1 /* 2 * 2002-10-18 written by Jim Houston jim.houston@ccur.com 3 * Copyright (C) 2002 by Concurrent Computer Corporation 4 * Distributed under the GNU GPL license version 2. 5 * 6 * Modified by George Anzinger to reuse immediately and to use 7 * find bit instructions. Also removed _irq on spinlocks. 8 * 9 * Modified by Nadia Derbey to make it RCU safe. 10 * 11 * Small id to pointer translation service. 12 * 13 * It uses a radix tree like structure as a sparse array indexed 14 * by the id to obtain the pointer. The bitmap makes allocating 15 * a new id quick. 16 * 17 * You call it to allocate an id (an int) an associate with that id a 18 * pointer or what ever, we treat it as a (void *). You can pass this 19 * id to a user for him to pass back at a later time. You then pass 20 * that id to this code and it returns your pointer. 21 22 * You can release ids at any time. When all ids are released, most of 23 * the memory is returned (we keep IDR_FREE_MAX) in a local pool so we 24 * don't need to go to the memory "store" during an id allocate, just 25 * so you don't need to be too concerned about locking and conflicts 26 * with the slab allocator. 27 */ 28 29 #ifndef TEST // to test in user space... 30 #include <linux/slab.h> 31 #include <linux/init.h> 32 #include <linux/module.h> 33 #endif 34 #include <linux/err.h> 35 #include <linux/string.h> 36 #include <linux/idr.h> 37 38 static struct kmem_cache *idr_layer_cache; 39 40 static struct idr_layer *get_from_free_list(struct idr *idp) 41 { 42 struct idr_layer *p; 43 unsigned long flags; 44 45 spin_lock_irqsave(&idp->lock, flags); 46 if ((p = idp->id_free)) { 47 idp->id_free = p->ary[0]; 48 idp->id_free_cnt--; 49 p->ary[0] = NULL; 50 } 51 spin_unlock_irqrestore(&idp->lock, flags); 52 return(p); 53 } 54 55 static void idr_layer_rcu_free(struct rcu_head *head) 56 { 57 struct idr_layer *layer; 58 59 layer = container_of(head, struct idr_layer, rcu_head); 60 kmem_cache_free(idr_layer_cache, layer); 61 } 62 63 static inline void free_layer(struct idr_layer *p) 64 { 65 call_rcu(&p->rcu_head, idr_layer_rcu_free); 66 } 67 68 /* only called when idp->lock is held */ 69 static void __move_to_free_list(struct idr *idp, struct idr_layer *p) 70 { 71 p->ary[0] = idp->id_free; 72 idp->id_free = p; 73 idp->id_free_cnt++; 74 } 75 76 static void move_to_free_list(struct idr *idp, struct idr_layer *p) 77 { 78 unsigned long flags; 79 80 /* 81 * Depends on the return element being zeroed. 82 */ 83 spin_lock_irqsave(&idp->lock, flags); 84 __move_to_free_list(idp, p); 85 spin_unlock_irqrestore(&idp->lock, flags); 86 } 87 88 static void idr_mark_full(struct idr_layer **pa, int id) 89 { 90 struct idr_layer *p = pa[0]; 91 int l = 0; 92 93 __set_bit(id & IDR_MASK, &p->bitmap); 94 /* 95 * If this layer is full mark the bit in the layer above to 96 * show that this part of the radix tree is full. This may 97 * complete the layer above and require walking up the radix 98 * tree. 99 */ 100 while (p->bitmap == IDR_FULL) { 101 if (!(p = pa[++l])) 102 break; 103 id = id >> IDR_BITS; 104 __set_bit((id & IDR_MASK), &p->bitmap); 105 } 106 } 107 108 /** 109 * idr_pre_get - reserve resources for idr allocation 110 * @idp: idr handle 111 * @gfp_mask: memory allocation flags 112 * 113 * This function should be called prior to calling the idr_get_new* functions. 114 * It preallocates enough memory to satisfy the worst possible allocation. The 115 * caller should pass in GFP_KERNEL if possible. This of course requires that 116 * no spinning locks be held. 117 * 118 * If the system is REALLY out of memory this function returns %0, 119 * otherwise %1. 120 */ 121 int idr_pre_get(struct idr *idp, gfp_t gfp_mask) 122 { 123 while (idp->id_free_cnt < IDR_FREE_MAX) { 124 struct idr_layer *new; 125 new = kmem_cache_zalloc(idr_layer_cache, gfp_mask); 126 if (new == NULL) 127 return (0); 128 move_to_free_list(idp, new); 129 } 130 return 1; 131 } 132 EXPORT_SYMBOL(idr_pre_get); 133 134 static int sub_alloc(struct idr *idp, int *starting_id, struct idr_layer **pa) 135 { 136 int n, m, sh; 137 struct idr_layer *p, *new; 138 int l, id, oid; 139 unsigned long bm; 140 141 id = *starting_id; 142 restart: 143 p = idp->top; 144 l = idp->layers; 145 pa[l--] = NULL; 146 while (1) { 147 /* 148 * We run around this while until we reach the leaf node... 149 */ 150 n = (id >> (IDR_BITS*l)) & IDR_MASK; 151 bm = ~p->bitmap; 152 m = find_next_bit(&bm, IDR_SIZE, n); 153 if (m == IDR_SIZE) { 154 /* no space available go back to previous layer. */ 155 l++; 156 oid = id; 157 id = (id | ((1 << (IDR_BITS * l)) - 1)) + 1; 158 159 /* if already at the top layer, we need to grow */ 160 if (id >= 1 << (idp->layers * IDR_BITS)) { 161 *starting_id = id; 162 return IDR_NEED_TO_GROW; 163 } 164 p = pa[l]; 165 BUG_ON(!p); 166 167 /* If we need to go up one layer, continue the 168 * loop; otherwise, restart from the top. 169 */ 170 sh = IDR_BITS * (l + 1); 171 if (oid >> sh == id >> sh) 172 continue; 173 else 174 goto restart; 175 } 176 if (m != n) { 177 sh = IDR_BITS*l; 178 id = ((id >> sh) ^ n ^ m) << sh; 179 } 180 if ((id >= MAX_ID_BIT) || (id < 0)) 181 return IDR_NOMORE_SPACE; 182 if (l == 0) 183 break; 184 /* 185 * Create the layer below if it is missing. 186 */ 187 if (!p->ary[m]) { 188 new = get_from_free_list(idp); 189 if (!new) 190 return -1; 191 new->layer = l-1; 192 rcu_assign_pointer(p->ary[m], new); 193 p->count++; 194 } 195 pa[l--] = p; 196 p = p->ary[m]; 197 } 198 199 pa[l] = p; 200 return id; 201 } 202 203 static int idr_get_empty_slot(struct idr *idp, int starting_id, 204 struct idr_layer **pa) 205 { 206 struct idr_layer *p, *new; 207 int layers, v, id; 208 unsigned long flags; 209 210 id = starting_id; 211 build_up: 212 p = idp->top; 213 layers = idp->layers; 214 if (unlikely(!p)) { 215 if (!(p = get_from_free_list(idp))) 216 return -1; 217 p->layer = 0; 218 layers = 1; 219 } 220 /* 221 * Add a new layer to the top of the tree if the requested 222 * id is larger than the currently allocated space. 223 */ 224 while ((layers < (MAX_LEVEL - 1)) && (id >= (1 << (layers*IDR_BITS)))) { 225 layers++; 226 if (!p->count) { 227 /* special case: if the tree is currently empty, 228 * then we grow the tree by moving the top node 229 * upwards. 230 */ 231 p->layer++; 232 continue; 233 } 234 if (!(new = get_from_free_list(idp))) { 235 /* 236 * The allocation failed. If we built part of 237 * the structure tear it down. 238 */ 239 spin_lock_irqsave(&idp->lock, flags); 240 for (new = p; p && p != idp->top; new = p) { 241 p = p->ary[0]; 242 new->ary[0] = NULL; 243 new->bitmap = new->count = 0; 244 __move_to_free_list(idp, new); 245 } 246 spin_unlock_irqrestore(&idp->lock, flags); 247 return -1; 248 } 249 new->ary[0] = p; 250 new->count = 1; 251 new->layer = layers-1; 252 if (p->bitmap == IDR_FULL) 253 __set_bit(0, &new->bitmap); 254 p = new; 255 } 256 rcu_assign_pointer(idp->top, p); 257 idp->layers = layers; 258 v = sub_alloc(idp, &id, pa); 259 if (v == IDR_NEED_TO_GROW) 260 goto build_up; 261 return(v); 262 } 263 264 static int idr_get_new_above_int(struct idr *idp, void *ptr, int starting_id) 265 { 266 struct idr_layer *pa[MAX_LEVEL]; 267 int id; 268 269 id = idr_get_empty_slot(idp, starting_id, pa); 270 if (id >= 0) { 271 /* 272 * Successfully found an empty slot. Install the user 273 * pointer and mark the slot full. 274 */ 275 rcu_assign_pointer(pa[0]->ary[id & IDR_MASK], 276 (struct idr_layer *)ptr); 277 pa[0]->count++; 278 idr_mark_full(pa, id); 279 } 280 281 return id; 282 } 283 284 /** 285 * idr_get_new_above - allocate new idr entry above or equal to a start id 286 * @idp: idr handle 287 * @ptr: pointer you want associated with the id 288 * @starting_id: id to start search at 289 * @id: pointer to the allocated handle 290 * 291 * This is the allocate id function. It should be called with any 292 * required locks. 293 * 294 * If allocation from IDR's private freelist fails, idr_get_new_above() will 295 * return %-EAGAIN. The caller should retry the idr_pre_get() call to refill 296 * IDR's preallocation and then retry the idr_get_new_above() call. 297 * 298 * If the idr is full idr_get_new_above() will return %-ENOSPC. 299 * 300 * @id returns a value in the range @starting_id ... %0x7fffffff 301 */ 302 int idr_get_new_above(struct idr *idp, void *ptr, int starting_id, int *id) 303 { 304 int rv; 305 306 rv = idr_get_new_above_int(idp, ptr, starting_id); 307 /* 308 * This is a cheap hack until the IDR code can be fixed to 309 * return proper error values. 310 */ 311 if (rv < 0) 312 return _idr_rc_to_errno(rv); 313 *id = rv; 314 return 0; 315 } 316 EXPORT_SYMBOL(idr_get_new_above); 317 318 /** 319 * idr_get_new - allocate new idr entry 320 * @idp: idr handle 321 * @ptr: pointer you want associated with the id 322 * @id: pointer to the allocated handle 323 * 324 * If allocation from IDR's private freelist fails, idr_get_new_above() will 325 * return %-EAGAIN. The caller should retry the idr_pre_get() call to refill 326 * IDR's preallocation and then retry the idr_get_new_above() call. 327 * 328 * If the idr is full idr_get_new_above() will return %-ENOSPC. 329 * 330 * @id returns a value in the range %0 ... %0x7fffffff 331 */ 332 int idr_get_new(struct idr *idp, void *ptr, int *id) 333 { 334 int rv; 335 336 rv = idr_get_new_above_int(idp, ptr, 0); 337 /* 338 * This is a cheap hack until the IDR code can be fixed to 339 * return proper error values. 340 */ 341 if (rv < 0) 342 return _idr_rc_to_errno(rv); 343 *id = rv; 344 return 0; 345 } 346 EXPORT_SYMBOL(idr_get_new); 347 348 static void idr_remove_warning(int id) 349 { 350 printk(KERN_WARNING 351 "idr_remove called for id=%d which is not allocated.\n", id); 352 dump_stack(); 353 } 354 355 static void sub_remove(struct idr *idp, int shift, int id) 356 { 357 struct idr_layer *p = idp->top; 358 struct idr_layer **pa[MAX_LEVEL]; 359 struct idr_layer ***paa = &pa[0]; 360 struct idr_layer *to_free; 361 int n; 362 363 *paa = NULL; 364 *++paa = &idp->top; 365 366 while ((shift > 0) && p) { 367 n = (id >> shift) & IDR_MASK; 368 __clear_bit(n, &p->bitmap); 369 *++paa = &p->ary[n]; 370 p = p->ary[n]; 371 shift -= IDR_BITS; 372 } 373 n = id & IDR_MASK; 374 if (likely(p != NULL && test_bit(n, &p->bitmap))){ 375 __clear_bit(n, &p->bitmap); 376 rcu_assign_pointer(p->ary[n], NULL); 377 to_free = NULL; 378 while(*paa && ! --((**paa)->count)){ 379 if (to_free) 380 free_layer(to_free); 381 to_free = **paa; 382 **paa-- = NULL; 383 } 384 if (!*paa) 385 idp->layers = 0; 386 if (to_free) 387 free_layer(to_free); 388 } else 389 idr_remove_warning(id); 390 } 391 392 /** 393 * idr_remove - remove the given id and free its slot 394 * @idp: idr handle 395 * @id: unique key 396 */ 397 void idr_remove(struct idr *idp, int id) 398 { 399 struct idr_layer *p; 400 struct idr_layer *to_free; 401 402 /* Mask off upper bits we don't use for the search. */ 403 id &= MAX_ID_MASK; 404 405 sub_remove(idp, (idp->layers - 1) * IDR_BITS, id); 406 if (idp->top && idp->top->count == 1 && (idp->layers > 1) && 407 idp->top->ary[0]) { 408 /* 409 * Single child at leftmost slot: we can shrink the tree. 410 * This level is not needed anymore since when layers are 411 * inserted, they are inserted at the top of the existing 412 * tree. 413 */ 414 to_free = idp->top; 415 p = idp->top->ary[0]; 416 rcu_assign_pointer(idp->top, p); 417 --idp->layers; 418 to_free->bitmap = to_free->count = 0; 419 free_layer(to_free); 420 } 421 while (idp->id_free_cnt >= IDR_FREE_MAX) { 422 p = get_from_free_list(idp); 423 /* 424 * Note: we don't call the rcu callback here, since the only 425 * layers that fall into the freelist are those that have been 426 * preallocated. 427 */ 428 kmem_cache_free(idr_layer_cache, p); 429 } 430 return; 431 } 432 EXPORT_SYMBOL(idr_remove); 433 434 /** 435 * idr_remove_all - remove all ids from the given idr tree 436 * @idp: idr handle 437 * 438 * idr_destroy() only frees up unused, cached idp_layers, but this 439 * function will remove all id mappings and leave all idp_layers 440 * unused. 441 * 442 * A typical clean-up sequence for objects stored in an idr tree will 443 * use idr_for_each() to free all objects, if necessay, then 444 * idr_remove_all() to remove all ids, and idr_destroy() to free 445 * up the cached idr_layers. 446 */ 447 void idr_remove_all(struct idr *idp) 448 { 449 int n, id, max; 450 int bt_mask; 451 struct idr_layer *p; 452 struct idr_layer *pa[MAX_LEVEL]; 453 struct idr_layer **paa = &pa[0]; 454 455 n = idp->layers * IDR_BITS; 456 p = idp->top; 457 rcu_assign_pointer(idp->top, NULL); 458 max = 1 << n; 459 460 id = 0; 461 while (id < max) { 462 while (n > IDR_BITS && p) { 463 n -= IDR_BITS; 464 *paa++ = p; 465 p = p->ary[(id >> n) & IDR_MASK]; 466 } 467 468 bt_mask = id; 469 id += 1 << n; 470 /* Get the highest bit that the above add changed from 0->1. */ 471 while (n < fls(id ^ bt_mask)) { 472 if (p) 473 free_layer(p); 474 n += IDR_BITS; 475 p = *--paa; 476 } 477 } 478 idp->layers = 0; 479 } 480 EXPORT_SYMBOL(idr_remove_all); 481 482 /** 483 * idr_destroy - release all cached layers within an idr tree 484 * @idp: idr handle 485 */ 486 void idr_destroy(struct idr *idp) 487 { 488 while (idp->id_free_cnt) { 489 struct idr_layer *p = get_from_free_list(idp); 490 kmem_cache_free(idr_layer_cache, p); 491 } 492 } 493 EXPORT_SYMBOL(idr_destroy); 494 495 /** 496 * idr_find - return pointer for given id 497 * @idp: idr handle 498 * @id: lookup key 499 * 500 * Return the pointer given the id it has been registered with. A %NULL 501 * return indicates that @id is not valid or you passed %NULL in 502 * idr_get_new(). 503 * 504 * This function can be called under rcu_read_lock(), given that the leaf 505 * pointers lifetimes are correctly managed. 506 */ 507 void *idr_find(struct idr *idp, int id) 508 { 509 int n; 510 struct idr_layer *p; 511 512 p = rcu_dereference_raw(idp->top); 513 if (!p) 514 return NULL; 515 n = (p->layer+1) * IDR_BITS; 516 517 /* Mask off upper bits we don't use for the search. */ 518 id &= MAX_ID_MASK; 519 520 if (id >= (1 << n)) 521 return NULL; 522 BUG_ON(n == 0); 523 524 while (n > 0 && p) { 525 n -= IDR_BITS; 526 BUG_ON(n != p->layer*IDR_BITS); 527 p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]); 528 } 529 return((void *)p); 530 } 531 EXPORT_SYMBOL(idr_find); 532 533 /** 534 * idr_for_each - iterate through all stored pointers 535 * @idp: idr handle 536 * @fn: function to be called for each pointer 537 * @data: data passed back to callback function 538 * 539 * Iterate over the pointers registered with the given idr. The 540 * callback function will be called for each pointer currently 541 * registered, passing the id, the pointer and the data pointer passed 542 * to this function. It is not safe to modify the idr tree while in 543 * the callback, so functions such as idr_get_new and idr_remove are 544 * not allowed. 545 * 546 * We check the return of @fn each time. If it returns anything other 547 * than %0, we break out and return that value. 548 * 549 * The caller must serialize idr_for_each() vs idr_get_new() and idr_remove(). 550 */ 551 int idr_for_each(struct idr *idp, 552 int (*fn)(int id, void *p, void *data), void *data) 553 { 554 int n, id, max, error = 0; 555 struct idr_layer *p; 556 struct idr_layer *pa[MAX_LEVEL]; 557 struct idr_layer **paa = &pa[0]; 558 559 n = idp->layers * IDR_BITS; 560 p = rcu_dereference_raw(idp->top); 561 max = 1 << n; 562 563 id = 0; 564 while (id < max) { 565 while (n > 0 && p) { 566 n -= IDR_BITS; 567 *paa++ = p; 568 p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]); 569 } 570 571 if (p) { 572 error = fn(id, (void *)p, data); 573 if (error) 574 break; 575 } 576 577 id += 1 << n; 578 while (n < fls(id)) { 579 n += IDR_BITS; 580 p = *--paa; 581 } 582 } 583 584 return error; 585 } 586 EXPORT_SYMBOL(idr_for_each); 587 588 /** 589 * idr_get_next - lookup next object of id to given id. 590 * @idp: idr handle 591 * @nextidp: pointer to lookup key 592 * 593 * Returns pointer to registered object with id, which is next number to 594 * given id. After being looked up, *@nextidp will be updated for the next 595 * iteration. 596 */ 597 598 void *idr_get_next(struct idr *idp, int *nextidp) 599 { 600 struct idr_layer *p, *pa[MAX_LEVEL]; 601 struct idr_layer **paa = &pa[0]; 602 int id = *nextidp; 603 int n, max; 604 605 /* find first ent */ 606 n = idp->layers * IDR_BITS; 607 max = 1 << n; 608 p = rcu_dereference_raw(idp->top); 609 if (!p) 610 return NULL; 611 612 while (id < max) { 613 while (n > 0 && p) { 614 n -= IDR_BITS; 615 *paa++ = p; 616 p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]); 617 } 618 619 if (p) { 620 *nextidp = id; 621 return p; 622 } 623 624 id += 1 << n; 625 while (n < fls(id)) { 626 n += IDR_BITS; 627 p = *--paa; 628 } 629 } 630 return NULL; 631 } 632 EXPORT_SYMBOL(idr_get_next); 633 634 635 /** 636 * idr_replace - replace pointer for given id 637 * @idp: idr handle 638 * @ptr: pointer you want associated with the id 639 * @id: lookup key 640 * 641 * Replace the pointer registered with an id and return the old value. 642 * A %-ENOENT return indicates that @id was not found. 643 * A %-EINVAL return indicates that @id was not within valid constraints. 644 * 645 * The caller must serialize with writers. 646 */ 647 void *idr_replace(struct idr *idp, void *ptr, int id) 648 { 649 int n; 650 struct idr_layer *p, *old_p; 651 652 p = idp->top; 653 if (!p) 654 return ERR_PTR(-EINVAL); 655 656 n = (p->layer+1) * IDR_BITS; 657 658 id &= MAX_ID_MASK; 659 660 if (id >= (1 << n)) 661 return ERR_PTR(-EINVAL); 662 663 n -= IDR_BITS; 664 while ((n > 0) && p) { 665 p = p->ary[(id >> n) & IDR_MASK]; 666 n -= IDR_BITS; 667 } 668 669 n = id & IDR_MASK; 670 if (unlikely(p == NULL || !test_bit(n, &p->bitmap))) 671 return ERR_PTR(-ENOENT); 672 673 old_p = p->ary[n]; 674 rcu_assign_pointer(p->ary[n], ptr); 675 676 return old_p; 677 } 678 EXPORT_SYMBOL(idr_replace); 679 680 void __init idr_init_cache(void) 681 { 682 idr_layer_cache = kmem_cache_create("idr_layer_cache", 683 sizeof(struct idr_layer), 0, SLAB_PANIC, NULL); 684 } 685 686 /** 687 * idr_init - initialize idr handle 688 * @idp: idr handle 689 * 690 * This function is use to set up the handle (@idp) that you will pass 691 * to the rest of the functions. 692 */ 693 void idr_init(struct idr *idp) 694 { 695 memset(idp, 0, sizeof(struct idr)); 696 spin_lock_init(&idp->lock); 697 } 698 EXPORT_SYMBOL(idr_init); 699 700 701 /** 702 * DOC: IDA description 703 * IDA - IDR based ID allocator 704 * 705 * This is id allocator without id -> pointer translation. Memory 706 * usage is much lower than full blown idr because each id only 707 * occupies a bit. ida uses a custom leaf node which contains 708 * IDA_BITMAP_BITS slots. 709 * 710 * 2007-04-25 written by Tejun Heo <htejun@gmail.com> 711 */ 712 713 static void free_bitmap(struct ida *ida, struct ida_bitmap *bitmap) 714 { 715 unsigned long flags; 716 717 if (!ida->free_bitmap) { 718 spin_lock_irqsave(&ida->idr.lock, flags); 719 if (!ida->free_bitmap) { 720 ida->free_bitmap = bitmap; 721 bitmap = NULL; 722 } 723 spin_unlock_irqrestore(&ida->idr.lock, flags); 724 } 725 726 kfree(bitmap); 727 } 728 729 /** 730 * ida_pre_get - reserve resources for ida allocation 731 * @ida: ida handle 732 * @gfp_mask: memory allocation flag 733 * 734 * This function should be called prior to locking and calling the 735 * following function. It preallocates enough memory to satisfy the 736 * worst possible allocation. 737 * 738 * If the system is REALLY out of memory this function returns %0, 739 * otherwise %1. 740 */ 741 int ida_pre_get(struct ida *ida, gfp_t gfp_mask) 742 { 743 /* allocate idr_layers */ 744 if (!idr_pre_get(&ida->idr, gfp_mask)) 745 return 0; 746 747 /* allocate free_bitmap */ 748 if (!ida->free_bitmap) { 749 struct ida_bitmap *bitmap; 750 751 bitmap = kmalloc(sizeof(struct ida_bitmap), gfp_mask); 752 if (!bitmap) 753 return 0; 754 755 free_bitmap(ida, bitmap); 756 } 757 758 return 1; 759 } 760 EXPORT_SYMBOL(ida_pre_get); 761 762 /** 763 * ida_get_new_above - allocate new ID above or equal to a start id 764 * @ida: ida handle 765 * @starting_id: id to start search at 766 * @p_id: pointer to the allocated handle 767 * 768 * Allocate new ID above or equal to @ida. It should be called with 769 * any required locks. 770 * 771 * If memory is required, it will return %-EAGAIN, you should unlock 772 * and go back to the ida_pre_get() call. If the ida is full, it will 773 * return %-ENOSPC. 774 * 775 * @p_id returns a value in the range @starting_id ... %0x7fffffff. 776 */ 777 int ida_get_new_above(struct ida *ida, int starting_id, int *p_id) 778 { 779 struct idr_layer *pa[MAX_LEVEL]; 780 struct ida_bitmap *bitmap; 781 unsigned long flags; 782 int idr_id = starting_id / IDA_BITMAP_BITS; 783 int offset = starting_id % IDA_BITMAP_BITS; 784 int t, id; 785 786 restart: 787 /* get vacant slot */ 788 t = idr_get_empty_slot(&ida->idr, idr_id, pa); 789 if (t < 0) 790 return _idr_rc_to_errno(t); 791 792 if (t * IDA_BITMAP_BITS >= MAX_ID_BIT) 793 return -ENOSPC; 794 795 if (t != idr_id) 796 offset = 0; 797 idr_id = t; 798 799 /* if bitmap isn't there, create a new one */ 800 bitmap = (void *)pa[0]->ary[idr_id & IDR_MASK]; 801 if (!bitmap) { 802 spin_lock_irqsave(&ida->idr.lock, flags); 803 bitmap = ida->free_bitmap; 804 ida->free_bitmap = NULL; 805 spin_unlock_irqrestore(&ida->idr.lock, flags); 806 807 if (!bitmap) 808 return -EAGAIN; 809 810 memset(bitmap, 0, sizeof(struct ida_bitmap)); 811 rcu_assign_pointer(pa[0]->ary[idr_id & IDR_MASK], 812 (void *)bitmap); 813 pa[0]->count++; 814 } 815 816 /* lookup for empty slot */ 817 t = find_next_zero_bit(bitmap->bitmap, IDA_BITMAP_BITS, offset); 818 if (t == IDA_BITMAP_BITS) { 819 /* no empty slot after offset, continue to the next chunk */ 820 idr_id++; 821 offset = 0; 822 goto restart; 823 } 824 825 id = idr_id * IDA_BITMAP_BITS + t; 826 if (id >= MAX_ID_BIT) 827 return -ENOSPC; 828 829 __set_bit(t, bitmap->bitmap); 830 if (++bitmap->nr_busy == IDA_BITMAP_BITS) 831 idr_mark_full(pa, idr_id); 832 833 *p_id = id; 834 835 /* Each leaf node can handle nearly a thousand slots and the 836 * whole idea of ida is to have small memory foot print. 837 * Throw away extra resources one by one after each successful 838 * allocation. 839 */ 840 if (ida->idr.id_free_cnt || ida->free_bitmap) { 841 struct idr_layer *p = get_from_free_list(&ida->idr); 842 if (p) 843 kmem_cache_free(idr_layer_cache, p); 844 } 845 846 return 0; 847 } 848 EXPORT_SYMBOL(ida_get_new_above); 849 850 /** 851 * ida_get_new - allocate new ID 852 * @ida: idr handle 853 * @p_id: pointer to the allocated handle 854 * 855 * Allocate new ID. It should be called with any required locks. 856 * 857 * If memory is required, it will return %-EAGAIN, you should unlock 858 * and go back to the idr_pre_get() call. If the idr is full, it will 859 * return %-ENOSPC. 860 * 861 * @id returns a value in the range %0 ... %0x7fffffff. 862 */ 863 int ida_get_new(struct ida *ida, int *p_id) 864 { 865 return ida_get_new_above(ida, 0, p_id); 866 } 867 EXPORT_SYMBOL(ida_get_new); 868 869 /** 870 * ida_remove - remove the given ID 871 * @ida: ida handle 872 * @id: ID to free 873 */ 874 void ida_remove(struct ida *ida, int id) 875 { 876 struct idr_layer *p = ida->idr.top; 877 int shift = (ida->idr.layers - 1) * IDR_BITS; 878 int idr_id = id / IDA_BITMAP_BITS; 879 int offset = id % IDA_BITMAP_BITS; 880 int n; 881 struct ida_bitmap *bitmap; 882 883 /* clear full bits while looking up the leaf idr_layer */ 884 while ((shift > 0) && p) { 885 n = (idr_id >> shift) & IDR_MASK; 886 __clear_bit(n, &p->bitmap); 887 p = p->ary[n]; 888 shift -= IDR_BITS; 889 } 890 891 if (p == NULL) 892 goto err; 893 894 n = idr_id & IDR_MASK; 895 __clear_bit(n, &p->bitmap); 896 897 bitmap = (void *)p->ary[n]; 898 if (!test_bit(offset, bitmap->bitmap)) 899 goto err; 900 901 /* update bitmap and remove it if empty */ 902 __clear_bit(offset, bitmap->bitmap); 903 if (--bitmap->nr_busy == 0) { 904 __set_bit(n, &p->bitmap); /* to please idr_remove() */ 905 idr_remove(&ida->idr, idr_id); 906 free_bitmap(ida, bitmap); 907 } 908 909 return; 910 911 err: 912 printk(KERN_WARNING 913 "ida_remove called for id=%d which is not allocated.\n", id); 914 } 915 EXPORT_SYMBOL(ida_remove); 916 917 /** 918 * ida_destroy - release all cached layers within an ida tree 919 * @ida: ida handle 920 */ 921 void ida_destroy(struct ida *ida) 922 { 923 idr_destroy(&ida->idr); 924 kfree(ida->free_bitmap); 925 } 926 EXPORT_SYMBOL(ida_destroy); 927 928 /** 929 * ida_init - initialize ida handle 930 * @ida: ida handle 931 * 932 * This function is use to set up the handle (@ida) that you will pass 933 * to the rest of the functions. 934 */ 935 void ida_init(struct ida *ida) 936 { 937 memset(ida, 0, sizeof(struct ida)); 938 idr_init(&ida->idr); 939 940 } 941 EXPORT_SYMBOL(ida_init); 942