xref: /openbmc/linux/lib/idr.c (revision e1e38ea1)
1 #include <linux/bitmap.h>
2 #include <linux/bug.h>
3 #include <linux/export.h>
4 #include <linux/idr.h>
5 #include <linux/slab.h>
6 #include <linux/spinlock.h>
7 #include <linux/xarray.h>
8 
9 DEFINE_PER_CPU(struct ida_bitmap *, ida_bitmap);
10 
11 /**
12  * idr_alloc_u32() - Allocate an ID.
13  * @idr: IDR handle.
14  * @ptr: Pointer to be associated with the new ID.
15  * @nextid: Pointer to an ID.
16  * @max: The maximum ID to allocate (inclusive).
17  * @gfp: Memory allocation flags.
18  *
19  * Allocates an unused ID in the range specified by @nextid and @max.
20  * Note that @max is inclusive whereas the @end parameter to idr_alloc()
21  * is exclusive.  The new ID is assigned to @nextid before the pointer
22  * is inserted into the IDR, so if @nextid points into the object pointed
23  * to by @ptr, a concurrent lookup will not find an uninitialised ID.
24  *
25  * The caller should provide their own locking to ensure that two
26  * concurrent modifications to the IDR are not possible.  Read-only
27  * accesses to the IDR may be done under the RCU read lock or may
28  * exclude simultaneous writers.
29  *
30  * Return: 0 if an ID was allocated, -ENOMEM if memory allocation failed,
31  * or -ENOSPC if no free IDs could be found.  If an error occurred,
32  * @nextid is unchanged.
33  */
34 int idr_alloc_u32(struct idr *idr, void *ptr, u32 *nextid,
35 			unsigned long max, gfp_t gfp)
36 {
37 	struct radix_tree_iter iter;
38 	void __rcu **slot;
39 	unsigned int base = idr->idr_base;
40 	unsigned int id = *nextid;
41 
42 	if (WARN_ON_ONCE(radix_tree_is_internal_node(ptr)))
43 		return -EINVAL;
44 	if (WARN_ON_ONCE(!(idr->idr_rt.gfp_mask & ROOT_IS_IDR)))
45 		idr->idr_rt.gfp_mask |= IDR_RT_MARKER;
46 
47 	id = (id < base) ? 0 : id - base;
48 	radix_tree_iter_init(&iter, id);
49 	slot = idr_get_free(&idr->idr_rt, &iter, gfp, max - base);
50 	if (IS_ERR(slot))
51 		return PTR_ERR(slot);
52 
53 	*nextid = iter.index + base;
54 	/* there is a memory barrier inside radix_tree_iter_replace() */
55 	radix_tree_iter_replace(&idr->idr_rt, &iter, slot, ptr);
56 	radix_tree_iter_tag_clear(&idr->idr_rt, &iter, IDR_FREE);
57 
58 	return 0;
59 }
60 EXPORT_SYMBOL_GPL(idr_alloc_u32);
61 
62 /**
63  * idr_alloc() - Allocate an ID.
64  * @idr: IDR handle.
65  * @ptr: Pointer to be associated with the new ID.
66  * @start: The minimum ID (inclusive).
67  * @end: The maximum ID (exclusive).
68  * @gfp: Memory allocation flags.
69  *
70  * Allocates an unused ID in the range specified by @start and @end.  If
71  * @end is <= 0, it is treated as one larger than %INT_MAX.  This allows
72  * callers to use @start + N as @end as long as N is within integer range.
73  *
74  * The caller should provide their own locking to ensure that two
75  * concurrent modifications to the IDR are not possible.  Read-only
76  * accesses to the IDR may be done under the RCU read lock or may
77  * exclude simultaneous writers.
78  *
79  * Return: The newly allocated ID, -ENOMEM if memory allocation failed,
80  * or -ENOSPC if no free IDs could be found.
81  */
82 int idr_alloc(struct idr *idr, void *ptr, int start, int end, gfp_t gfp)
83 {
84 	u32 id = start;
85 	int ret;
86 
87 	if (WARN_ON_ONCE(start < 0))
88 		return -EINVAL;
89 
90 	ret = idr_alloc_u32(idr, ptr, &id, end > 0 ? end - 1 : INT_MAX, gfp);
91 	if (ret)
92 		return ret;
93 
94 	return id;
95 }
96 EXPORT_SYMBOL_GPL(idr_alloc);
97 
98 /**
99  * idr_alloc_cyclic() - Allocate an ID cyclically.
100  * @idr: IDR handle.
101  * @ptr: Pointer to be associated with the new ID.
102  * @start: The minimum ID (inclusive).
103  * @end: The maximum ID (exclusive).
104  * @gfp: Memory allocation flags.
105  *
106  * Allocates an unused ID in the range specified by @nextid and @end.  If
107  * @end is <= 0, it is treated as one larger than %INT_MAX.  This allows
108  * callers to use @start + N as @end as long as N is within integer range.
109  * The search for an unused ID will start at the last ID allocated and will
110  * wrap around to @start if no free IDs are found before reaching @end.
111  *
112  * The caller should provide their own locking to ensure that two
113  * concurrent modifications to the IDR are not possible.  Read-only
114  * accesses to the IDR may be done under the RCU read lock or may
115  * exclude simultaneous writers.
116  *
117  * Return: The newly allocated ID, -ENOMEM if memory allocation failed,
118  * or -ENOSPC if no free IDs could be found.
119  */
120 int idr_alloc_cyclic(struct idr *idr, void *ptr, int start, int end, gfp_t gfp)
121 {
122 	u32 id = idr->idr_next;
123 	int err, max = end > 0 ? end - 1 : INT_MAX;
124 
125 	if ((int)id < start)
126 		id = start;
127 
128 	err = idr_alloc_u32(idr, ptr, &id, max, gfp);
129 	if ((err == -ENOSPC) && (id > start)) {
130 		id = start;
131 		err = idr_alloc_u32(idr, ptr, &id, max, gfp);
132 	}
133 	if (err)
134 		return err;
135 
136 	idr->idr_next = id + 1;
137 	return id;
138 }
139 EXPORT_SYMBOL(idr_alloc_cyclic);
140 
141 /**
142  * idr_remove() - Remove an ID from the IDR.
143  * @idr: IDR handle.
144  * @id: Pointer ID.
145  *
146  * Removes this ID from the IDR.  If the ID was not previously in the IDR,
147  * this function returns %NULL.
148  *
149  * Since this function modifies the IDR, the caller should provide their
150  * own locking to ensure that concurrent modification of the same IDR is
151  * not possible.
152  *
153  * Return: The pointer formerly associated with this ID.
154  */
155 void *idr_remove(struct idr *idr, unsigned long id)
156 {
157 	return radix_tree_delete_item(&idr->idr_rt, id - idr->idr_base, NULL);
158 }
159 EXPORT_SYMBOL_GPL(idr_remove);
160 
161 /**
162  * idr_find() - Return pointer for given ID.
163  * @idr: IDR handle.
164  * @id: Pointer ID.
165  *
166  * Looks up the pointer associated with this ID.  A %NULL pointer may
167  * indicate that @id is not allocated or that the %NULL pointer was
168  * associated with this ID.
169  *
170  * This function can be called under rcu_read_lock(), given that the leaf
171  * pointers lifetimes are correctly managed.
172  *
173  * Return: The pointer associated with this ID.
174  */
175 void *idr_find(const struct idr *idr, unsigned long id)
176 {
177 	return radix_tree_lookup(&idr->idr_rt, id - idr->idr_base);
178 }
179 EXPORT_SYMBOL_GPL(idr_find);
180 
181 /**
182  * idr_for_each() - Iterate through all stored pointers.
183  * @idr: IDR handle.
184  * @fn: Function to be called for each pointer.
185  * @data: Data passed to callback function.
186  *
187  * The callback function will be called for each entry in @idr, passing
188  * the ID, the entry and @data.
189  *
190  * If @fn returns anything other than %0, the iteration stops and that
191  * value is returned from this function.
192  *
193  * idr_for_each() can be called concurrently with idr_alloc() and
194  * idr_remove() if protected by RCU.  Newly added entries may not be
195  * seen and deleted entries may be seen, but adding and removing entries
196  * will not cause other entries to be skipped, nor spurious ones to be seen.
197  */
198 int idr_for_each(const struct idr *idr,
199 		int (*fn)(int id, void *p, void *data), void *data)
200 {
201 	struct radix_tree_iter iter;
202 	void __rcu **slot;
203 	int base = idr->idr_base;
204 
205 	radix_tree_for_each_slot(slot, &idr->idr_rt, &iter, 0) {
206 		int ret;
207 		unsigned long id = iter.index + base;
208 
209 		if (WARN_ON_ONCE(id > INT_MAX))
210 			break;
211 		ret = fn(id, rcu_dereference_raw(*slot), data);
212 		if (ret)
213 			return ret;
214 	}
215 
216 	return 0;
217 }
218 EXPORT_SYMBOL(idr_for_each);
219 
220 /**
221  * idr_get_next() - Find next populated entry.
222  * @idr: IDR handle.
223  * @nextid: Pointer to an ID.
224  *
225  * Returns the next populated entry in the tree with an ID greater than
226  * or equal to the value pointed to by @nextid.  On exit, @nextid is updated
227  * to the ID of the found value.  To use in a loop, the value pointed to by
228  * nextid must be incremented by the user.
229  */
230 void *idr_get_next(struct idr *idr, int *nextid)
231 {
232 	struct radix_tree_iter iter;
233 	void __rcu **slot;
234 	unsigned long base = idr->idr_base;
235 	unsigned long id = *nextid;
236 
237 	id = (id < base) ? 0 : id - base;
238 	slot = radix_tree_iter_find(&idr->idr_rt, &iter, id);
239 	if (!slot)
240 		return NULL;
241 	id = iter.index + base;
242 
243 	if (WARN_ON_ONCE(id > INT_MAX))
244 		return NULL;
245 
246 	*nextid = id;
247 	return rcu_dereference_raw(*slot);
248 }
249 EXPORT_SYMBOL(idr_get_next);
250 
251 /**
252  * idr_get_next_ul() - Find next populated entry.
253  * @idr: IDR handle.
254  * @nextid: Pointer to an ID.
255  *
256  * Returns the next populated entry in the tree with an ID greater than
257  * or equal to the value pointed to by @nextid.  On exit, @nextid is updated
258  * to the ID of the found value.  To use in a loop, the value pointed to by
259  * nextid must be incremented by the user.
260  */
261 void *idr_get_next_ul(struct idr *idr, unsigned long *nextid)
262 {
263 	struct radix_tree_iter iter;
264 	void __rcu **slot;
265 	unsigned long base = idr->idr_base;
266 	unsigned long id = *nextid;
267 
268 	id = (id < base) ? 0 : id - base;
269 	slot = radix_tree_iter_find(&idr->idr_rt, &iter, id);
270 	if (!slot)
271 		return NULL;
272 
273 	*nextid = iter.index + base;
274 	return rcu_dereference_raw(*slot);
275 }
276 EXPORT_SYMBOL(idr_get_next_ul);
277 
278 /**
279  * idr_replace() - replace pointer for given ID.
280  * @idr: IDR handle.
281  * @ptr: New pointer to associate with the ID.
282  * @id: ID to change.
283  *
284  * Replace the pointer registered with an ID and return the old value.
285  * This function can be called under the RCU read lock concurrently with
286  * idr_alloc() and idr_remove() (as long as the ID being removed is not
287  * the one being replaced!).
288  *
289  * Returns: the old value on success.  %-ENOENT indicates that @id was not
290  * found.  %-EINVAL indicates that @ptr was not valid.
291  */
292 void *idr_replace(struct idr *idr, void *ptr, unsigned long id)
293 {
294 	struct radix_tree_node *node;
295 	void __rcu **slot = NULL;
296 	void *entry;
297 
298 	if (WARN_ON_ONCE(radix_tree_is_internal_node(ptr)))
299 		return ERR_PTR(-EINVAL);
300 	id -= idr->idr_base;
301 
302 	entry = __radix_tree_lookup(&idr->idr_rt, id, &node, &slot);
303 	if (!slot || radix_tree_tag_get(&idr->idr_rt, id, IDR_FREE))
304 		return ERR_PTR(-ENOENT);
305 
306 	__radix_tree_replace(&idr->idr_rt, node, slot, ptr, NULL);
307 
308 	return entry;
309 }
310 EXPORT_SYMBOL(idr_replace);
311 
312 /**
313  * DOC: IDA description
314  *
315  * The IDA is an ID allocator which does not provide the ability to
316  * associate an ID with a pointer.  As such, it only needs to store one
317  * bit per ID, and so is more space efficient than an IDR.  To use an IDA,
318  * define it using DEFINE_IDA() (or embed a &struct ida in a data structure,
319  * then initialise it using ida_init()).  To allocate a new ID, call
320  * ida_alloc(), ida_alloc_min(), ida_alloc_max() or ida_alloc_range().
321  * To free an ID, call ida_free().
322  *
323  * ida_destroy() can be used to dispose of an IDA without needing to
324  * free the individual IDs in it.  You can use ida_is_empty() to find
325  * out whether the IDA has any IDs currently allocated.
326  *
327  * IDs are currently limited to the range [0-INT_MAX].  If this is an awkward
328  * limitation, it should be quite straightforward to raise the maximum.
329  */
330 
331 /*
332  * Developer's notes:
333  *
334  * The IDA uses the functionality provided by the IDR & radix tree to store
335  * bitmaps in each entry.  The IDR_FREE tag means there is at least one bit
336  * free, unlike the IDR where it means at least one entry is free.
337  *
338  * I considered telling the radix tree that each slot is an order-10 node
339  * and storing the bit numbers in the radix tree, but the radix tree can't
340  * allow a single multiorder entry at index 0, which would significantly
341  * increase memory consumption for the IDA.  So instead we divide the index
342  * by the number of bits in the leaf bitmap before doing a radix tree lookup.
343  *
344  * As an optimisation, if there are only a few low bits set in any given
345  * leaf, instead of allocating a 128-byte bitmap, we use the 'exceptional
346  * entry' functionality of the radix tree to store BITS_PER_LONG - 2 bits
347  * directly in the entry.  By being really tricksy, we could store
348  * BITS_PER_LONG - 1 bits, but there're diminishing returns after optimising
349  * for 0-3 allocated IDs.
350  *
351  * We allow the radix tree 'exceptional' count to get out of date.  Nothing
352  * in the IDA nor the radix tree code checks it.  If it becomes important
353  * to maintain an accurate exceptional count, switch the rcu_assign_pointer()
354  * calls to radix_tree_iter_replace() which will correct the exceptional
355  * count.
356  *
357  * The IDA always requires a lock to alloc/free.  If we add a 'test_bit'
358  * equivalent, it will still need locking.  Going to RCU lookup would require
359  * using RCU to free bitmaps, and that's not trivial without embedding an
360  * RCU head in the bitmap, which adds a 2-pointer overhead to each 128-byte
361  * bitmap, which is excessive.
362  */
363 
364 #define IDA_MAX (0x80000000U / IDA_BITMAP_BITS - 1)
365 
366 static int ida_get_new_above(struct ida *ida, int start)
367 {
368 	struct radix_tree_root *root = &ida->ida_rt;
369 	void __rcu **slot;
370 	struct radix_tree_iter iter;
371 	struct ida_bitmap *bitmap;
372 	unsigned long index;
373 	unsigned bit, ebit;
374 	int new;
375 
376 	index = start / IDA_BITMAP_BITS;
377 	bit = start % IDA_BITMAP_BITS;
378 	ebit = bit + RADIX_TREE_EXCEPTIONAL_SHIFT;
379 
380 	slot = radix_tree_iter_init(&iter, index);
381 	for (;;) {
382 		if (slot)
383 			slot = radix_tree_next_slot(slot, &iter,
384 						RADIX_TREE_ITER_TAGGED);
385 		if (!slot) {
386 			slot = idr_get_free(root, &iter, GFP_NOWAIT, IDA_MAX);
387 			if (IS_ERR(slot)) {
388 				if (slot == ERR_PTR(-ENOMEM))
389 					return -EAGAIN;
390 				return PTR_ERR(slot);
391 			}
392 		}
393 		if (iter.index > index) {
394 			bit = 0;
395 			ebit = RADIX_TREE_EXCEPTIONAL_SHIFT;
396 		}
397 		new = iter.index * IDA_BITMAP_BITS;
398 		bitmap = rcu_dereference_raw(*slot);
399 		if (radix_tree_exception(bitmap)) {
400 			unsigned long tmp = (unsigned long)bitmap;
401 			ebit = find_next_zero_bit(&tmp, BITS_PER_LONG, ebit);
402 			if (ebit < BITS_PER_LONG) {
403 				tmp |= 1UL << ebit;
404 				rcu_assign_pointer(*slot, (void *)tmp);
405 				return new + ebit -
406 					RADIX_TREE_EXCEPTIONAL_SHIFT;
407 			}
408 			bitmap = this_cpu_xchg(ida_bitmap, NULL);
409 			if (!bitmap)
410 				return -EAGAIN;
411 			bitmap->bitmap[0] = tmp >> RADIX_TREE_EXCEPTIONAL_SHIFT;
412 			rcu_assign_pointer(*slot, bitmap);
413 		}
414 
415 		if (bitmap) {
416 			bit = find_next_zero_bit(bitmap->bitmap,
417 							IDA_BITMAP_BITS, bit);
418 			new += bit;
419 			if (new < 0)
420 				return -ENOSPC;
421 			if (bit == IDA_BITMAP_BITS)
422 				continue;
423 
424 			__set_bit(bit, bitmap->bitmap);
425 			if (bitmap_full(bitmap->bitmap, IDA_BITMAP_BITS))
426 				radix_tree_iter_tag_clear(root, &iter,
427 								IDR_FREE);
428 		} else {
429 			new += bit;
430 			if (new < 0)
431 				return -ENOSPC;
432 			if (ebit < BITS_PER_LONG) {
433 				bitmap = (void *)((1UL << ebit) |
434 						RADIX_TREE_EXCEPTIONAL_ENTRY);
435 				radix_tree_iter_replace(root, &iter, slot,
436 						bitmap);
437 				return new;
438 			}
439 			bitmap = this_cpu_xchg(ida_bitmap, NULL);
440 			if (!bitmap)
441 				return -EAGAIN;
442 			__set_bit(bit, bitmap->bitmap);
443 			radix_tree_iter_replace(root, &iter, slot, bitmap);
444 		}
445 
446 		return new;
447 	}
448 }
449 
450 static void ida_remove(struct ida *ida, int id)
451 {
452 	unsigned long index = id / IDA_BITMAP_BITS;
453 	unsigned offset = id % IDA_BITMAP_BITS;
454 	struct ida_bitmap *bitmap;
455 	unsigned long *btmp;
456 	struct radix_tree_iter iter;
457 	void __rcu **slot;
458 
459 	slot = radix_tree_iter_lookup(&ida->ida_rt, &iter, index);
460 	if (!slot)
461 		goto err;
462 
463 	bitmap = rcu_dereference_raw(*slot);
464 	if (radix_tree_exception(bitmap)) {
465 		btmp = (unsigned long *)slot;
466 		offset += RADIX_TREE_EXCEPTIONAL_SHIFT;
467 		if (offset >= BITS_PER_LONG)
468 			goto err;
469 	} else {
470 		btmp = bitmap->bitmap;
471 	}
472 	if (!test_bit(offset, btmp))
473 		goto err;
474 
475 	__clear_bit(offset, btmp);
476 	radix_tree_iter_tag_set(&ida->ida_rt, &iter, IDR_FREE);
477 	if (radix_tree_exception(bitmap)) {
478 		if (rcu_dereference_raw(*slot) ==
479 					(void *)RADIX_TREE_EXCEPTIONAL_ENTRY)
480 			radix_tree_iter_delete(&ida->ida_rt, &iter, slot);
481 	} else if (bitmap_empty(btmp, IDA_BITMAP_BITS)) {
482 		kfree(bitmap);
483 		radix_tree_iter_delete(&ida->ida_rt, &iter, slot);
484 	}
485 	return;
486  err:
487 	WARN(1, "ida_free called for id=%d which is not allocated.\n", id);
488 }
489 
490 /**
491  * ida_destroy() - Free all IDs.
492  * @ida: IDA handle.
493  *
494  * Calling this function frees all IDs and releases all resources used
495  * by an IDA.  When this call returns, the IDA is empty and can be reused
496  * or freed.  If the IDA is already empty, there is no need to call this
497  * function.
498  *
499  * Context: Any context.
500  */
501 void ida_destroy(struct ida *ida)
502 {
503 	unsigned long flags;
504 	struct radix_tree_iter iter;
505 	void __rcu **slot;
506 
507 	xa_lock_irqsave(&ida->ida_rt, flags);
508 	radix_tree_for_each_slot(slot, &ida->ida_rt, &iter, 0) {
509 		struct ida_bitmap *bitmap = rcu_dereference_raw(*slot);
510 		if (!radix_tree_exception(bitmap))
511 			kfree(bitmap);
512 		radix_tree_iter_delete(&ida->ida_rt, &iter, slot);
513 	}
514 	xa_unlock_irqrestore(&ida->ida_rt, flags);
515 }
516 EXPORT_SYMBOL(ida_destroy);
517 
518 /**
519  * ida_alloc_range() - Allocate an unused ID.
520  * @ida: IDA handle.
521  * @min: Lowest ID to allocate.
522  * @max: Highest ID to allocate.
523  * @gfp: Memory allocation flags.
524  *
525  * Allocate an ID between @min and @max, inclusive.  The allocated ID will
526  * not exceed %INT_MAX, even if @max is larger.
527  *
528  * Context: Any context.
529  * Return: The allocated ID, or %-ENOMEM if memory could not be allocated,
530  * or %-ENOSPC if there are no free IDs.
531  */
532 int ida_alloc_range(struct ida *ida, unsigned int min, unsigned int max,
533 			gfp_t gfp)
534 {
535 	int id = 0;
536 	unsigned long flags;
537 
538 	if ((int)min < 0)
539 		return -ENOSPC;
540 
541 	if ((int)max < 0)
542 		max = INT_MAX;
543 
544 again:
545 	xa_lock_irqsave(&ida->ida_rt, flags);
546 	id = ida_get_new_above(ida, min);
547 	if (id > (int)max) {
548 		ida_remove(ida, id);
549 		id = -ENOSPC;
550 	}
551 	xa_unlock_irqrestore(&ida->ida_rt, flags);
552 
553 	if (unlikely(id == -EAGAIN)) {
554 		if (!ida_pre_get(ida, gfp))
555 			return -ENOMEM;
556 		goto again;
557 	}
558 
559 	return id;
560 }
561 EXPORT_SYMBOL(ida_alloc_range);
562 
563 /**
564  * ida_free() - Release an allocated ID.
565  * @ida: IDA handle.
566  * @id: Previously allocated ID.
567  *
568  * Context: Any context.
569  */
570 void ida_free(struct ida *ida, unsigned int id)
571 {
572 	unsigned long flags;
573 
574 	BUG_ON((int)id < 0);
575 	xa_lock_irqsave(&ida->ida_rt, flags);
576 	ida_remove(ida, id);
577 	xa_unlock_irqrestore(&ida->ida_rt, flags);
578 }
579 EXPORT_SYMBOL(ida_free);
580