, index;
196 	int nr = -1;
197 
198 	index = SB_NR_TO_INDEX(sb, alloc_hint);
199 
200 	for (i = 0; i < sb->map_nr; i++) {
201 again:
202 		nr = __sbitmap_get_word(&sb->map[index].word,
203 					min(sb->map[index].depth, shallow_depth),
204 					SB_NR_TO_BIT(sb, alloc_hint), true);
205 		if (nr != -1) {
206 			nr += index << sb->shift;
207 			break;
208 		}
209 
210 		if (sbitmap_deferred_clear(sb, index))
211 			goto again;
212 
213 		/* Jump to next index. */
214 		index++;
215 		alloc_hint = index << sb->shift;
216 
217 		if (index >= sb->map_nr) {
218 			index = 0;
219 			alloc_hint = 0;
220 		}
221 	}
222 
223 	return nr;
224 }
225 EXPORT_SYMBOL_GPL(sbitmap_get_shallow);
226 
227 bool sbitmap_any_bit_set(const struct sbitmap *sb)
228 {
229 	unsigned int i;
230 
231 	for (i = 0; i < sb->map_nr; i++) {
232 		if (sb->map[i].word & ~sb->map[i].cleared)
233 			return true;
234 	}
235 	return false;
236 }
237 EXPORT_SYMBOL_GPL(sbitmap_any_bit_set);
238 
239 static unsigned int __sbitmap_weight(const struct sbitmap *sb, bool set)
240 {
241 	unsigned int i, weight = 0;
242 
243 	for (i = 0; i < sb->map_nr; i++) {
244 		const struct sbitmap_word *word = &sb->map[i];
245 
246 		if (set)
247 			weight += bitmap_weight(&word->word, word->depth);
248 		else
249 			weight += bitmap_weight(&word->cleared, word->depth);
250 	}
251 	return weight;
252 }
253 
254 static unsigned int sbitmap_weight(const struct sbitmap *sb)
255 {
256 	return __sbitmap_weight(sb, true);
257 }
258 
259 static unsigned int sbitmap_cleared(const struct sbitmap *sb)
260 {
261 	return __sbitmap_weight(sb, false);
262 }
263 
264 void sbitmap_show(struct sbitmap *sb, struct seq_file *m)
265 {
266 	seq_printf(m, "depth=%u\n", sb->depth);
267 	seq_printf(m, "busy=%u\n", sbitmap_weight(sb) - sbitmap_cleared(sb));
268 	seq_printf(m, "cleared=%u\n", sbitmap_cleared(sb));
269 	seq_printf(m, "bits_per_word=%u\n", 1U << sb->shift);
270 	seq_printf(m, "map_nr=%u\n", sb->map_nr);
271 }
272 EXPORT_SYMBOL_GPL(sbitmap_show);
273 
274 static inline void emit_byte(struct seq_file *m, unsigned int offset, u8 byte)
275 {
276 	if ((offset & 0xf) == 0) {
277 		if (offset != 0)
278 			seq_putc(m, '\n');
279 		seq_printf(m, "%08x:", offset);
280 	}
281 	if ((offset & 0x1) == 0)
282 		seq_putc(m, ' ');
283 	seq_printf(m, "%02x", byte);
284 }
285 
286 void sbitmap_bitmap_show(struct sbitmap *sb, struct seq_file *m)
287 {
288 	u8 byte = 0;
289 	unsigned int byte_bits = 0;
290 	unsigned int offset = 0;
291 	int i;
292 
293 	for (i = 0; i < sb->map_nr; i++) {
294 		unsigned long word = READ_ONCE(sb->map[i].word);
295 		unsigned int word_bits = READ_ONCE(sb->map[i].depth);
296 
297 		while (word_bits > 0) {
298 			unsigned int bits = min(8 - byte_bits, word_bits);
299 
300 			byte |= (word & (BIT(bits) - 1)) << byte_bits;
301 			byte_bits += bits;
302 			if (byte_bits == 8) {
303 				emit_byte(m, offset, byte);
304 				byte = 0;
305 				byte_bits = 0;
306 				offset++;
307 			}
308 			word >>= bits;
309 			word_bits -= bits;
310 		}
311 	}
312 	if (byte_bits) {
313 		emit_byte(m, offset, byte);
314 		offset++;
315 	}
316 	if (offset)
317 		seq_putc(m, '\n');
318 }
319 EXPORT_SYMBOL_GPL(sbitmap_bitmap_show);
320 
321 static unsigned int sbq_calc_wake_batch(struct sbitmap_queue *sbq,
322 					unsigned int depth)
323 {
324 	unsigned int wake_batch;
325 	unsigned int shallow_depth;
326 
327 	/*
328 	 * For each batch, we wake up one queue. We need to make sure that our
329 	 * batch size is small enough that the full depth of the bitmap,
330 	 * potentially limited by a shallow depth, is enough to wake up all of
331 	 * the queues.
332 	 *
333 	 * Each full word of the bitmap has bits_per_word bits, and there might
334 	 * be a partial word. There are depth / bits_per_word full words and
335 	 * depth % bits_per_word bits left over. In bitwise arithmetic:
336 	 *
337 	 * bits_per_word = 1 << shift
338 	 * depth / bits_per_word = depth >> shift
339 	 * depth % bits_per_word = depth & ((1 << shift) - 1)
340 	 *
341 	 * Each word can be limited to sbq->min_shallow_depth bits.
342 	 */
343 	shallow_depth = min(1U << sbq->sb.shift, sbq->min_shallow_depth);
344 	depth = ((depth >> sbq->sb.shift) * shallow_depth +
345 		 min(depth & ((1U << sbq->sb.shift) - 1), shallow_depth));
346 	wake_batch = clamp_t(unsigned int, depth / SBQ_WAIT_QUEUES, 1,
347 			     SBQ_WAKE_BATCH);
348 
349 	return wake_batch;
350 }
351 
352 int sbitmap_queue_init_node(struct sbitmap_queue *sbq, unsigned int depth,
353 			    int shift, bool round_robin, gfp_t flags, int node)
354 {
355 	int ret;
356 	int i;
357 
358 	ret = sbitmap_init_node(&sbq->sb, depth, shift, flags, node);
359 	if (ret)
360 		return ret;
361 
362 	sbq->alloc_hint = alloc_percpu_gfp(unsigned int, flags);
363 	if (!sbq->alloc_hint) {
364 		sbitmap_free(&sbq->sb);
365 		return -ENOMEM;
366 	}
367 
368 	if (depth && !round_robin) {
369 		for_each_possible_cpu(i)
370 			*per_cpu_ptr(sbq->alloc_hint, i) = prandom_u32() % depth;
371 	}
372 
373 	sbq->min_shallow_depth = UINT_MAX;
374 	sbq->wake_batch = sbq_calc_wake_batch(sbq, depth);
375 	atomic_set(&sbq->wake_index, 0);
376 	atomic_set(&sbq->ws_active, 0);
377 
378 	sbq->ws = kzalloc_node(SBQ_WAIT_QUEUES * sizeof(*sbq->ws), flags, node);
379 	if (!sbq->ws) {
380 		free_percpu(sbq->alloc_hint);
381 		sbitmap_free(&sbq->sb);
382 		return -ENOMEM;
383 	}
384 
385 	for (i = 0; i < SBQ_WAIT_QUEUES; i++) {
386 		init_waitqueue_head(&sbq->ws[i].wait);
387 		atomic_set(&sbq->ws[i].wait_cnt, sbq->wake_batch);
388 	}
389 
390 	sbq->round_robin = round_robin;
391 	return 0;
392 }
393 EXPORT_SYMBOL_GPL(sbitmap_queue_init_node);
394 
395 static void sbitmap_queue_update_wake_batch(struct sbitmap_queue *sbq,
396 					    unsigned int depth)
397 {
398 	unsigned int wake_batch = sbq_calc_wake_batch(sbq, depth);
399 	int i;
400 
401 	if (sbq->wake_batch != wake_batch) {
402 		WRITE_ONCE(sbq->wake_batch, wake_batch);
403 		/*
404 		 * Pairs with the memory barrier in sbitmap_queue_wake_up()
405 		 * to ensure that the batch size is updated before the wait
406 		 * counts.
407 		 */
408 		smp_mb();
409 		for (i = 0; i < SBQ_WAIT_QUEUES; i++)
410 			atomic_set(&sbq->ws[i].wait_cnt, 1);
411 	}
412 }
413 
414 void sbitmap_queue_resize(struct sbitmap_queue *sbq, unsigned int depth)
415 {
416 	sbitmap_queue_update_wake_batch(sbq, depth);
417 	sbitmap_resize(&sbq->sb, depth);
418 }
419 EXPORT_SYMBOL_GPL(sbitmap_queue_resize);
420 
421 int __sbitmap_queue_get(struct sbitmap_queue *sbq)
422 {
423 	unsigned int hint, depth;
424 	int nr;
425 
426 	hint = this_cpu_read(*sbq->alloc_hint);
427 	depth = READ_ONCE(sbq->sb.depth);
428 	if (unlikely(hint >= depth)) {
429 		hint = depth ? prandom_u32() % depth : 0;
430 		this_cpu_write(*sbq->alloc_hint, hint);
431 	}
432 	nr = sbitmap_get(&sbq->sb, hint, sbq->round_robin);
433 
434 	if (nr == -1) {
435 		/* If the map is full, a hint won't do us much good. */
436 		this_cpu_write(*sbq->alloc_hint, 0);
437 	} else if (nr == hint || unlikely(sbq->round_robin)) {
438 		/* Only update the hint if we used it. */
439 		hint = nr + 1;
440 		if (hint >= depth - 1)
441 			hint = 0;
442 		this_cpu_write(*sbq->alloc_hint, hint);
443 	}
444 
445 	return nr;
446 }
447 EXPORT_SYMBOL_GPL(__sbitmap_queue_get);
448 
449 int __sbitmap_queue_get_shallow(struct sbitmap_queue *sbq,
450 				unsigned int shallow_depth)
451 {
452 	unsigned int hint, depth;
453 	int nr;
454 
455 	WARN_ON_ONCE(shallow_depth < sbq->min_shallow_depth);
456 
457 	hint = this_cpu_read(*sbq->alloc_hint);
458 	depth = READ_ONCE(sbq->sb.depth);
459 	if (unlikely(hint >= depth)) {
460 		hint = depth ? prandom_u32() % depth : 0;
461 		this_cpu_write(*sbq->alloc_hint, hint);
462 	}
463 	nr = sbitmap_get_shallow(&sbq->sb, hint, shallow_depth);
464 
465 	if (nr == -1) {
466 		/* If the map is full, a hint won't do us much good. */
467 		this_cpu_write(*sbq->alloc_hint, 0);
468 	} else if (nr == hint || unlikely(sbq->round_robin)) {
469 		/* Only update the hint if we used it. */
470 		hint = nr + 1;
471 		if (hint >= depth - 1)
472 			hint = 0;
473 		this_cpu_write(*sbq->alloc_hint, hint);
474 	}
475 
476 	return nr;
477 }
478 EXPORT_SYMBOL_GPL(__sbitmap_queue_get_shallow);
479 
480 void sbitmap_queue_min_shallow_depth(struct sbitmap_queue *sbq,
481 				     unsigned int min_shallow_depth)
482 {
483 	sbq->min_shallow_depth = min_shallow_depth;
484 	sbitmap_queue_update_wake_batch(sbq, sbq->sb.depth);
485 }
486 EXPORT_SYMBOL_GPL(sbitmap_queue_min_shallow_depth);
487 
488 static struct sbq_wait_state *sbq_wake_ptr(struct sbitmap_queue *sbq)
489 {
490 	int i, wake_index;
491 
492 	if (!atomic_read(&sbq->ws_active))
493 		return NULL;
494 
495 	wake_index = atomic_read(&sbq->wake_index);
496 	for (i = 0; i < SBQ_WAIT_QUEUES; i++) {
497 		struct sbq_wait_state *ws = &sbq->ws[wake_index];
498 
499 		if (waitqueue_active(&ws->wait)) {
500 			if (wake_index != atomic_read(&sbq->wake_index))
501 				atomic_set(&sbq->wake_index, wake_index);
502 			return ws;
503 		}
504 
505 		wake_index = sbq_index_inc(wake_index);
506 	}
507 
508 	return NULL;
509 }
510 
511 static bool __sbq_wake_up(struct sbitmap_queue *sbq)
512 {
513 	struct sbq_wait_state *ws;
514 	unsigned int wake_batch;
515 	int wait_cnt;
516 
517 	ws = sbq_wake_ptr(sbq);
518 	if (!ws)
519 		return false;
520 
521 	wait_cnt = atomic_dec_return(&ws->wait_cnt);
522 	if (wait_cnt <= 0) {
523 		int ret;
524 
525 		wake_batch = READ_ONCE(sbq->wake_batch);
526 
527 		/*
528 		 * Pairs with the memory barrier in sbitmap_queue_resize() to
529 		 * ensure that we see the batch size update before the wait
530 		 * count is reset.
531 		 */
532 		smp_mb__before_atomic();
533 
534 		/*
535 		 * For concurrent callers of this, the one that failed the
536 		 * atomic_cmpxhcg() race should call this function again
537 		 * to wakeup a new batch on a different 'ws'.
538 		 */
539 		ret = atomic_cmpxchg(&ws->wait_cnt, wait_cnt, wake_batch);
540 		if (ret == wait_cnt) {
541 			sbq_index_atomic_inc(&sbq->wake_index);
542 			wake_up_nr(&ws->wait, wake_batch);
543 			return false;
544 		}
545 
546 		return true;
547 	}
548 
549 	return false;
550 }
551 
552 void sbitmap_queue_wake_up(struct sbitmap_queue *sbq)
553 {
554 	while (__sbq_wake_up(sbq))
555 		;
556 }
557 EXPORT_SYMBOL_GPL(sbitmap_queue_wake_up);
558 
559 void sbitmap_queue_clear(struct sbitmap_queue *sbq, unsigned int nr,
560 			 unsigned int cpu)
561 {
562 	/*
563 	 * Once the clear bit is set, the bit may be allocated out.
564 	 *
565 	 * Orders READ/WRITE on the asssociated instance(such as request
566 	 * of blk_mq) by this bit for avoiding race with re-allocation,
567 	 * and its pair is the memory barrier implied in __sbitmap_get_word.
568 	 *
569 	 * One invariant is that the clear bit has to be zero when the bit
570 	 * is in use.
571 	 */
572 	smp_mb__before_atomic();
573 	sbitmap_deferred_clear_bit(&sbq->sb, nr);
574 
575 	/*
576 	 * Pairs with the memory barrier in set_current_state() to ensure the
577 	 * proper ordering of clear_bit_unlock()/waitqueue_active() in the waker
578 	 * and test_and_set_bit_lock()/prepare_to_wait()/finish_wait() in the
579 	 * waiter. See the comment on waitqueue_active().
580 	 */
581 	smp_mb__after_atomic();
582 	sbitmap_queue_wake_up(sbq);
583 
584 	if (likely(!sbq->round_robin && nr < sbq->sb.depth))
585 		*per_cpu_ptr(sbq->alloc_hint, cpu) = nr;
586 }
587 EXPORT_SYMBOL_GPL(sbitmap_queue_clear);
588 
589 void sbitmap_queue_wake_all(struct sbitmap_queue *sbq)
590 {
591 	int i, wake_index;
592 
593 	/*
594 	 * Pairs with the memory barrier in set_current_state() like in
595 	 * sbitmap_queue_wake_up().
596 	 */
597 	smp_mb();
598 	wake_index = atomic_read(&sbq->wake_index);
599 	for (i = 0; i < SBQ_WAIT_QUEUES; i++) {
600 		struct sbq_wait_state *ws = &sbq->ws[wake_index];
601 
602 		if (waitqueue_active(&ws->wait))
603 			wake_up(&ws->wait);
604 
605 		wake_index = sbq_index_inc(wake_index);
606 	}
607 }
608 EXPORT_SYMBOL_GPL(sbitmap_queue_wake_all);
609 
610 void sbitmap_queue_show(struct sbitmap_queue *sbq, struct seq_file *m)
611 {
612 	bool first;
613 	int i;
614 
615 	sbitmap_show(&sbq->sb, m);
616 
617 	seq_puts(m, "alloc_hint={");
618 	first = true;
619 	for_each_possible_cpu(i) {
620 		if (!first)
621 			seq_puts(m, ", ");
622 		first = false;
623 		seq_printf(m, "%u", *per_cpu_ptr(sbq->alloc_hint, i));
624 	}
625 	seq_puts(m, "}\n");
626 
627 	seq_printf(m, "wake_batch=%u\n", sbq->wake_batch);
628 	seq_printf(m, "wake_index=%d\n", atomic_read(&sbq->wake_index));
629 	seq_printf(m, "ws_active=%d\n", atomic_read(&sbq->ws_active));
630 
631 	seq_puts(m, "ws={\n");
632 	for (i = 0; i < SBQ_WAIT_QUEUES; i++) {
633 		struct sbq_wait_state *ws = &sbq->ws[i];
634 
635 		seq_printf(m, "\t{.wait_cnt=%d, .wait=%s},\n",
636 			   atomic_read(&ws->wait_cnt),
637 			   waitqueue_active(&ws->wait) ? "active" : "inactive");
638 	}
639 	seq_puts(m, "}\n");
640 
641 	seq_printf(m, "round_robin=%d\n", sbq->round_robin);
642 	seq_printf(m, "min_shallow_depth=%u\n", sbq->min_shallow_depth);
643 }
644 EXPORT_SYMBOL_GPL(sbitmap_queue_show);
645 
646 void sbitmap_add_wait_queue(struct sbitmap_queue *sbq,
647 			    struct sbq_wait_state *ws,
648 			    struct sbq_wait *sbq_wait)
649 {
650 	if (!sbq_wait->sbq) {
651 		sbq_wait->sbq = sbq;
652 		atomic_inc(&sbq->ws_active);
653 		add_wait_queue(&ws->wait, &sbq_wait->wait);
654 	}
655 }
656 EXPORT_SYMBOL_GPL(sbitmap_add_wait_queue);
657 
658 void sbitmap_del_wait_queue(struct sbq_wait *sbq_wait)
659 {
660 	list_del_init(&sbq_wait->wait.entry);
661 	if (sbq_wait->sbq) {
662 		atomic_dec(&sbq_wait->sbq->ws_active);
663 		sbq_wait->sbq = NULL;
664 	}
665 }
666 EXPORT_SYMBOL_GPL(sbitmap_del_wait_queue);
667 
668 void sbitmap_prepare_to_wait(struct sbitmap_queue *sbq,
669 			     struct sbq_wait_state *ws,
670 			     struct sbq_wait *sbq_wait, int state)
671 {
672 	if (!sbq_wait->sbq) {
673 		atomic_inc(&sbq->ws_active);
674 		sbq_wait->sbq = sbq;
675 	}
676 	prepare_to_wait_exclusive(&ws->wait, &sbq_wait->wait, state);
677 }
678 EXPORT_SYMBOL_GPL(sbitmap_prepare_to_wait);
679 
680 void sbitmap_finish_wait(struct sbitmap_queue *sbq, struct sbq_wait_state *ws,
681 			 struct sbq_wait *sbq_wait)
682 {
683 	finish_wait(&ws->wait, &sbq_wait->wait);
684 	if (sbq_wait->sbq) {
685 		atomic_dec(&sbq->ws_active);
686 		sbq_wait->sbq = NULL;
687 	}
688 }
689 EXPORT_SYMBOL_GPL(sbitmap_finish_wait);
690