1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2016 Facebook 4 * Copyright (C) 2013-2014 Jens Axboe 5 */ 6 7 #include <linux/sched.h> 8 #include <linux/random.h> 9 #include <linux/sbitmap.h> 10 #include <linux/seq_file.h> 11 12 /* 13 * See if we have deferred clears that we can batch move 14 */ 15 static inline bool sbitmap_deferred_clear(struct sbitmap *sb, int index) 16 { 17 unsigned long mask, val; 18 bool ret = false; 19 unsigned long flags; 20 21 spin_lock_irqsave(&sb->map[index].swap_lock, flags); 22 23 if (!sb->map[index].cleared) 24 goto out_unlock; 25 26 /* 27 * First get a stable cleared mask, setting the old mask to 0. 28 */ 29 mask = xchg(&sb->map[index].cleared, 0); 30 31 /* 32 * Now clear the masked bits in our free word 33 */ 34 do { 35 val = sb->map[index].word; 36 } while (cmpxchg(&sb->map[index].word, val, val & ~mask) != val); 37 38 ret = true; 39 out_unlock: 40 spin_unlock_irqrestore(&sb->map[index].swap_lock, flags); 41 return ret; 42 } 43 44 int sbitmap_init_node(struct sbitmap *sb, unsigned int depth, int shift, 45 gfp_t flags, int node) 46 { 47 unsigned int bits_per_word; 48 unsigned int i; 49 50 if (shift < 0) { 51 shift = ilog2(BITS_PER_LONG); 52 /* 53 * If the bitmap is small, shrink the number of bits per word so 54 * we spread over a few cachelines, at least. If less than 4 55 * bits, just forget about it, it's not going to work optimally 56 * anyway. 57 */ 58 if (depth >= 4) { 59 while ((4U << shift) > depth) 60 shift--; 61 } 62 } 63 bits_per_word = 1U << shift; 64 if (bits_per_word > BITS_PER_LONG) 65 return -EINVAL; 66 67 sb->shift = shift; 68 sb->depth = depth; 69 sb->map_nr = DIV_ROUND_UP(sb->depth, bits_per_word); 70 71 if (depth == 0) { 72 sb->map = NULL; 73 return 0; 74 } 75 76 sb->map = kcalloc_node(sb->map_nr, sizeof(*sb->map), flags, node); 77 if (!sb->map) 78 return -ENOMEM; 79 80 for (i = 0; i < sb->map_nr; i++) { 81 sb->map[i].depth = min(depth, bits_per_word); 82 depth -= sb->map[i].depth; 83 spin_lock_init(&sb->map[i].swap_lock); 84 } 85 return 0; 86 } 87 EXPORT_SYMBOL_GPL(sbitmap_init_node); 88 89 void sbitmap_resize(struct sbitmap *sb, unsigned int depth) 90 { 91 unsigned int bits_per_word = 1U << sb->shift; 92 unsigned int i; 93 94 for (i = 0; i < sb->map_nr; i++) 95 sbitmap_deferred_clear(sb, i); 96 97 sb->depth = depth; 98 sb->map_nr = DIV_ROUND_UP(sb->depth, bits_per_word); 99 100 for (i = 0; i < sb->map_nr; i++) { 101 sb->map[i].depth = min(depth, bits_per_word); 102 depth -= sb->map[i].depth; 103 } 104 } 105 EXPORT_SYMBOL_GPL(sbitmap_resize); 106 107 static int __sbitmap_get_word(unsigned long *word, unsigned long depth, 108 unsigned int hint, bool wrap) 109 { 110 unsigned int orig_hint = hint; 111 int nr; 112 113 while (1) { 114 nr = find_next_zero_bit(word, depth, hint); 115 if (unlikely(nr >= depth)) { 116 /* 117 * We started with an offset, and we didn't reset the 118 * offset to 0 in a failure case, so start from 0 to 119 * exhaust the map. 120 */ 121 if (orig_hint && hint && wrap) { 122 hint = orig_hint = 0; 123 continue; 124 } 125 return -1; 126 } 127 128 if (!test_and_set_bit_lock(nr, word)) 129 break; 130 131 hint = nr + 1; 132 if (hint >= depth - 1) 133 hint = 0; 134 } 135 136 return nr; 137 } 138 139 static int sbitmap_find_bit_in_index(struct sbitmap *sb, int index, 140 unsigned int alloc_hint, bool round_robin) 141 { 142 int nr; 143 144 do { 145 nr = __sbitmap_get_word(&sb->map[index].word, 146 sb->map[index].depth, alloc_hint, 147 !round_robin); 148 if (nr != -1) 149 break; 150 if (!sbitmap_deferred_clear(sb, index)) 151 break; 152 } while (1); 153 154 return nr; 155 } 156 157 int sbitmap_get(struct sbitmap *sb, unsigned int alloc_hint, bool round_robin) 158 { 159 unsigned int i, index; 160 int nr = -1; 161 162 index = SB_NR_TO_INDEX(sb, alloc_hint); 163 164 /* 165 * Unless we're doing round robin tag allocation, just use the 166 * alloc_hint to find the right word index. No point in looping 167 * twice in find_next_zero_bit() for that case. 168 */ 169 if (round_robin) 170 alloc_hint = SB_NR_TO_BIT(sb, alloc_hint); 171 else 172 alloc_hint = 0; 173 174 for (i = 0; i < sb->map_nr; i++) { 175 nr = sbitmap_find_bit_in_index(sb, index, alloc_hint, 176 round_robin); 177 if (nr != -1) { 178 nr += index << sb->shift; 179 break; 180 } 181 182 /* Jump to next index. */ 183 alloc_hint = 0; 184 if (++index >= sb->map_nr) 185 index = 0; 186 } 187 188 return nr; 189 } 190 EXPORT_SYMBOL_GPL(sbitmap_get); 191 192 int sbitmap_get_shallow(struct sbitmap *sb, unsigned int alloc_hint, 193 unsigned long shallow_depth) 194 { 195 unsigned int i, index; 196 int nr = -1; 197 198 index = SB_NR_TO_INDEX(sb, alloc_hint); 199 200 for (i = 0; i < sb->map_nr; i++) { 201 again: 202 nr = __sbitmap_get_word(&sb->map[index].word, 203 min(sb->map[index].depth, shallow_depth), 204 SB_NR_TO_BIT(sb, alloc_hint), true); 205 if (nr != -1) { 206 nr += index << sb->shift; 207 break; 208 } 209 210 if (sbitmap_deferred_clear(sb, index)) 211 goto again; 212 213 /* Jump to next index. */ 214 index++; 215 alloc_hint = index << sb->shift; 216 217 if (index >= sb->map_nr) { 218 index = 0; 219 alloc_hint = 0; 220 } 221 } 222 223 return nr; 224 } 225 EXPORT_SYMBOL_GPL(sbitmap_get_shallow); 226 227 bool sbitmap_any_bit_set(const struct sbitmap *sb) 228 { 229 unsigned int i; 230 231 for (i = 0; i < sb->map_nr; i++) { 232 if (sb->map[i].word & ~sb->map[i].cleared) 233 return true; 234 } 235 return false; 236 } 237 EXPORT_SYMBOL_GPL(sbitmap_any_bit_set); 238 239 static unsigned int __sbitmap_weight(const struct sbitmap *sb, bool set) 240 { 241 unsigned int i, weight = 0; 242 243 for (i = 0; i < sb->map_nr; i++) { 244 const struct sbitmap_word *word = &sb->map[i]; 245 246 if (set) 247 weight += bitmap_weight(&word->word, word->depth); 248 else 249 weight += bitmap_weight(&word->cleared, word->depth); 250 } 251 return weight; 252 } 253 254 static unsigned int sbitmap_weight(const struct sbitmap *sb) 255 { 256 return __sbitmap_weight(sb, true); 257 } 258 259 static unsigned int sbitmap_cleared(const struct sbitmap *sb) 260 { 261 return __sbitmap_weight(sb, false); 262 } 263 264 void sbitmap_show(struct sbitmap *sb, struct seq_file *m) 265 { 266 seq_printf(m, "depth=%u\n", sb->depth); 267 seq_printf(m, "busy=%u\n", sbitmap_weight(sb) - sbitmap_cleared(sb)); 268 seq_printf(m, "cleared=%u\n", sbitmap_cleared(sb)); 269 seq_printf(m, "bits_per_word=%u\n", 1U << sb->shift); 270 seq_printf(m, "map_nr=%u\n", sb->map_nr); 271 } 272 EXPORT_SYMBOL_GPL(sbitmap_show); 273 274 static inline void emit_byte(struct seq_file *m, unsigned int offset, u8 byte) 275 { 276 if ((offset & 0xf) == 0) { 277 if (offset != 0) 278 seq_putc(m, '\n'); 279 seq_printf(m, "%08x:", offset); 280 } 281 if ((offset & 0x1) == 0) 282 seq_putc(m, ' '); 283 seq_printf(m, "%02x", byte); 284 } 285 286 void sbitmap_bitmap_show(struct sbitmap *sb, struct seq_file *m) 287 { 288 u8 byte = 0; 289 unsigned int byte_bits = 0; 290 unsigned int offset = 0; 291 int i; 292 293 for (i = 0; i < sb->map_nr; i++) { 294 unsigned long word = READ_ONCE(sb->map[i].word); 295 unsigned int word_bits = READ_ONCE(sb->map[i].depth); 296 297 while (word_bits > 0) { 298 unsigned int bits = min(8 - byte_bits, word_bits); 299 300 byte |= (word & (BIT(bits) - 1)) << byte_bits; 301 byte_bits += bits; 302 if (byte_bits == 8) { 303 emit_byte(m, offset, byte); 304 byte = 0; 305 byte_bits = 0; 306 offset++; 307 } 308 word >>= bits; 309 word_bits -= bits; 310 } 311 } 312 if (byte_bits) { 313 emit_byte(m, offset, byte); 314 offset++; 315 } 316 if (offset) 317 seq_putc(m, '\n'); 318 } 319 EXPORT_SYMBOL_GPL(sbitmap_bitmap_show); 320 321 static unsigned int sbq_calc_wake_batch(struct sbitmap_queue *sbq, 322 unsigned int depth) 323 { 324 unsigned int wake_batch; 325 unsigned int shallow_depth; 326 327 /* 328 * For each batch, we wake up one queue. We need to make sure that our 329 * batch size is small enough that the full depth of the bitmap, 330 * potentially limited by a shallow depth, is enough to wake up all of 331 * the queues. 332 * 333 * Each full word of the bitmap has bits_per_word bits, and there might 334 * be a partial word. There are depth / bits_per_word full words and 335 * depth % bits_per_word bits left over. In bitwise arithmetic: 336 * 337 * bits_per_word = 1 << shift 338 * depth / bits_per_word = depth >> shift 339 * depth % bits_per_word = depth & ((1 << shift) - 1) 340 * 341 * Each word can be limited to sbq->min_shallow_depth bits. 342 */ 343 shallow_depth = min(1U << sbq->sb.shift, sbq->min_shallow_depth); 344 depth = ((depth >> sbq->sb.shift) * shallow_depth + 345 min(depth & ((1U << sbq->sb.shift) - 1), shallow_depth)); 346 wake_batch = clamp_t(unsigned int, depth / SBQ_WAIT_QUEUES, 1, 347 SBQ_WAKE_BATCH); 348 349 return wake_batch; 350 } 351 352 int sbitmap_queue_init_node(struct sbitmap_queue *sbq, unsigned int depth, 353 int shift, bool round_robin, gfp_t flags, int node) 354 { 355 int ret; 356 int i; 357 358 ret = sbitmap_init_node(&sbq->sb, depth, shift, flags, node); 359 if (ret) 360 return ret; 361 362 sbq->alloc_hint = alloc_percpu_gfp(unsigned int, flags); 363 if (!sbq->alloc_hint) { 364 sbitmap_free(&sbq->sb); 365 return -ENOMEM; 366 } 367 368 if (depth && !round_robin) { 369 for_each_possible_cpu(i) 370 *per_cpu_ptr(sbq->alloc_hint, i) = prandom_u32() % depth; 371 } 372 373 sbq->min_shallow_depth = UINT_MAX; 374 sbq->wake_batch = sbq_calc_wake_batch(sbq, depth); 375 atomic_set(&sbq->wake_index, 0); 376 atomic_set(&sbq->ws_active, 0); 377 378 sbq->ws = kzalloc_node(SBQ_WAIT_QUEUES * sizeof(*sbq->ws), flags, node); 379 if (!sbq->ws) { 380 free_percpu(sbq->alloc_hint); 381 sbitmap_free(&sbq->sb); 382 return -ENOMEM; 383 } 384 385 for (i = 0; i < SBQ_WAIT_QUEUES; i++) { 386 init_waitqueue_head(&sbq->ws[i].wait); 387 atomic_set(&sbq->ws[i].wait_cnt, sbq->wake_batch); 388 } 389 390 sbq->round_robin = round_robin; 391 return 0; 392 } 393 EXPORT_SYMBOL_GPL(sbitmap_queue_init_node); 394 395 static void sbitmap_queue_update_wake_batch(struct sbitmap_queue *sbq, 396 unsigned int depth) 397 { 398 unsigned int wake_batch = sbq_calc_wake_batch(sbq, depth); 399 int i; 400 401 if (sbq->wake_batch != wake_batch) { 402 WRITE_ONCE(sbq->wake_batch, wake_batch); 403 /* 404 * Pairs with the memory barrier in sbitmap_queue_wake_up() 405 * to ensure that the batch size is updated before the wait 406 * counts. 407 */ 408 smp_mb(); 409 for (i = 0; i < SBQ_WAIT_QUEUES; i++) 410 atomic_set(&sbq->ws[i].wait_cnt, 1); 411 } 412 } 413 414 void sbitmap_queue_resize(struct sbitmap_queue *sbq, unsigned int depth) 415 { 416 sbitmap_queue_update_wake_batch(sbq, depth); 417 sbitmap_resize(&sbq->sb, depth); 418 } 419 EXPORT_SYMBOL_GPL(sbitmap_queue_resize); 420 421 int __sbitmap_queue_get(struct sbitmap_queue *sbq) 422 { 423 unsigned int hint, depth; 424 int nr; 425 426 hint = this_cpu_read(*sbq->alloc_hint); 427 depth = READ_ONCE(sbq->sb.depth); 428 if (unlikely(hint >= depth)) { 429 hint = depth ? prandom_u32() % depth : 0; 430 this_cpu_write(*sbq->alloc_hint, hint); 431 } 432 nr = sbitmap_get(&sbq->sb, hint, sbq->round_robin); 433 434 if (nr == -1) { 435 /* If the map is full, a hint won't do us much good. */ 436 this_cpu_write(*sbq->alloc_hint, 0); 437 } else if (nr == hint || unlikely(sbq->round_robin)) { 438 /* Only update the hint if we used it. */ 439 hint = nr + 1; 440 if (hint >= depth - 1) 441 hint = 0; 442 this_cpu_write(*sbq->alloc_hint, hint); 443 } 444 445 return nr; 446 } 447 EXPORT_SYMBOL_GPL(__sbitmap_queue_get); 448 449 int __sbitmap_queue_get_shallow(struct sbitmap_queue *sbq, 450 unsigned int shallow_depth) 451 { 452 unsigned int hint, depth; 453 int nr; 454 455 WARN_ON_ONCE(shallow_depth < sbq->min_shallow_depth); 456 457 hint = this_cpu_read(*sbq->alloc_hint); 458 depth = READ_ONCE(sbq->sb.depth); 459 if (unlikely(hint >= depth)) { 460 hint = depth ? prandom_u32() % depth : 0; 461 this_cpu_write(*sbq->alloc_hint, hint); 462 } 463 nr = sbitmap_get_shallow(&sbq->sb, hint, shallow_depth); 464 465 if (nr == -1) { 466 /* If the map is full, a hint won't do us much good. */ 467 this_cpu_write(*sbq->alloc_hint, 0); 468 } else if (nr == hint || unlikely(sbq->round_robin)) { 469 /* Only update the hint if we used it. */ 470 hint = nr + 1; 471 if (hint >= depth - 1) 472 hint = 0; 473 this_cpu_write(*sbq->alloc_hint, hint); 474 } 475 476 return nr; 477 } 478 EXPORT_SYMBOL_GPL(__sbitmap_queue_get_shallow); 479 480 void sbitmap_queue_min_shallow_depth(struct sbitmap_queue *sbq, 481 unsigned int min_shallow_depth) 482 { 483 sbq->min_shallow_depth = min_shallow_depth; 484 sbitmap_queue_update_wake_batch(sbq, sbq->sb.depth); 485 } 486 EXPORT_SYMBOL_GPL(sbitmap_queue_min_shallow_depth); 487 488 static struct sbq_wait_state *sbq_wake_ptr(struct sbitmap_queue *sbq) 489 { 490 int i, wake_index; 491 492 if (!atomic_read(&sbq->ws_active)) 493 return NULL; 494 495 wake_index = atomic_read(&sbq->wake_index); 496 for (i = 0; i < SBQ_WAIT_QUEUES; i++) { 497 struct sbq_wait_state *ws = &sbq->ws[wake_index]; 498 499 if (waitqueue_active(&ws->wait)) { 500 if (wake_index != atomic_read(&sbq->wake_index)) 501 atomic_set(&sbq->wake_index, wake_index); 502 return ws; 503 } 504 505 wake_index = sbq_index_inc(wake_index); 506 } 507 508 return NULL; 509 } 510 511 static bool __sbq_wake_up(struct sbitmap_queue *sbq) 512 { 513 struct sbq_wait_state *ws; 514 unsigned int wake_batch; 515 int wait_cnt; 516 517 ws = sbq_wake_ptr(sbq); 518 if (!ws) 519 return false; 520 521 wait_cnt = atomic_dec_return(&ws->wait_cnt); 522 if (wait_cnt <= 0) { 523 int ret; 524 525 wake_batch = READ_ONCE(sbq->wake_batch); 526 527 /* 528 * Pairs with the memory barrier in sbitmap_queue_resize() to 529 * ensure that we see the batch size update before the wait 530 * count is reset. 531 */ 532 smp_mb__before_atomic(); 533 534 /* 535 * For concurrent callers of this, the one that failed the 536 * atomic_cmpxhcg() race should call this function again 537 * to wakeup a new batch on a different 'ws'. 538 */ 539 ret = atomic_cmpxchg(&ws->wait_cnt, wait_cnt, wake_batch); 540 if (ret == wait_cnt) { 541 sbq_index_atomic_inc(&sbq->wake_index); 542 wake_up_nr(&ws->wait, wake_batch); 543 return false; 544 } 545 546 return true; 547 } 548 549 return false; 550 } 551 552 void sbitmap_queue_wake_up(struct sbitmap_queue *sbq) 553 { 554 while (__sbq_wake_up(sbq)) 555 ; 556 } 557 EXPORT_SYMBOL_GPL(sbitmap_queue_wake_up); 558 559 void sbitmap_queue_clear(struct sbitmap_queue *sbq, unsigned int nr, 560 unsigned int cpu) 561 { 562 /* 563 * Once the clear bit is set, the bit may be allocated out. 564 * 565 * Orders READ/WRITE on the asssociated instance(such as request 566 * of blk_mq) by this bit for avoiding race with re-allocation, 567 * and its pair is the memory barrier implied in __sbitmap_get_word. 568 * 569 * One invariant is that the clear bit has to be zero when the bit 570 * is in use. 571 */ 572 smp_mb__before_atomic(); 573 sbitmap_deferred_clear_bit(&sbq->sb, nr); 574 575 /* 576 * Pairs with the memory barrier in set_current_state() to ensure the 577 * proper ordering of clear_bit_unlock()/waitqueue_active() in the waker 578 * and test_and_set_bit_lock()/prepare_to_wait()/finish_wait() in the 579 * waiter. See the comment on waitqueue_active(). 580 */ 581 smp_mb__after_atomic(); 582 sbitmap_queue_wake_up(sbq); 583 584 if (likely(!sbq->round_robin && nr < sbq->sb.depth)) 585 *per_cpu_ptr(sbq->alloc_hint, cpu) = nr; 586 } 587 EXPORT_SYMBOL_GPL(sbitmap_queue_clear); 588 589 void sbitmap_queue_wake_all(struct sbitmap_queue *sbq) 590 { 591 int i, wake_index; 592 593 /* 594 * Pairs with the memory barrier in set_current_state() like in 595 * sbitmap_queue_wake_up(). 596 */ 597 smp_mb(); 598 wake_index = atomic_read(&sbq->wake_index); 599 for (i = 0; i < SBQ_WAIT_QUEUES; i++) { 600 struct sbq_wait_state *ws = &sbq->ws[wake_index]; 601 602 if (waitqueue_active(&ws->wait)) 603 wake_up(&ws->wait); 604 605 wake_index = sbq_index_inc(wake_index); 606 } 607 } 608 EXPORT_SYMBOL_GPL(sbitmap_queue_wake_all); 609 610 void sbitmap_queue_show(struct sbitmap_queue *sbq, struct seq_file *m) 611 { 612 bool first; 613 int i; 614 615 sbitmap_show(&sbq->sb, m); 616 617 seq_puts(m, "alloc_hint={"); 618 first = true; 619 for_each_possible_cpu(i) { 620 if (!first) 621 seq_puts(m, ", "); 622 first = false; 623 seq_printf(m, "%u", *per_cpu_ptr(sbq->alloc_hint, i)); 624 } 625 seq_puts(m, "}\n"); 626 627 seq_printf(m, "wake_batch=%u\n", sbq->wake_batch); 628 seq_printf(m, "wake_index=%d\n", atomic_read(&sbq->wake_index)); 629 seq_printf(m, "ws_active=%d\n", atomic_read(&sbq->ws_active)); 630 631 seq_puts(m, "ws={\n"); 632 for (i = 0; i < SBQ_WAIT_QUEUES; i++) { 633 struct sbq_wait_state *ws = &sbq->ws[i]; 634 635 seq_printf(m, "\t{.wait_cnt=%d, .wait=%s},\n", 636 atomic_read(&ws->wait_cnt), 637 waitqueue_active(&ws->wait) ? "active" : "inactive"); 638 } 639 seq_puts(m, "}\n"); 640 641 seq_printf(m, "round_robin=%d\n", sbq->round_robin); 642 seq_printf(m, "min_shallow_depth=%u\n", sbq->min_shallow_depth); 643 } 644 EXPORT_SYMBOL_GPL(sbitmap_queue_show); 645 646 void sbitmap_add_wait_queue(struct sbitmap_queue *sbq, 647 struct sbq_wait_state *ws, 648 struct sbq_wait *sbq_wait) 649 { 650 if (!sbq_wait->sbq) { 651 sbq_wait->sbq = sbq; 652 atomic_inc(&sbq->ws_active); 653 add_wait_queue(&ws->wait, &sbq_wait->wait); 654 } 655 } 656 EXPORT_SYMBOL_GPL(sbitmap_add_wait_queue); 657 658 void sbitmap_del_wait_queue(struct sbq_wait *sbq_wait) 659 { 660 list_del_init(&sbq_wait->wait.entry); 661 if (sbq_wait->sbq) { 662 atomic_dec(&sbq_wait->sbq->ws_active); 663 sbq_wait->sbq = NULL; 664 } 665 } 666 EXPORT_SYMBOL_GPL(sbitmap_del_wait_queue); 667 668 void sbitmap_prepare_to_wait(struct sbitmap_queue *sbq, 669 struct sbq_wait_state *ws, 670 struct sbq_wait *sbq_wait, int state) 671 { 672 if (!sbq_wait->sbq) { 673 atomic_inc(&sbq->ws_active); 674 sbq_wait->sbq = sbq; 675 } 676 prepare_to_wait_exclusive(&ws->wait, &sbq_wait->wait, state); 677 } 678 EXPORT_SYMBOL_GPL(sbitmap_prepare_to_wait); 679 680 void sbitmap_finish_wait(struct sbitmap_queue *sbq, struct sbq_wait_state *ws, 681 struct sbq_wait *sbq_wait) 682 { 683 finish_wait(&ws->wait, &sbq_wait->wait); 684 if (sbq_wait->sbq) { 685 atomic_dec(&sbq->ws_active); 686 sbq_wait->sbq = NULL; 687 } 688 } 689 EXPORT_SYMBOL_GPL(sbitmap_finish_wait); 690