1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2016 Facebook 4 * Copyright (C) 2013-2014 Jens Axboe 5 */ 6 7 #include <linux/sched.h> 8 #include <linux/random.h> 9 #include <linux/sbitmap.h> 10 #include <linux/seq_file.h> 11 12 /* 13 * See if we have deferred clears that we can batch move 14 */ 15 static inline bool sbitmap_deferred_clear(struct sbitmap *sb, int index) 16 { 17 unsigned long mask, val; 18 bool ret = false; 19 unsigned long flags; 20 21 spin_lock_irqsave(&sb->map[index].swap_lock, flags); 22 23 if (!sb->map[index].cleared) 24 goto out_unlock; 25 26 /* 27 * First get a stable cleared mask, setting the old mask to 0. 28 */ 29 mask = xchg(&sb->map[index].cleared, 0); 30 31 /* 32 * Now clear the masked bits in our free word 33 */ 34 do { 35 val = sb->map[index].word; 36 } while (cmpxchg(&sb->map[index].word, val, val & ~mask) != val); 37 38 ret = true; 39 out_unlock: 40 spin_unlock_irqrestore(&sb->map[index].swap_lock, flags); 41 return ret; 42 } 43 44 int sbitmap_init_node(struct sbitmap *sb, unsigned int depth, int shift, 45 gfp_t flags, int node) 46 { 47 unsigned int bits_per_word; 48 unsigned int i; 49 50 if (shift < 0) { 51 shift = ilog2(BITS_PER_LONG); 52 /* 53 * If the bitmap is small, shrink the number of bits per word so 54 * we spread over a few cachelines, at least. If less than 4 55 * bits, just forget about it, it's not going to work optimally 56 * anyway. 57 */ 58 if (depth >= 4) { 59 while ((4U << shift) > depth) 60 shift--; 61 } 62 } 63 bits_per_word = 1U << shift; 64 if (bits_per_word > BITS_PER_LONG) 65 return -EINVAL; 66 67 sb->shift = shift; 68 sb->depth = depth; 69 sb->map_nr = DIV_ROUND_UP(sb->depth, bits_per_word); 70 71 if (depth == 0) { 72 sb->map = NULL; 73 return 0; 74 } 75 76 sb->map = kcalloc_node(sb->map_nr, sizeof(*sb->map), flags, node); 77 if (!sb->map) 78 return -ENOMEM; 79 80 for (i = 0; i < sb->map_nr; i++) { 81 sb->map[i].depth = min(depth, bits_per_word); 82 depth -= sb->map[i].depth; 83 spin_lock_init(&sb->map[i].swap_lock); 84 } 85 return 0; 86 } 87 EXPORT_SYMBOL_GPL(sbitmap_init_node); 88 89 void sbitmap_resize(struct sbitmap *sb, unsigned int depth) 90 { 91 unsigned int bits_per_word = 1U << sb->shift; 92 unsigned int i; 93 94 for (i = 0; i < sb->map_nr; i++) 95 sbitmap_deferred_clear(sb, i); 96 97 sb->depth = depth; 98 sb->map_nr = DIV_ROUND_UP(sb->depth, bits_per_word); 99 100 for (i = 0; i < sb->map_nr; i++) { 101 sb->map[i].depth = min(depth, bits_per_word); 102 depth -= sb->map[i].depth; 103 } 104 } 105 EXPORT_SYMBOL_GPL(sbitmap_resize); 106 107 static int __sbitmap_get_word(unsigned long *word, unsigned long depth, 108 unsigned int hint, bool wrap) 109 { 110 unsigned int orig_hint = hint; 111 int nr; 112 113 while (1) { 114 nr = find_next_zero_bit(word, depth, hint); 115 if (unlikely(nr >= depth)) { 116 /* 117 * We started with an offset, and we didn't reset the 118 * offset to 0 in a failure case, so start from 0 to 119 * exhaust the map. 120 */ 121 if (orig_hint && hint && wrap) { 122 hint = orig_hint = 0; 123 continue; 124 } 125 return -1; 126 } 127 128 if (!test_and_set_bit_lock(nr, word)) 129 break; 130 131 hint = nr + 1; 132 if (hint >= depth - 1) 133 hint = 0; 134 } 135 136 return nr; 137 } 138 139 static int sbitmap_find_bit_in_index(struct sbitmap *sb, int index, 140 unsigned int alloc_hint, bool round_robin) 141 { 142 int nr; 143 144 do { 145 nr = __sbitmap_get_word(&sb->map[index].word, 146 sb->map[index].depth, alloc_hint, 147 !round_robin); 148 if (nr != -1) 149 break; 150 if (!sbitmap_deferred_clear(sb, index)) 151 break; 152 } while (1); 153 154 return nr; 155 } 156 157 int sbitmap_get(struct sbitmap *sb, unsigned int alloc_hint, bool round_robin) 158 { 159 unsigned int i, index; 160 int nr = -1; 161 162 index = SB_NR_TO_INDEX(sb, alloc_hint); 163 164 /* 165 * Unless we're doing round robin tag allocation, just use the 166 * alloc_hint to find the right word index. No point in looping 167 * twice in find_next_zero_bit() for that case. 168 */ 169 if (round_robin) 170 alloc_hint = SB_NR_TO_BIT(sb, alloc_hint); 171 else 172 alloc_hint = 0; 173 174 for (i = 0; i < sb->map_nr; i++) { 175 nr = sbitmap_find_bit_in_index(sb, index, alloc_hint, 176 round_robin); 177 if (nr != -1) { 178 nr += index << sb->shift; 179 break; 180 } 181 182 /* Jump to next index. */ 183 alloc_hint = 0; 184 if (++index >= sb->map_nr) 185 index = 0; 186 } 187 188 return nr; 189 } 190 EXPORT_SYMBOL_GPL(sbitmap_get); 191 192 int sbitmap_get_shallow(struct sbitmap *sb, unsigned int alloc_hint, 193 unsigned long shallow_depth) 194 { 195 unsigned int i, index; 196 int nr = -1; 197 198 index = SB_NR_TO_INDEX(sb, alloc_hint); 199 200 for (i = 0; i < sb->map_nr; i++) { 201 again: 202 nr = __sbitmap_get_word(&sb->map[index].word, 203 min(sb->map[index].depth, shallow_depth), 204 SB_NR_TO_BIT(sb, alloc_hint), true); 205 if (nr != -1) { 206 nr += index << sb->shift; 207 break; 208 } 209 210 if (sbitmap_deferred_clear(sb, index)) 211 goto again; 212 213 /* Jump to next index. */ 214 index++; 215 alloc_hint = index << sb->shift; 216 217 if (index >= sb->map_nr) { 218 index = 0; 219 alloc_hint = 0; 220 } 221 } 222 223 return nr; 224 } 225 EXPORT_SYMBOL_GPL(sbitmap_get_shallow); 226 227 bool sbitmap_any_bit_set(const struct sbitmap *sb) 228 { 229 unsigned int i; 230 231 for (i = 0; i < sb->map_nr; i++) { 232 if (sb->map[i].word & ~sb->map[i].cleared) 233 return true; 234 } 235 return false; 236 } 237 EXPORT_SYMBOL_GPL(sbitmap_any_bit_set); 238 239 bool sbitmap_any_bit_clear(const struct sbitmap *sb) 240 { 241 unsigned int i; 242 243 for (i = 0; i < sb->map_nr; i++) { 244 const struct sbitmap_word *word = &sb->map[i]; 245 unsigned long mask = word->word & ~word->cleared; 246 unsigned long ret; 247 248 ret = find_first_zero_bit(&mask, word->depth); 249 if (ret < word->depth) 250 return true; 251 } 252 return false; 253 } 254 EXPORT_SYMBOL_GPL(sbitmap_any_bit_clear); 255 256 static unsigned int __sbitmap_weight(const struct sbitmap *sb, bool set) 257 { 258 unsigned int i, weight = 0; 259 260 for (i = 0; i < sb->map_nr; i++) { 261 const struct sbitmap_word *word = &sb->map[i]; 262 263 if (set) 264 weight += bitmap_weight(&word->word, word->depth); 265 else 266 weight += bitmap_weight(&word->cleared, word->depth); 267 } 268 return weight; 269 } 270 271 static unsigned int sbitmap_weight(const struct sbitmap *sb) 272 { 273 return __sbitmap_weight(sb, true); 274 } 275 276 static unsigned int sbitmap_cleared(const struct sbitmap *sb) 277 { 278 return __sbitmap_weight(sb, false); 279 } 280 281 void sbitmap_show(struct sbitmap *sb, struct seq_file *m) 282 { 283 seq_printf(m, "depth=%u\n", sb->depth); 284 seq_printf(m, "busy=%u\n", sbitmap_weight(sb) - sbitmap_cleared(sb)); 285 seq_printf(m, "cleared=%u\n", sbitmap_cleared(sb)); 286 seq_printf(m, "bits_per_word=%u\n", 1U << sb->shift); 287 seq_printf(m, "map_nr=%u\n", sb->map_nr); 288 } 289 EXPORT_SYMBOL_GPL(sbitmap_show); 290 291 static inline void emit_byte(struct seq_file *m, unsigned int offset, u8 byte) 292 { 293 if ((offset & 0xf) == 0) { 294 if (offset != 0) 295 seq_putc(m, '\n'); 296 seq_printf(m, "%08x:", offset); 297 } 298 if ((offset & 0x1) == 0) 299 seq_putc(m, ' '); 300 seq_printf(m, "%02x", byte); 301 } 302 303 void sbitmap_bitmap_show(struct sbitmap *sb, struct seq_file *m) 304 { 305 u8 byte = 0; 306 unsigned int byte_bits = 0; 307 unsigned int offset = 0; 308 int i; 309 310 for (i = 0; i < sb->map_nr; i++) { 311 unsigned long word = READ_ONCE(sb->map[i].word); 312 unsigned int word_bits = READ_ONCE(sb->map[i].depth); 313 314 while (word_bits > 0) { 315 unsigned int bits = min(8 - byte_bits, word_bits); 316 317 byte |= (word & (BIT(bits) - 1)) << byte_bits; 318 byte_bits += bits; 319 if (byte_bits == 8) { 320 emit_byte(m, offset, byte); 321 byte = 0; 322 byte_bits = 0; 323 offset++; 324 } 325 word >>= bits; 326 word_bits -= bits; 327 } 328 } 329 if (byte_bits) { 330 emit_byte(m, offset, byte); 331 offset++; 332 } 333 if (offset) 334 seq_putc(m, '\n'); 335 } 336 EXPORT_SYMBOL_GPL(sbitmap_bitmap_show); 337 338 static unsigned int sbq_calc_wake_batch(struct sbitmap_queue *sbq, 339 unsigned int depth) 340 { 341 unsigned int wake_batch; 342 unsigned int shallow_depth; 343 344 /* 345 * For each batch, we wake up one queue. We need to make sure that our 346 * batch size is small enough that the full depth of the bitmap, 347 * potentially limited by a shallow depth, is enough to wake up all of 348 * the queues. 349 * 350 * Each full word of the bitmap has bits_per_word bits, and there might 351 * be a partial word. There are depth / bits_per_word full words and 352 * depth % bits_per_word bits left over. In bitwise arithmetic: 353 * 354 * bits_per_word = 1 << shift 355 * depth / bits_per_word = depth >> shift 356 * depth % bits_per_word = depth & ((1 << shift) - 1) 357 * 358 * Each word can be limited to sbq->min_shallow_depth bits. 359 */ 360 shallow_depth = min(1U << sbq->sb.shift, sbq->min_shallow_depth); 361 depth = ((depth >> sbq->sb.shift) * shallow_depth + 362 min(depth & ((1U << sbq->sb.shift) - 1), shallow_depth)); 363 wake_batch = clamp_t(unsigned int, depth / SBQ_WAIT_QUEUES, 1, 364 SBQ_WAKE_BATCH); 365 366 return wake_batch; 367 } 368 369 int sbitmap_queue_init_node(struct sbitmap_queue *sbq, unsigned int depth, 370 int shift, bool round_robin, gfp_t flags, int node) 371 { 372 int ret; 373 int i; 374 375 ret = sbitmap_init_node(&sbq->sb, depth, shift, flags, node); 376 if (ret) 377 return ret; 378 379 sbq->alloc_hint = alloc_percpu_gfp(unsigned int, flags); 380 if (!sbq->alloc_hint) { 381 sbitmap_free(&sbq->sb); 382 return -ENOMEM; 383 } 384 385 if (depth && !round_robin) { 386 for_each_possible_cpu(i) 387 *per_cpu_ptr(sbq->alloc_hint, i) = prandom_u32() % depth; 388 } 389 390 sbq->min_shallow_depth = UINT_MAX; 391 sbq->wake_batch = sbq_calc_wake_batch(sbq, depth); 392 atomic_set(&sbq->wake_index, 0); 393 atomic_set(&sbq->ws_active, 0); 394 395 sbq->ws = kzalloc_node(SBQ_WAIT_QUEUES * sizeof(*sbq->ws), flags, node); 396 if (!sbq->ws) { 397 free_percpu(sbq->alloc_hint); 398 sbitmap_free(&sbq->sb); 399 return -ENOMEM; 400 } 401 402 for (i = 0; i < SBQ_WAIT_QUEUES; i++) { 403 init_waitqueue_head(&sbq->ws[i].wait); 404 atomic_set(&sbq->ws[i].wait_cnt, sbq->wake_batch); 405 } 406 407 sbq->round_robin = round_robin; 408 return 0; 409 } 410 EXPORT_SYMBOL_GPL(sbitmap_queue_init_node); 411 412 static void sbitmap_queue_update_wake_batch(struct sbitmap_queue *sbq, 413 unsigned int depth) 414 { 415 unsigned int wake_batch = sbq_calc_wake_batch(sbq, depth); 416 int i; 417 418 if (sbq->wake_batch != wake_batch) { 419 WRITE_ONCE(sbq->wake_batch, wake_batch); 420 /* 421 * Pairs with the memory barrier in sbitmap_queue_wake_up() 422 * to ensure that the batch size is updated before the wait 423 * counts. 424 */ 425 smp_mb(); 426 for (i = 0; i < SBQ_WAIT_QUEUES; i++) 427 atomic_set(&sbq->ws[i].wait_cnt, 1); 428 } 429 } 430 431 void sbitmap_queue_resize(struct sbitmap_queue *sbq, unsigned int depth) 432 { 433 sbitmap_queue_update_wake_batch(sbq, depth); 434 sbitmap_resize(&sbq->sb, depth); 435 } 436 EXPORT_SYMBOL_GPL(sbitmap_queue_resize); 437 438 int __sbitmap_queue_get(struct sbitmap_queue *sbq) 439 { 440 unsigned int hint, depth; 441 int nr; 442 443 hint = this_cpu_read(*sbq->alloc_hint); 444 depth = READ_ONCE(sbq->sb.depth); 445 if (unlikely(hint >= depth)) { 446 hint = depth ? prandom_u32() % depth : 0; 447 this_cpu_write(*sbq->alloc_hint, hint); 448 } 449 nr = sbitmap_get(&sbq->sb, hint, sbq->round_robin); 450 451 if (nr == -1) { 452 /* If the map is full, a hint won't do us much good. */ 453 this_cpu_write(*sbq->alloc_hint, 0); 454 } else if (nr == hint || unlikely(sbq->round_robin)) { 455 /* Only update the hint if we used it. */ 456 hint = nr + 1; 457 if (hint >= depth - 1) 458 hint = 0; 459 this_cpu_write(*sbq->alloc_hint, hint); 460 } 461 462 return nr; 463 } 464 EXPORT_SYMBOL_GPL(__sbitmap_queue_get); 465 466 int __sbitmap_queue_get_shallow(struct sbitmap_queue *sbq, 467 unsigned int shallow_depth) 468 { 469 unsigned int hint, depth; 470 int nr; 471 472 WARN_ON_ONCE(shallow_depth < sbq->min_shallow_depth); 473 474 hint = this_cpu_read(*sbq->alloc_hint); 475 depth = READ_ONCE(sbq->sb.depth); 476 if (unlikely(hint >= depth)) { 477 hint = depth ? prandom_u32() % depth : 0; 478 this_cpu_write(*sbq->alloc_hint, hint); 479 } 480 nr = sbitmap_get_shallow(&sbq->sb, hint, shallow_depth); 481 482 if (nr == -1) { 483 /* If the map is full, a hint won't do us much good. */ 484 this_cpu_write(*sbq->alloc_hint, 0); 485 } else if (nr == hint || unlikely(sbq->round_robin)) { 486 /* Only update the hint if we used it. */ 487 hint = nr + 1; 488 if (hint >= depth - 1) 489 hint = 0; 490 this_cpu_write(*sbq->alloc_hint, hint); 491 } 492 493 return nr; 494 } 495 EXPORT_SYMBOL_GPL(__sbitmap_queue_get_shallow); 496 497 void sbitmap_queue_min_shallow_depth(struct sbitmap_queue *sbq, 498 unsigned int min_shallow_depth) 499 { 500 sbq->min_shallow_depth = min_shallow_depth; 501 sbitmap_queue_update_wake_batch(sbq, sbq->sb.depth); 502 } 503 EXPORT_SYMBOL_GPL(sbitmap_queue_min_shallow_depth); 504 505 static struct sbq_wait_state *sbq_wake_ptr(struct sbitmap_queue *sbq) 506 { 507 int i, wake_index; 508 509 if (!atomic_read(&sbq->ws_active)) 510 return NULL; 511 512 wake_index = atomic_read(&sbq->wake_index); 513 for (i = 0; i < SBQ_WAIT_QUEUES; i++) { 514 struct sbq_wait_state *ws = &sbq->ws[wake_index]; 515 516 if (waitqueue_active(&ws->wait)) { 517 if (wake_index != atomic_read(&sbq->wake_index)) 518 atomic_set(&sbq->wake_index, wake_index); 519 return ws; 520 } 521 522 wake_index = sbq_index_inc(wake_index); 523 } 524 525 return NULL; 526 } 527 528 static bool __sbq_wake_up(struct sbitmap_queue *sbq) 529 { 530 struct sbq_wait_state *ws; 531 unsigned int wake_batch; 532 int wait_cnt; 533 534 ws = sbq_wake_ptr(sbq); 535 if (!ws) 536 return false; 537 538 wait_cnt = atomic_dec_return(&ws->wait_cnt); 539 if (wait_cnt <= 0) { 540 int ret; 541 542 wake_batch = READ_ONCE(sbq->wake_batch); 543 544 /* 545 * Pairs with the memory barrier in sbitmap_queue_resize() to 546 * ensure that we see the batch size update before the wait 547 * count is reset. 548 */ 549 smp_mb__before_atomic(); 550 551 /* 552 * For concurrent callers of this, the one that failed the 553 * atomic_cmpxhcg() race should call this function again 554 * to wakeup a new batch on a different 'ws'. 555 */ 556 ret = atomic_cmpxchg(&ws->wait_cnt, wait_cnt, wake_batch); 557 if (ret == wait_cnt) { 558 sbq_index_atomic_inc(&sbq->wake_index); 559 wake_up_nr(&ws->wait, wake_batch); 560 return false; 561 } 562 563 return true; 564 } 565 566 return false; 567 } 568 569 void sbitmap_queue_wake_up(struct sbitmap_queue *sbq) 570 { 571 while (__sbq_wake_up(sbq)) 572 ; 573 } 574 EXPORT_SYMBOL_GPL(sbitmap_queue_wake_up); 575 576 void sbitmap_queue_clear(struct sbitmap_queue *sbq, unsigned int nr, 577 unsigned int cpu) 578 { 579 /* 580 * Once the clear bit is set, the bit may be allocated out. 581 * 582 * Orders READ/WRITE on the asssociated instance(such as request 583 * of blk_mq) by this bit for avoiding race with re-allocation, 584 * and its pair is the memory barrier implied in __sbitmap_get_word. 585 * 586 * One invariant is that the clear bit has to be zero when the bit 587 * is in use. 588 */ 589 smp_mb__before_atomic(); 590 sbitmap_deferred_clear_bit(&sbq->sb, nr); 591 592 /* 593 * Pairs with the memory barrier in set_current_state() to ensure the 594 * proper ordering of clear_bit_unlock()/waitqueue_active() in the waker 595 * and test_and_set_bit_lock()/prepare_to_wait()/finish_wait() in the 596 * waiter. See the comment on waitqueue_active(). 597 */ 598 smp_mb__after_atomic(); 599 sbitmap_queue_wake_up(sbq); 600 601 if (likely(!sbq->round_robin && nr < sbq->sb.depth)) 602 *per_cpu_ptr(sbq->alloc_hint, cpu) = nr; 603 } 604 EXPORT_SYMBOL_GPL(sbitmap_queue_clear); 605 606 void sbitmap_queue_wake_all(struct sbitmap_queue *sbq) 607 { 608 int i, wake_index; 609 610 /* 611 * Pairs with the memory barrier in set_current_state() like in 612 * sbitmap_queue_wake_up(). 613 */ 614 smp_mb(); 615 wake_index = atomic_read(&sbq->wake_index); 616 for (i = 0; i < SBQ_WAIT_QUEUES; i++) { 617 struct sbq_wait_state *ws = &sbq->ws[wake_index]; 618 619 if (waitqueue_active(&ws->wait)) 620 wake_up(&ws->wait); 621 622 wake_index = sbq_index_inc(wake_index); 623 } 624 } 625 EXPORT_SYMBOL_GPL(sbitmap_queue_wake_all); 626 627 void sbitmap_queue_show(struct sbitmap_queue *sbq, struct seq_file *m) 628 { 629 bool first; 630 int i; 631 632 sbitmap_show(&sbq->sb, m); 633 634 seq_puts(m, "alloc_hint={"); 635 first = true; 636 for_each_possible_cpu(i) { 637 if (!first) 638 seq_puts(m, ", "); 639 first = false; 640 seq_printf(m, "%u", *per_cpu_ptr(sbq->alloc_hint, i)); 641 } 642 seq_puts(m, "}\n"); 643 644 seq_printf(m, "wake_batch=%u\n", sbq->wake_batch); 645 seq_printf(m, "wake_index=%d\n", atomic_read(&sbq->wake_index)); 646 seq_printf(m, "ws_active=%d\n", atomic_read(&sbq->ws_active)); 647 648 seq_puts(m, "ws={\n"); 649 for (i = 0; i < SBQ_WAIT_QUEUES; i++) { 650 struct sbq_wait_state *ws = &sbq->ws[i]; 651 652 seq_printf(m, "\t{.wait_cnt=%d, .wait=%s},\n", 653 atomic_read(&ws->wait_cnt), 654 waitqueue_active(&ws->wait) ? "active" : "inactive"); 655 } 656 seq_puts(m, "}\n"); 657 658 seq_printf(m, "round_robin=%d\n", sbq->round_robin); 659 seq_printf(m, "min_shallow_depth=%u\n", sbq->min_shallow_depth); 660 } 661 EXPORT_SYMBOL_GPL(sbitmap_queue_show); 662 663 void sbitmap_add_wait_queue(struct sbitmap_queue *sbq, 664 struct sbq_wait_state *ws, 665 struct sbq_wait *sbq_wait) 666 { 667 if (!sbq_wait->sbq) { 668 sbq_wait->sbq = sbq; 669 atomic_inc(&sbq->ws_active); 670 } 671 add_wait_queue(&ws->wait, &sbq_wait->wait); 672 } 673 EXPORT_SYMBOL_GPL(sbitmap_add_wait_queue); 674 675 void sbitmap_del_wait_queue(struct sbq_wait *sbq_wait) 676 { 677 list_del_init(&sbq_wait->wait.entry); 678 if (sbq_wait->sbq) { 679 atomic_dec(&sbq_wait->sbq->ws_active); 680 sbq_wait->sbq = NULL; 681 } 682 } 683 EXPORT_SYMBOL_GPL(sbitmap_del_wait_queue); 684 685 void sbitmap_prepare_to_wait(struct sbitmap_queue *sbq, 686 struct sbq_wait_state *ws, 687 struct sbq_wait *sbq_wait, int state) 688 { 689 if (!sbq_wait->sbq) { 690 atomic_inc(&sbq->ws_active); 691 sbq_wait->sbq = sbq; 692 } 693 prepare_to_wait_exclusive(&ws->wait, &sbq_wait->wait, state); 694 } 695 EXPORT_SYMBOL_GPL(sbitmap_prepare_to_wait); 696 697 void sbitmap_finish_wait(struct sbitmap_queue *sbq, struct sbq_wait_state *ws, 698 struct sbq_wait *sbq_wait) 699 { 700 finish_wait(&ws->wait, &sbq_wait->wait); 701 if (sbq_wait->sbq) { 702 atomic_dec(&sbq->ws_active); 703 sbq_wait->sbq = NULL; 704 } 705 } 706 EXPORT_SYMBOL_GPL(sbitmap_finish_wait); 707