xref: /openbmc/linux/lib/sbitmap.c (revision 1e1129b65ef3f72dbccf24de56b700a181b45227)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2016 Facebook
4  * Copyright (C) 2013-2014 Jens Axboe
5  */
6 
7 #include <linux/sched.h>
8 #include <linux/random.h>
9 #include <linux/sbitmap.h>
10 #include <linux/seq_file.h>
11 
12 /*
13  * See if we have deferred clears that we can batch move
14  */
15 static inline bool sbitmap_deferred_clear(struct sbitmap *sb, int index)
16 {
17 	unsigned long mask, val;
18 	bool ret = false;
19 	unsigned long flags;
20 
21 	spin_lock_irqsave(&sb->map[index].swap_lock, flags);
22 
23 	if (!sb->map[index].cleared)
24 		goto out_unlock;
25 
26 	/*
27 	 * First get a stable cleared mask, setting the old mask to 0.
28 	 */
29 	mask = xchg(&sb->map[index].cleared, 0);
30 
31 	/*
32 	 * Now clear the masked bits in our free word
33 	 */
34 	do {
35 		val = sb->map[index].word;
36 	} while (cmpxchg(&sb->map[index].word, val, val & ~mask) != val);
37 
38 	ret = true;
39 out_unlock:
40 	spin_unlock_irqrestore(&sb->map[index].swap_lock, flags);
41 	return ret;
42 }
43 
44 int sbitmap_init_node(struct sbitmap *sb, unsigned int depth, int shift,
45 		      gfp_t flags, int node)
46 {
47 	unsigned int bits_per_word;
48 	unsigned int i;
49 
50 	if (shift < 0) {
51 		shift = ilog2(BITS_PER_LONG);
52 		/*
53 		 * If the bitmap is small, shrink the number of bits per word so
54 		 * we spread over a few cachelines, at least. If less than 4
55 		 * bits, just forget about it, it's not going to work optimally
56 		 * anyway.
57 		 */
58 		if (depth >= 4) {
59 			while ((4U << shift) > depth)
60 				shift--;
61 		}
62 	}
63 	bits_per_word = 1U << shift;
64 	if (bits_per_word > BITS_PER_LONG)
65 		return -EINVAL;
66 
67 	sb->shift = shift;
68 	sb->depth = depth;
69 	sb->map_nr = DIV_ROUND_UP(sb->depth, bits_per_word);
70 
71 	if (depth == 0) {
72 		sb->map = NULL;
73 		return 0;
74 	}
75 
76 	sb->map = kcalloc_node(sb->map_nr, sizeof(*sb->map), flags, node);
77 	if (!sb->map)
78 		return -ENOMEM;
79 
80 	for (i = 0; i < sb->map_nr; i++) {
81 		sb->map[i].depth = min(depth, bits_per_word);
82 		depth -= sb->map[i].depth;
83 		spin_lock_init(&sb->map[i].swap_lock);
84 	}
85 	return 0;
86 }
87 EXPORT_SYMBOL_GPL(sbitmap_init_node);
88 
89 void sbitmap_resize(struct sbitmap *sb, unsigned int depth)
90 {
91 	unsigned int bits_per_word = 1U << sb->shift;
92 	unsigned int i;
93 
94 	for (i = 0; i < sb->map_nr; i++)
95 		sbitmap_deferred_clear(sb, i);
96 
97 	sb->depth = depth;
98 	sb->map_nr = DIV_ROUND_UP(sb->depth, bits_per_word);
99 
100 	for (i = 0; i < sb->map_nr; i++) {
101 		sb->map[i].depth = min(depth, bits_per_word);
102 		depth -= sb->map[i].depth;
103 	}
104 }
105 EXPORT_SYMBOL_GPL(sbitmap_resize);
106 
107 static int __sbitmap_get_word(unsigned long *word, unsigned long depth,
108 			      unsigned int hint, bool wrap)
109 {
110 	unsigned int orig_hint = hint;
111 	int nr;
112 
113 	while (1) {
114 		nr = find_next_zero_bit(word, depth, hint);
115 		if (unlikely(nr >= depth)) {
116 			/*
117 			 * We started with an offset, and we didn't reset the
118 			 * offset to 0 in a failure case, so start from 0 to
119 			 * exhaust the map.
120 			 */
121 			if (orig_hint && hint && wrap) {
122 				hint = orig_hint = 0;
123 				continue;
124 			}
125 			return -1;
126 		}
127 
128 		if (!test_and_set_bit_lock(nr, word))
129 			break;
130 
131 		hint = nr + 1;
132 		if (hint >= depth - 1)
133 			hint = 0;
134 	}
135 
136 	return nr;
137 }
138 
139 static int sbitmap_find_bit_in_index(struct sbitmap *sb, int index,
140 				     unsigned int alloc_hint, bool round_robin)
141 {
142 	int nr;
143 
144 	do {
145 		nr = __sbitmap_get_word(&sb->map[index].word,
146 					sb->map[index].depth, alloc_hint,
147 					!round_robin);
148 		if (nr != -1)
149 			break;
150 		if (!sbitmap_deferred_clear(sb, index))
151 			break;
152 	} while (1);
153 
154 	return nr;
155 }
156 
157 int sbitmap_get(struct sbitmap *sb, unsigned int alloc_hint, bool round_robin)
158 {
159 	unsigned int i, index;
160 	int nr = -1;
161 
162 	index = SB_NR_TO_INDEX(sb, alloc_hint);
163 
164 	/*
165 	 * Unless we're doing round robin tag allocation, just use the
166 	 * alloc_hint to find the right word index. No point in looping
167 	 * twice in find_next_zero_bit() for that case.
168 	 */
169 	if (round_robin)
170 		alloc_hint = SB_NR_TO_BIT(sb, alloc_hint);
171 	else
172 		alloc_hint = 0;
173 
174 	for (i = 0; i < sb->map_nr; i++) {
175 		nr = sbitmap_find_bit_in_index(sb, index, alloc_hint,
176 						round_robin);
177 		if (nr != -1) {
178 			nr += index << sb->shift;
179 			break;
180 		}
181 
182 		/* Jump to next index. */
183 		alloc_hint = 0;
184 		if (++index >= sb->map_nr)
185 			index = 0;
186 	}
187 
188 	return nr;
189 }
190 EXPORT_SYMBOL_GPL(sbitmap_get);
191 
192 int sbitmap_get_shallow(struct sbitmap *sb, unsigned int alloc_hint,
193 			unsigned long shallow_depth)
194 {
195 	unsigned int i, index;
196 	int nr = -1;
197 
198 	index = SB_NR_TO_INDEX(sb, alloc_hint);
199 
200 	for (i = 0; i < sb->map_nr; i++) {
201 again:
202 		nr = __sbitmap_get_word(&sb->map[index].word,
203 					min(sb->map[index].depth, shallow_depth),
204 					SB_NR_TO_BIT(sb, alloc_hint), true);
205 		if (nr != -1) {
206 			nr += index << sb->shift;
207 			break;
208 		}
209 
210 		if (sbitmap_deferred_clear(sb, index))
211 			goto again;
212 
213 		/* Jump to next index. */
214 		index++;
215 		alloc_hint = index << sb->shift;
216 
217 		if (index >= sb->map_nr) {
218 			index = 0;
219 			alloc_hint = 0;
220 		}
221 	}
222 
223 	return nr;
224 }
225 EXPORT_SYMBOL_GPL(sbitmap_get_shallow);
226 
227 bool sbitmap_any_bit_set(const struct sbitmap *sb)
228 {
229 	unsigned int i;
230 
231 	for (i = 0; i < sb->map_nr; i++) {
232 		if (sb->map[i].word & ~sb->map[i].cleared)
233 			return true;
234 	}
235 	return false;
236 }
237 EXPORT_SYMBOL_GPL(sbitmap_any_bit_set);
238 
239 static unsigned int __sbitmap_weight(const struct sbitmap *sb, bool set)
240 {
241 	unsigned int i, weight = 0;
242 
243 	for (i = 0; i < sb->map_nr; i++) {
244 		const struct sbitmap_word *word = &sb->map[i];
245 
246 		if (set)
247 			weight += bitmap_weight(&word->word, word->depth);
248 		else
249 			weight += bitmap_weight(&word->cleared, word->depth);
250 	}
251 	return weight;
252 }
253 
254 static unsigned int sbitmap_weight(const struct sbitmap *sb)
255 {
256 	return __sbitmap_weight(sb, true);
257 }
258 
259 static unsigned int sbitmap_cleared(const struct sbitmap *sb)
260 {
261 	return __sbitmap_weight(sb, false);
262 }
263 
264 void sbitmap_show(struct sbitmap *sb, struct seq_file *m)
265 {
266 	seq_printf(m, "depth=%u\n", sb->depth);
267 	seq_printf(m, "busy=%u\n", sbitmap_weight(sb) - sbitmap_cleared(sb));
268 	seq_printf(m, "cleared=%u\n", sbitmap_cleared(sb));
269 	seq_printf(m, "bits_per_word=%u\n", 1U << sb->shift);
270 	seq_printf(m, "map_nr=%u\n", sb->map_nr);
271 }
272 EXPORT_SYMBOL_GPL(sbitmap_show);
273 
274 static inline void emit_byte(struct seq_file *m, unsigned int offset, u8 byte)
275 {
276 	if ((offset & 0xf) == 0) {
277 		if (offset != 0)
278 			seq_putc(m, '\n');
279 		seq_printf(m, "%08x:", offset);
280 	}
281 	if ((offset & 0x1) == 0)
282 		seq_putc(m, ' ');
283 	seq_printf(m, "%02x", byte);
284 }
285 
286 void sbitmap_bitmap_show(struct sbitmap *sb, struct seq_file *m)
287 {
288 	u8 byte = 0;
289 	unsigned int byte_bits = 0;
290 	unsigned int offset = 0;
291 	int i;
292 
293 	for (i = 0; i < sb->map_nr; i++) {
294 		unsigned long word = READ_ONCE(sb->map[i].word);
295 		unsigned long cleared = READ_ONCE(sb->map[i].cleared);
296 		unsigned int word_bits = READ_ONCE(sb->map[i].depth);
297 
298 		word &= ~cleared;
299 
300 		while (word_bits > 0) {
301 			unsigned int bits = min(8 - byte_bits, word_bits);
302 
303 			byte |= (word & (BIT(bits) - 1)) << byte_bits;
304 			byte_bits += bits;
305 			if (byte_bits == 8) {
306 				emit_byte(m, offset, byte);
307 				byte = 0;
308 				byte_bits = 0;
309 				offset++;
310 			}
311 			word >>= bits;
312 			word_bits -= bits;
313 		}
314 	}
315 	if (byte_bits) {
316 		emit_byte(m, offset, byte);
317 		offset++;
318 	}
319 	if (offset)
320 		seq_putc(m, '\n');
321 }
322 EXPORT_SYMBOL_GPL(sbitmap_bitmap_show);
323 
324 static unsigned int sbq_calc_wake_batch(struct sbitmap_queue *sbq,
325 					unsigned int depth)
326 {
327 	unsigned int wake_batch;
328 	unsigned int shallow_depth;
329 
330 	/*
331 	 * For each batch, we wake up one queue. We need to make sure that our
332 	 * batch size is small enough that the full depth of the bitmap,
333 	 * potentially limited by a shallow depth, is enough to wake up all of
334 	 * the queues.
335 	 *
336 	 * Each full word of the bitmap has bits_per_word bits, and there might
337 	 * be a partial word. There are depth / bits_per_word full words and
338 	 * depth % bits_per_word bits left over. In bitwise arithmetic:
339 	 *
340 	 * bits_per_word = 1 << shift
341 	 * depth / bits_per_word = depth >> shift
342 	 * depth % bits_per_word = depth & ((1 << shift) - 1)
343 	 *
344 	 * Each word can be limited to sbq->min_shallow_depth bits.
345 	 */
346 	shallow_depth = min(1U << sbq->sb.shift, sbq->min_shallow_depth);
347 	depth = ((depth >> sbq->sb.shift) * shallow_depth +
348 		 min(depth & ((1U << sbq->sb.shift) - 1), shallow_depth));
349 	wake_batch = clamp_t(unsigned int, depth / SBQ_WAIT_QUEUES, 1,
350 			     SBQ_WAKE_BATCH);
351 
352 	return wake_batch;
353 }
354 
355 int sbitmap_queue_init_node(struct sbitmap_queue *sbq, unsigned int depth,
356 			    int shift, bool round_robin, gfp_t flags, int node)
357 {
358 	int ret;
359 	int i;
360 
361 	ret = sbitmap_init_node(&sbq->sb, depth, shift, flags, node);
362 	if (ret)
363 		return ret;
364 
365 	sbq->alloc_hint = alloc_percpu_gfp(unsigned int, flags);
366 	if (!sbq->alloc_hint) {
367 		sbitmap_free(&sbq->sb);
368 		return -ENOMEM;
369 	}
370 
371 	if (depth && !round_robin) {
372 		for_each_possible_cpu(i)
373 			*per_cpu_ptr(sbq->alloc_hint, i) = prandom_u32() % depth;
374 	}
375 
376 	sbq->min_shallow_depth = UINT_MAX;
377 	sbq->wake_batch = sbq_calc_wake_batch(sbq, depth);
378 	atomic_set(&sbq->wake_index, 0);
379 	atomic_set(&sbq->ws_active, 0);
380 
381 	sbq->ws = kzalloc_node(SBQ_WAIT_QUEUES * sizeof(*sbq->ws), flags, node);
382 	if (!sbq->ws) {
383 		free_percpu(sbq->alloc_hint);
384 		sbitmap_free(&sbq->sb);
385 		return -ENOMEM;
386 	}
387 
388 	for (i = 0; i < SBQ_WAIT_QUEUES; i++) {
389 		init_waitqueue_head(&sbq->ws[i].wait);
390 		atomic_set(&sbq->ws[i].wait_cnt, sbq->wake_batch);
391 	}
392 
393 	sbq->round_robin = round_robin;
394 	return 0;
395 }
396 EXPORT_SYMBOL_GPL(sbitmap_queue_init_node);
397 
398 static void sbitmap_queue_update_wake_batch(struct sbitmap_queue *sbq,
399 					    unsigned int depth)
400 {
401 	unsigned int wake_batch = sbq_calc_wake_batch(sbq, depth);
402 	int i;
403 
404 	if (sbq->wake_batch != wake_batch) {
405 		WRITE_ONCE(sbq->wake_batch, wake_batch);
406 		/*
407 		 * Pairs with the memory barrier in sbitmap_queue_wake_up()
408 		 * to ensure that the batch size is updated before the wait
409 		 * counts.
410 		 */
411 		smp_mb();
412 		for (i = 0; i < SBQ_WAIT_QUEUES; i++)
413 			atomic_set(&sbq->ws[i].wait_cnt, 1);
414 	}
415 }
416 
417 void sbitmap_queue_resize(struct sbitmap_queue *sbq, unsigned int depth)
418 {
419 	sbitmap_queue_update_wake_batch(sbq, depth);
420 	sbitmap_resize(&sbq->sb, depth);
421 }
422 EXPORT_SYMBOL_GPL(sbitmap_queue_resize);
423 
424 int __sbitmap_queue_get(struct sbitmap_queue *sbq)
425 {
426 	unsigned int hint, depth;
427 	int nr;
428 
429 	hint = this_cpu_read(*sbq->alloc_hint);
430 	depth = READ_ONCE(sbq->sb.depth);
431 	if (unlikely(hint >= depth)) {
432 		hint = depth ? prandom_u32() % depth : 0;
433 		this_cpu_write(*sbq->alloc_hint, hint);
434 	}
435 	nr = sbitmap_get(&sbq->sb, hint, sbq->round_robin);
436 
437 	if (nr == -1) {
438 		/* If the map is full, a hint won't do us much good. */
439 		this_cpu_write(*sbq->alloc_hint, 0);
440 	} else if (nr == hint || unlikely(sbq->round_robin)) {
441 		/* Only update the hint if we used it. */
442 		hint = nr + 1;
443 		if (hint >= depth - 1)
444 			hint = 0;
445 		this_cpu_write(*sbq->alloc_hint, hint);
446 	}
447 
448 	return nr;
449 }
450 EXPORT_SYMBOL_GPL(__sbitmap_queue_get);
451 
452 int __sbitmap_queue_get_shallow(struct sbitmap_queue *sbq,
453 				unsigned int shallow_depth)
454 {
455 	unsigned int hint, depth;
456 	int nr;
457 
458 	WARN_ON_ONCE(shallow_depth < sbq->min_shallow_depth);
459 
460 	hint = this_cpu_read(*sbq->alloc_hint);
461 	depth = READ_ONCE(sbq->sb.depth);
462 	if (unlikely(hint >= depth)) {
463 		hint = depth ? prandom_u32() % depth : 0;
464 		this_cpu_write(*sbq->alloc_hint, hint);
465 	}
466 	nr = sbitmap_get_shallow(&sbq->sb, hint, shallow_depth);
467 
468 	if (nr == -1) {
469 		/* If the map is full, a hint won't do us much good. */
470 		this_cpu_write(*sbq->alloc_hint, 0);
471 	} else if (nr == hint || unlikely(sbq->round_robin)) {
472 		/* Only update the hint if we used it. */
473 		hint = nr + 1;
474 		if (hint >= depth - 1)
475 			hint = 0;
476 		this_cpu_write(*sbq->alloc_hint, hint);
477 	}
478 
479 	return nr;
480 }
481 EXPORT_SYMBOL_GPL(__sbitmap_queue_get_shallow);
482 
483 void sbitmap_queue_min_shallow_depth(struct sbitmap_queue *sbq,
484 				     unsigned int min_shallow_depth)
485 {
486 	sbq->min_shallow_depth = min_shallow_depth;
487 	sbitmap_queue_update_wake_batch(sbq, sbq->sb.depth);
488 }
489 EXPORT_SYMBOL_GPL(sbitmap_queue_min_shallow_depth);
490 
491 static struct sbq_wait_state *sbq_wake_ptr(struct sbitmap_queue *sbq)
492 {
493 	int i, wake_index;
494 
495 	if (!atomic_read(&sbq->ws_active))
496 		return NULL;
497 
498 	wake_index = atomic_read(&sbq->wake_index);
499 	for (i = 0; i < SBQ_WAIT_QUEUES; i++) {
500 		struct sbq_wait_state *ws = &sbq->ws[wake_index];
501 
502 		if (waitqueue_active(&ws->wait)) {
503 			if (wake_index != atomic_read(&sbq->wake_index))
504 				atomic_set(&sbq->wake_index, wake_index);
505 			return ws;
506 		}
507 
508 		wake_index = sbq_index_inc(wake_index);
509 	}
510 
511 	return NULL;
512 }
513 
514 static bool __sbq_wake_up(struct sbitmap_queue *sbq)
515 {
516 	struct sbq_wait_state *ws;
517 	unsigned int wake_batch;
518 	int wait_cnt;
519 
520 	ws = sbq_wake_ptr(sbq);
521 	if (!ws)
522 		return false;
523 
524 	wait_cnt = atomic_dec_return(&ws->wait_cnt);
525 	if (wait_cnt <= 0) {
526 		int ret;
527 
528 		wake_batch = READ_ONCE(sbq->wake_batch);
529 
530 		/*
531 		 * Pairs with the memory barrier in sbitmap_queue_resize() to
532 		 * ensure that we see the batch size update before the wait
533 		 * count is reset.
534 		 */
535 		smp_mb__before_atomic();
536 
537 		/*
538 		 * For concurrent callers of this, the one that failed the
539 		 * atomic_cmpxhcg() race should call this function again
540 		 * to wakeup a new batch on a different 'ws'.
541 		 */
542 		ret = atomic_cmpxchg(&ws->wait_cnt, wait_cnt, wake_batch);
543 		if (ret == wait_cnt) {
544 			sbq_index_atomic_inc(&sbq->wake_index);
545 			wake_up_nr(&ws->wait, wake_batch);
546 			return false;
547 		}
548 
549 		return true;
550 	}
551 
552 	return false;
553 }
554 
555 void sbitmap_queue_wake_up(struct sbitmap_queue *sbq)
556 {
557 	while (__sbq_wake_up(sbq))
558 		;
559 }
560 EXPORT_SYMBOL_GPL(sbitmap_queue_wake_up);
561 
562 void sbitmap_queue_clear(struct sbitmap_queue *sbq, unsigned int nr,
563 			 unsigned int cpu)
564 {
565 	/*
566 	 * Once the clear bit is set, the bit may be allocated out.
567 	 *
568 	 * Orders READ/WRITE on the asssociated instance(such as request
569 	 * of blk_mq) by this bit for avoiding race with re-allocation,
570 	 * and its pair is the memory barrier implied in __sbitmap_get_word.
571 	 *
572 	 * One invariant is that the clear bit has to be zero when the bit
573 	 * is in use.
574 	 */
575 	smp_mb__before_atomic();
576 	sbitmap_deferred_clear_bit(&sbq->sb, nr);
577 
578 	/*
579 	 * Pairs with the memory barrier in set_current_state() to ensure the
580 	 * proper ordering of clear_bit_unlock()/waitqueue_active() in the waker
581 	 * and test_and_set_bit_lock()/prepare_to_wait()/finish_wait() in the
582 	 * waiter. See the comment on waitqueue_active().
583 	 */
584 	smp_mb__after_atomic();
585 	sbitmap_queue_wake_up(sbq);
586 
587 	if (likely(!sbq->round_robin && nr < sbq->sb.depth))
588 		*per_cpu_ptr(sbq->alloc_hint, cpu) = nr;
589 }
590 EXPORT_SYMBOL_GPL(sbitmap_queue_clear);
591 
592 void sbitmap_queue_wake_all(struct sbitmap_queue *sbq)
593 {
594 	int i, wake_index;
595 
596 	/*
597 	 * Pairs with the memory barrier in set_current_state() like in
598 	 * sbitmap_queue_wake_up().
599 	 */
600 	smp_mb();
601 	wake_index = atomic_read(&sbq->wake_index);
602 	for (i = 0; i < SBQ_WAIT_QUEUES; i++) {
603 		struct sbq_wait_state *ws = &sbq->ws[wake_index];
604 
605 		if (waitqueue_active(&ws->wait))
606 			wake_up(&ws->wait);
607 
608 		wake_index = sbq_index_inc(wake_index);
609 	}
610 }
611 EXPORT_SYMBOL_GPL(sbitmap_queue_wake_all);
612 
613 void sbitmap_queue_show(struct sbitmap_queue *sbq, struct seq_file *m)
614 {
615 	bool first;
616 	int i;
617 
618 	sbitmap_show(&sbq->sb, m);
619 
620 	seq_puts(m, "alloc_hint={");
621 	first = true;
622 	for_each_possible_cpu(i) {
623 		if (!first)
624 			seq_puts(m, ", ");
625 		first = false;
626 		seq_printf(m, "%u", *per_cpu_ptr(sbq->alloc_hint, i));
627 	}
628 	seq_puts(m, "}\n");
629 
630 	seq_printf(m, "wake_batch=%u\n", sbq->wake_batch);
631 	seq_printf(m, "wake_index=%d\n", atomic_read(&sbq->wake_index));
632 	seq_printf(m, "ws_active=%d\n", atomic_read(&sbq->ws_active));
633 
634 	seq_puts(m, "ws={\n");
635 	for (i = 0; i < SBQ_WAIT_QUEUES; i++) {
636 		struct sbq_wait_state *ws = &sbq->ws[i];
637 
638 		seq_printf(m, "\t{.wait_cnt=%d, .wait=%s},\n",
639 			   atomic_read(&ws->wait_cnt),
640 			   waitqueue_active(&ws->wait) ? "active" : "inactive");
641 	}
642 	seq_puts(m, "}\n");
643 
644 	seq_printf(m, "round_robin=%d\n", sbq->round_robin);
645 	seq_printf(m, "min_shallow_depth=%u\n", sbq->min_shallow_depth);
646 }
647 EXPORT_SYMBOL_GPL(sbitmap_queue_show);
648 
649 void sbitmap_add_wait_queue(struct sbitmap_queue *sbq,
650 			    struct sbq_wait_state *ws,
651 			    struct sbq_wait *sbq_wait)
652 {
653 	if (!sbq_wait->sbq) {
654 		sbq_wait->sbq = sbq;
655 		atomic_inc(&sbq->ws_active);
656 		add_wait_queue(&ws->wait, &sbq_wait->wait);
657 	}
658 }
659 EXPORT_SYMBOL_GPL(sbitmap_add_wait_queue);
660 
661 void sbitmap_del_wait_queue(struct sbq_wait *sbq_wait)
662 {
663 	list_del_init(&sbq_wait->wait.entry);
664 	if (sbq_wait->sbq) {
665 		atomic_dec(&sbq_wait->sbq->ws_active);
666 		sbq_wait->sbq = NULL;
667 	}
668 }
669 EXPORT_SYMBOL_GPL(sbitmap_del_wait_queue);
670 
671 void sbitmap_prepare_to_wait(struct sbitmap_queue *sbq,
672 			     struct sbq_wait_state *ws,
673 			     struct sbq_wait *sbq_wait, int state)
674 {
675 	if (!sbq_wait->sbq) {
676 		atomic_inc(&sbq->ws_active);
677 		sbq_wait->sbq = sbq;
678 	}
679 	prepare_to_wait_exclusive(&ws->wait, &sbq_wait->wait, state);
680 }
681 EXPORT_SYMBOL_GPL(sbitmap_prepare_to_wait);
682 
683 void sbitmap_finish_wait(struct sbitmap_queue *sbq, struct sbq_wait_state *ws,
684 			 struct sbq_wait *sbq_wait)
685 {
686 	finish_wait(&ws->wait, &sbq_wait->wait);
687 	if (sbq_wait->sbq) {
688 		atomic_dec(&sbq->ws_active);
689 		sbq_wait->sbq = NULL;
690 	}
691 }
692 EXPORT_SYMBOL_GPL(sbitmap_finish_wait);
693