xref: /openbmc/linux/lib/sbitmap.c (revision 3dc4b6fb)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2016 Facebook
4  * Copyright (C) 2013-2014 Jens Axboe
5  */
6 
7 #include <linux/sched.h>
8 #include <linux/random.h>
9 #include <linux/sbitmap.h>
10 #include <linux/seq_file.h>
11 
12 /*
13  * See if we have deferred clears that we can batch move
14  */
15 static inline bool sbitmap_deferred_clear(struct sbitmap *sb, int index)
16 {
17 	unsigned long mask, val;
18 	bool ret = false;
19 	unsigned long flags;
20 
21 	spin_lock_irqsave(&sb->map[index].swap_lock, flags);
22 
23 	if (!sb->map[index].cleared)
24 		goto out_unlock;
25 
26 	/*
27 	 * First get a stable cleared mask, setting the old mask to 0.
28 	 */
29 	mask = xchg(&sb->map[index].cleared, 0);
30 
31 	/*
32 	 * Now clear the masked bits in our free word
33 	 */
34 	do {
35 		val = sb->map[index].word;
36 	} while (cmpxchg(&sb->map[index].word, val, val & ~mask) != val);
37 
38 	ret = true;
39 out_unlock:
40 	spin_unlock_irqrestore(&sb->map[index].swap_lock, flags);
41 	return ret;
42 }
43 
44 int sbitmap_init_node(struct sbitmap *sb, unsigned int depth, int shift,
45 		      gfp_t flags, int node)
46 {
47 	unsigned int bits_per_word;
48 	unsigned int i;
49 
50 	if (shift < 0) {
51 		shift = ilog2(BITS_PER_LONG);
52 		/*
53 		 * If the bitmap is small, shrink the number of bits per word so
54 		 * we spread over a few cachelines, at least. If less than 4
55 		 * bits, just forget about it, it's not going to work optimally
56 		 * anyway.
57 		 */
58 		if (depth >= 4) {
59 			while ((4U << shift) > depth)
60 				shift--;
61 		}
62 	}
63 	bits_per_word = 1U << shift;
64 	if (bits_per_word > BITS_PER_LONG)
65 		return -EINVAL;
66 
67 	sb->shift = shift;
68 	sb->depth = depth;
69 	sb->map_nr = DIV_ROUND_UP(sb->depth, bits_per_word);
70 
71 	if (depth == 0) {
72 		sb->map = NULL;
73 		return 0;
74 	}
75 
76 	sb->map = kcalloc_node(sb->map_nr, sizeof(*sb->map), flags, node);
77 	if (!sb->map)
78 		return -ENOMEM;
79 
80 	for (i = 0; i < sb->map_nr; i++) {
81 		sb->map[i].depth = min(depth, bits_per_word);
82 		depth -= sb->map[i].depth;
83 		spin_lock_init(&sb->map[i].swap_lock);
84 	}
85 	return 0;
86 }
87 EXPORT_SYMBOL_GPL(sbitmap_init_node);
88 
89 void sbitmap_resize(struct sbitmap *sb, unsigned int depth)
90 {
91 	unsigned int bits_per_word = 1U << sb->shift;
92 	unsigned int i;
93 
94 	for (i = 0; i < sb->map_nr; i++)
95 		sbitmap_deferred_clear(sb, i);
96 
97 	sb->depth = depth;
98 	sb->map_nr = DIV_ROUND_UP(sb->depth, bits_per_word);
99 
100 	for (i = 0; i < sb->map_nr; i++) {
101 		sb->map[i].depth = min(depth, bits_per_word);
102 		depth -= sb->map[i].depth;
103 	}
104 }
105 EXPORT_SYMBOL_GPL(sbitmap_resize);
106 
107 static int __sbitmap_get_word(unsigned long *word, unsigned long depth,
108 			      unsigned int hint, bool wrap)
109 {
110 	unsigned int orig_hint = hint;
111 	int nr;
112 
113 	while (1) {
114 		nr = find_next_zero_bit(word, depth, hint);
115 		if (unlikely(nr >= depth)) {
116 			/*
117 			 * We started with an offset, and we didn't reset the
118 			 * offset to 0 in a failure case, so start from 0 to
119 			 * exhaust the map.
120 			 */
121 			if (orig_hint && hint && wrap) {
122 				hint = orig_hint = 0;
123 				continue;
124 			}
125 			return -1;
126 		}
127 
128 		if (!test_and_set_bit_lock(nr, word))
129 			break;
130 
131 		hint = nr + 1;
132 		if (hint >= depth - 1)
133 			hint = 0;
134 	}
135 
136 	return nr;
137 }
138 
139 static int sbitmap_find_bit_in_index(struct sbitmap *sb, int index,
140 				     unsigned int alloc_hint, bool round_robin)
141 {
142 	int nr;
143 
144 	do {
145 		nr = __sbitmap_get_word(&sb->map[index].word,
146 					sb->map[index].depth, alloc_hint,
147 					!round_robin);
148 		if (nr != -1)
149 			break;
150 		if (!sbitmap_deferred_clear(sb, index))
151 			break;
152 	} while (1);
153 
154 	return nr;
155 }
156 
157 int sbitmap_get(struct sbitmap *sb, unsigned int alloc_hint, bool round_robin)
158 {
159 	unsigned int i, index;
160 	int nr = -1;
161 
162 	index = SB_NR_TO_INDEX(sb, alloc_hint);
163 
164 	/*
165 	 * Unless we're doing round robin tag allocation, just use the
166 	 * alloc_hint to find the right word index. No point in looping
167 	 * twice in find_next_zero_bit() for that case.
168 	 */
169 	if (round_robin)
170 		alloc_hint = SB_NR_TO_BIT(sb, alloc_hint);
171 	else
172 		alloc_hint = 0;
173 
174 	for (i = 0; i < sb->map_nr; i++) {
175 		nr = sbitmap_find_bit_in_index(sb, index, alloc_hint,
176 						round_robin);
177 		if (nr != -1) {
178 			nr += index << sb->shift;
179 			break;
180 		}
181 
182 		/* Jump to next index. */
183 		alloc_hint = 0;
184 		if (++index >= sb->map_nr)
185 			index = 0;
186 	}
187 
188 	return nr;
189 }
190 EXPORT_SYMBOL_GPL(sbitmap_get);
191 
192 int sbitmap_get_shallow(struct sbitmap *sb, unsigned int alloc_hint,
193 			unsigned long shallow_depth)
194 {
195 	unsigned int i, index;
196 	int nr = -1;
197 
198 	index = SB_NR_TO_INDEX(sb, alloc_hint);
199 
200 	for (i = 0; i < sb->map_nr; i++) {
201 again:
202 		nr = __sbitmap_get_word(&sb->map[index].word,
203 					min(sb->map[index].depth, shallow_depth),
204 					SB_NR_TO_BIT(sb, alloc_hint), true);
205 		if (nr != -1) {
206 			nr += index << sb->shift;
207 			break;
208 		}
209 
210 		if (sbitmap_deferred_clear(sb, index))
211 			goto again;
212 
213 		/* Jump to next index. */
214 		index++;
215 		alloc_hint = index << sb->shift;
216 
217 		if (index >= sb->map_nr) {
218 			index = 0;
219 			alloc_hint = 0;
220 		}
221 	}
222 
223 	return nr;
224 }
225 EXPORT_SYMBOL_GPL(sbitmap_get_shallow);
226 
227 bool sbitmap_any_bit_set(const struct sbitmap *sb)
228 {
229 	unsigned int i;
230 
231 	for (i = 0; i < sb->map_nr; i++) {
232 		if (sb->map[i].word & ~sb->map[i].cleared)
233 			return true;
234 	}
235 	return false;
236 }
237 EXPORT_SYMBOL_GPL(sbitmap_any_bit_set);
238 
239 bool sbitmap_any_bit_clear(const struct sbitmap *sb)
240 {
241 	unsigned int i;
242 
243 	for (i = 0; i < sb->map_nr; i++) {
244 		const struct sbitmap_word *word = &sb->map[i];
245 		unsigned long mask = word->word & ~word->cleared;
246 		unsigned long ret;
247 
248 		ret = find_first_zero_bit(&mask, word->depth);
249 		if (ret < word->depth)
250 			return true;
251 	}
252 	return false;
253 }
254 EXPORT_SYMBOL_GPL(sbitmap_any_bit_clear);
255 
256 static unsigned int __sbitmap_weight(const struct sbitmap *sb, bool set)
257 {
258 	unsigned int i, weight = 0;
259 
260 	for (i = 0; i < sb->map_nr; i++) {
261 		const struct sbitmap_word *word = &sb->map[i];
262 
263 		if (set)
264 			weight += bitmap_weight(&word->word, word->depth);
265 		else
266 			weight += bitmap_weight(&word->cleared, word->depth);
267 	}
268 	return weight;
269 }
270 
271 static unsigned int sbitmap_weight(const struct sbitmap *sb)
272 {
273 	return __sbitmap_weight(sb, true);
274 }
275 
276 static unsigned int sbitmap_cleared(const struct sbitmap *sb)
277 {
278 	return __sbitmap_weight(sb, false);
279 }
280 
281 void sbitmap_show(struct sbitmap *sb, struct seq_file *m)
282 {
283 	seq_printf(m, "depth=%u\n", sb->depth);
284 	seq_printf(m, "busy=%u\n", sbitmap_weight(sb) - sbitmap_cleared(sb));
285 	seq_printf(m, "cleared=%u\n", sbitmap_cleared(sb));
286 	seq_printf(m, "bits_per_word=%u\n", 1U << sb->shift);
287 	seq_printf(m, "map_nr=%u\n", sb->map_nr);
288 }
289 EXPORT_SYMBOL_GPL(sbitmap_show);
290 
291 static inline void emit_byte(struct seq_file *m, unsigned int offset, u8 byte)
292 {
293 	if ((offset & 0xf) == 0) {
294 		if (offset != 0)
295 			seq_putc(m, '\n');
296 		seq_printf(m, "%08x:", offset);
297 	}
298 	if ((offset & 0x1) == 0)
299 		seq_putc(m, ' ');
300 	seq_printf(m, "%02x", byte);
301 }
302 
303 void sbitmap_bitmap_show(struct sbitmap *sb, struct seq_file *m)
304 {
305 	u8 byte = 0;
306 	unsigned int byte_bits = 0;
307 	unsigned int offset = 0;
308 	int i;
309 
310 	for (i = 0; i < sb->map_nr; i++) {
311 		unsigned long word = READ_ONCE(sb->map[i].word);
312 		unsigned int word_bits = READ_ONCE(sb->map[i].depth);
313 
314 		while (word_bits > 0) {
315 			unsigned int bits = min(8 - byte_bits, word_bits);
316 
317 			byte |= (word & (BIT(bits) - 1)) << byte_bits;
318 			byte_bits += bits;
319 			if (byte_bits == 8) {
320 				emit_byte(m, offset, byte);
321 				byte = 0;
322 				byte_bits = 0;
323 				offset++;
324 			}
325 			word >>= bits;
326 			word_bits -= bits;
327 		}
328 	}
329 	if (byte_bits) {
330 		emit_byte(m, offset, byte);
331 		offset++;
332 	}
333 	if (offset)
334 		seq_putc(m, '\n');
335 }
336 EXPORT_SYMBOL_GPL(sbitmap_bitmap_show);
337 
338 static unsigned int sbq_calc_wake_batch(struct sbitmap_queue *sbq,
339 					unsigned int depth)
340 {
341 	unsigned int wake_batch;
342 	unsigned int shallow_depth;
343 
344 	/*
345 	 * For each batch, we wake up one queue. We need to make sure that our
346 	 * batch size is small enough that the full depth of the bitmap,
347 	 * potentially limited by a shallow depth, is enough to wake up all of
348 	 * the queues.
349 	 *
350 	 * Each full word of the bitmap has bits_per_word bits, and there might
351 	 * be a partial word. There are depth / bits_per_word full words and
352 	 * depth % bits_per_word bits left over. In bitwise arithmetic:
353 	 *
354 	 * bits_per_word = 1 << shift
355 	 * depth / bits_per_word = depth >> shift
356 	 * depth % bits_per_word = depth & ((1 << shift) - 1)
357 	 *
358 	 * Each word can be limited to sbq->min_shallow_depth bits.
359 	 */
360 	shallow_depth = min(1U << sbq->sb.shift, sbq->min_shallow_depth);
361 	depth = ((depth >> sbq->sb.shift) * shallow_depth +
362 		 min(depth & ((1U << sbq->sb.shift) - 1), shallow_depth));
363 	wake_batch = clamp_t(unsigned int, depth / SBQ_WAIT_QUEUES, 1,
364 			     SBQ_WAKE_BATCH);
365 
366 	return wake_batch;
367 }
368 
369 int sbitmap_queue_init_node(struct sbitmap_queue *sbq, unsigned int depth,
370 			    int shift, bool round_robin, gfp_t flags, int node)
371 {
372 	int ret;
373 	int i;
374 
375 	ret = sbitmap_init_node(&sbq->sb, depth, shift, flags, node);
376 	if (ret)
377 		return ret;
378 
379 	sbq->alloc_hint = alloc_percpu_gfp(unsigned int, flags);
380 	if (!sbq->alloc_hint) {
381 		sbitmap_free(&sbq->sb);
382 		return -ENOMEM;
383 	}
384 
385 	if (depth && !round_robin) {
386 		for_each_possible_cpu(i)
387 			*per_cpu_ptr(sbq->alloc_hint, i) = prandom_u32() % depth;
388 	}
389 
390 	sbq->min_shallow_depth = UINT_MAX;
391 	sbq->wake_batch = sbq_calc_wake_batch(sbq, depth);
392 	atomic_set(&sbq->wake_index, 0);
393 	atomic_set(&sbq->ws_active, 0);
394 
395 	sbq->ws = kzalloc_node(SBQ_WAIT_QUEUES * sizeof(*sbq->ws), flags, node);
396 	if (!sbq->ws) {
397 		free_percpu(sbq->alloc_hint);
398 		sbitmap_free(&sbq->sb);
399 		return -ENOMEM;
400 	}
401 
402 	for (i = 0; i < SBQ_WAIT_QUEUES; i++) {
403 		init_waitqueue_head(&sbq->ws[i].wait);
404 		atomic_set(&sbq->ws[i].wait_cnt, sbq->wake_batch);
405 	}
406 
407 	sbq->round_robin = round_robin;
408 	return 0;
409 }
410 EXPORT_SYMBOL_GPL(sbitmap_queue_init_node);
411 
412 static void sbitmap_queue_update_wake_batch(struct sbitmap_queue *sbq,
413 					    unsigned int depth)
414 {
415 	unsigned int wake_batch = sbq_calc_wake_batch(sbq, depth);
416 	int i;
417 
418 	if (sbq->wake_batch != wake_batch) {
419 		WRITE_ONCE(sbq->wake_batch, wake_batch);
420 		/*
421 		 * Pairs with the memory barrier in sbitmap_queue_wake_up()
422 		 * to ensure that the batch size is updated before the wait
423 		 * counts.
424 		 */
425 		smp_mb();
426 		for (i = 0; i < SBQ_WAIT_QUEUES; i++)
427 			atomic_set(&sbq->ws[i].wait_cnt, 1);
428 	}
429 }
430 
431 void sbitmap_queue_resize(struct sbitmap_queue *sbq, unsigned int depth)
432 {
433 	sbitmap_queue_update_wake_batch(sbq, depth);
434 	sbitmap_resize(&sbq->sb, depth);
435 }
436 EXPORT_SYMBOL_GPL(sbitmap_queue_resize);
437 
438 int __sbitmap_queue_get(struct sbitmap_queue *sbq)
439 {
440 	unsigned int hint, depth;
441 	int nr;
442 
443 	hint = this_cpu_read(*sbq->alloc_hint);
444 	depth = READ_ONCE(sbq->sb.depth);
445 	if (unlikely(hint >= depth)) {
446 		hint = depth ? prandom_u32() % depth : 0;
447 		this_cpu_write(*sbq->alloc_hint, hint);
448 	}
449 	nr = sbitmap_get(&sbq->sb, hint, sbq->round_robin);
450 
451 	if (nr == -1) {
452 		/* If the map is full, a hint won't do us much good. */
453 		this_cpu_write(*sbq->alloc_hint, 0);
454 	} else if (nr == hint || unlikely(sbq->round_robin)) {
455 		/* Only update the hint if we used it. */
456 		hint = nr + 1;
457 		if (hint >= depth - 1)
458 			hint = 0;
459 		this_cpu_write(*sbq->alloc_hint, hint);
460 	}
461 
462 	return nr;
463 }
464 EXPORT_SYMBOL_GPL(__sbitmap_queue_get);
465 
466 int __sbitmap_queue_get_shallow(struct sbitmap_queue *sbq,
467 				unsigned int shallow_depth)
468 {
469 	unsigned int hint, depth;
470 	int nr;
471 
472 	WARN_ON_ONCE(shallow_depth < sbq->min_shallow_depth);
473 
474 	hint = this_cpu_read(*sbq->alloc_hint);
475 	depth = READ_ONCE(sbq->sb.depth);
476 	if (unlikely(hint >= depth)) {
477 		hint = depth ? prandom_u32() % depth : 0;
478 		this_cpu_write(*sbq->alloc_hint, hint);
479 	}
480 	nr = sbitmap_get_shallow(&sbq->sb, hint, shallow_depth);
481 
482 	if (nr == -1) {
483 		/* If the map is full, a hint won't do us much good. */
484 		this_cpu_write(*sbq->alloc_hint, 0);
485 	} else if (nr == hint || unlikely(sbq->round_robin)) {
486 		/* Only update the hint if we used it. */
487 		hint = nr + 1;
488 		if (hint >= depth - 1)
489 			hint = 0;
490 		this_cpu_write(*sbq->alloc_hint, hint);
491 	}
492 
493 	return nr;
494 }
495 EXPORT_SYMBOL_GPL(__sbitmap_queue_get_shallow);
496 
497 void sbitmap_queue_min_shallow_depth(struct sbitmap_queue *sbq,
498 				     unsigned int min_shallow_depth)
499 {
500 	sbq->min_shallow_depth = min_shallow_depth;
501 	sbitmap_queue_update_wake_batch(sbq, sbq->sb.depth);
502 }
503 EXPORT_SYMBOL_GPL(sbitmap_queue_min_shallow_depth);
504 
505 static struct sbq_wait_state *sbq_wake_ptr(struct sbitmap_queue *sbq)
506 {
507 	int i, wake_index;
508 
509 	if (!atomic_read(&sbq->ws_active))
510 		return NULL;
511 
512 	wake_index = atomic_read(&sbq->wake_index);
513 	for (i = 0; i < SBQ_WAIT_QUEUES; i++) {
514 		struct sbq_wait_state *ws = &sbq->ws[wake_index];
515 
516 		if (waitqueue_active(&ws->wait)) {
517 			if (wake_index != atomic_read(&sbq->wake_index))
518 				atomic_set(&sbq->wake_index, wake_index);
519 			return ws;
520 		}
521 
522 		wake_index = sbq_index_inc(wake_index);
523 	}
524 
525 	return NULL;
526 }
527 
528 static bool __sbq_wake_up(struct sbitmap_queue *sbq)
529 {
530 	struct sbq_wait_state *ws;
531 	unsigned int wake_batch;
532 	int wait_cnt;
533 
534 	ws = sbq_wake_ptr(sbq);
535 	if (!ws)
536 		return false;
537 
538 	wait_cnt = atomic_dec_return(&ws->wait_cnt);
539 	if (wait_cnt <= 0) {
540 		int ret;
541 
542 		wake_batch = READ_ONCE(sbq->wake_batch);
543 
544 		/*
545 		 * Pairs with the memory barrier in sbitmap_queue_resize() to
546 		 * ensure that we see the batch size update before the wait
547 		 * count is reset.
548 		 */
549 		smp_mb__before_atomic();
550 
551 		/*
552 		 * For concurrent callers of this, the one that failed the
553 		 * atomic_cmpxhcg() race should call this function again
554 		 * to wakeup a new batch on a different 'ws'.
555 		 */
556 		ret = atomic_cmpxchg(&ws->wait_cnt, wait_cnt, wake_batch);
557 		if (ret == wait_cnt) {
558 			sbq_index_atomic_inc(&sbq->wake_index);
559 			wake_up_nr(&ws->wait, wake_batch);
560 			return false;
561 		}
562 
563 		return true;
564 	}
565 
566 	return false;
567 }
568 
569 void sbitmap_queue_wake_up(struct sbitmap_queue *sbq)
570 {
571 	while (__sbq_wake_up(sbq))
572 		;
573 }
574 EXPORT_SYMBOL_GPL(sbitmap_queue_wake_up);
575 
576 void sbitmap_queue_clear(struct sbitmap_queue *sbq, unsigned int nr,
577 			 unsigned int cpu)
578 {
579 	/*
580 	 * Once the clear bit is set, the bit may be allocated out.
581 	 *
582 	 * Orders READ/WRITE on the asssociated instance(such as request
583 	 * of blk_mq) by this bit for avoiding race with re-allocation,
584 	 * and its pair is the memory barrier implied in __sbitmap_get_word.
585 	 *
586 	 * One invariant is that the clear bit has to be zero when the bit
587 	 * is in use.
588 	 */
589 	smp_mb__before_atomic();
590 	sbitmap_deferred_clear_bit(&sbq->sb, nr);
591 
592 	/*
593 	 * Pairs with the memory barrier in set_current_state() to ensure the
594 	 * proper ordering of clear_bit_unlock()/waitqueue_active() in the waker
595 	 * and test_and_set_bit_lock()/prepare_to_wait()/finish_wait() in the
596 	 * waiter. See the comment on waitqueue_active().
597 	 */
598 	smp_mb__after_atomic();
599 	sbitmap_queue_wake_up(sbq);
600 
601 	if (likely(!sbq->round_robin && nr < sbq->sb.depth))
602 		*per_cpu_ptr(sbq->alloc_hint, cpu) = nr;
603 }
604 EXPORT_SYMBOL_GPL(sbitmap_queue_clear);
605 
606 void sbitmap_queue_wake_all(struct sbitmap_queue *sbq)
607 {
608 	int i, wake_index;
609 
610 	/*
611 	 * Pairs with the memory barrier in set_current_state() like in
612 	 * sbitmap_queue_wake_up().
613 	 */
614 	smp_mb();
615 	wake_index = atomic_read(&sbq->wake_index);
616 	for (i = 0; i < SBQ_WAIT_QUEUES; i++) {
617 		struct sbq_wait_state *ws = &sbq->ws[wake_index];
618 
619 		if (waitqueue_active(&ws->wait))
620 			wake_up(&ws->wait);
621 
622 		wake_index = sbq_index_inc(wake_index);
623 	}
624 }
625 EXPORT_SYMBOL_GPL(sbitmap_queue_wake_all);
626 
627 void sbitmap_queue_show(struct sbitmap_queue *sbq, struct seq_file *m)
628 {
629 	bool first;
630 	int i;
631 
632 	sbitmap_show(&sbq->sb, m);
633 
634 	seq_puts(m, "alloc_hint={");
635 	first = true;
636 	for_each_possible_cpu(i) {
637 		if (!first)
638 			seq_puts(m, ", ");
639 		first = false;
640 		seq_printf(m, "%u", *per_cpu_ptr(sbq->alloc_hint, i));
641 	}
642 	seq_puts(m, "}\n");
643 
644 	seq_printf(m, "wake_batch=%u\n", sbq->wake_batch);
645 	seq_printf(m, "wake_index=%d\n", atomic_read(&sbq->wake_index));
646 	seq_printf(m, "ws_active=%d\n", atomic_read(&sbq->ws_active));
647 
648 	seq_puts(m, "ws={\n");
649 	for (i = 0; i < SBQ_WAIT_QUEUES; i++) {
650 		struct sbq_wait_state *ws = &sbq->ws[i];
651 
652 		seq_printf(m, "\t{.wait_cnt=%d, .wait=%s},\n",
653 			   atomic_read(&ws->wait_cnt),
654 			   waitqueue_active(&ws->wait) ? "active" : "inactive");
655 	}
656 	seq_puts(m, "}\n");
657 
658 	seq_printf(m, "round_robin=%d\n", sbq->round_robin);
659 	seq_printf(m, "min_shallow_depth=%u\n", sbq->min_shallow_depth);
660 }
661 EXPORT_SYMBOL_GPL(sbitmap_queue_show);
662 
663 void sbitmap_add_wait_queue(struct sbitmap_queue *sbq,
664 			    struct sbq_wait_state *ws,
665 			    struct sbq_wait *sbq_wait)
666 {
667 	if (!sbq_wait->sbq) {
668 		sbq_wait->sbq = sbq;
669 		atomic_inc(&sbq->ws_active);
670 	}
671 	add_wait_queue(&ws->wait, &sbq_wait->wait);
672 }
673 EXPORT_SYMBOL_GPL(sbitmap_add_wait_queue);
674 
675 void sbitmap_del_wait_queue(struct sbq_wait *sbq_wait)
676 {
677 	list_del_init(&sbq_wait->wait.entry);
678 	if (sbq_wait->sbq) {
679 		atomic_dec(&sbq_wait->sbq->ws_active);
680 		sbq_wait->sbq = NULL;
681 	}
682 }
683 EXPORT_SYMBOL_GPL(sbitmap_del_wait_queue);
684 
685 void sbitmap_prepare_to_wait(struct sbitmap_queue *sbq,
686 			     struct sbq_wait_state *ws,
687 			     struct sbq_wait *sbq_wait, int state)
688 {
689 	if (!sbq_wait->sbq) {
690 		atomic_inc(&sbq->ws_active);
691 		sbq_wait->sbq = sbq;
692 	}
693 	prepare_to_wait_exclusive(&ws->wait, &sbq_wait->wait, state);
694 }
695 EXPORT_SYMBOL_GPL(sbitmap_prepare_to_wait);
696 
697 void sbitmap_finish_wait(struct sbitmap_queue *sbq, struct sbq_wait_state *ws,
698 			 struct sbq_wait *sbq_wait)
699 {
700 	finish_wait(&ws->wait, &sbq_wait->wait);
701 	if (sbq_wait->sbq) {
702 		atomic_dec(&sbq->ws_active);
703 		sbq_wait->sbq = NULL;
704 	}
705 }
706 EXPORT_SYMBOL_GPL(sbitmap_finish_wait);
707